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THE LIMITING SPECTRAL LAW FOR SPARSE IID MATRICES

ASHWIN SAH, JULIAN SAHASRABUDHE, AND MEHTAAB SAWHNEY

Abstract. Let A be an n×n matrix with iid entries where Aij ∼ Ber(p) is a Bernoulli random

variable with parameter p = d/n. We show that the empirical measure of the eigenvalues

converges, in probability, to a deterministic distribution as n → ∞. This essentially resolves a

long line of work to determine the spectral laws of iid matrices and is the first known example

for non-Hermitian random matrices at this level of sparsity.

1. Introduction

For an n × n matrix M , define its spectral distribution to be the probability measure on C,

which puts a point mass of equal weight on each eigenvalue λ of M :

µM = n−1
∑

δλ.

One of the central projects in random matrix theory, going back to the seminal 1958 work of

Wigner [34], is to determine the limiting spectral distribution of various random matrix models

as the dimension tends to infinity.

While this area has enjoyed spectacular advances in the 80 years since its inception, several

fundamental matrix models have eluded all attempts to understand their spectral law. Two

major problems here concern very sparse matrices, in particular matrices with a constant number

of non-zero entries in a typical row or column. The first is to show that µMn tends to the oriented

Kesten–McKay law as n→ ∞ when Mn is an n×n matrix chosen uniformly at random from all

matrices with exactly d ∈ N ones in each row and column (so called d-regular digraphs). The

second is to show the existence of the limiting spectral distribution for iid Bernoulli random

matrices with parameter p = d/n, for d fixed.

In this paper we resolve this latter conjecture. As will see, this is the last piece in a complete

understanding of the limiting spectral laws of iid random matrices and is the first time the

existence of a limit law has been established for any non-Hermitian random matrix model at

this level of sparsity. In particular, this resolves a question highlighted by Tikhomirov in his

2022 ICM survey [32, Problem 6].

Theorem 1.1. For d > 0, and each n, let An be an n × n matrix with iid entries distributed

as Ber(d/n). There exists a distribution µd on C so that µAn converges to µd, in probability.

Our proof differs significantly from previous approaches, such as [25], and, for example,

entirely avoids the direct use ε-nets. Rather, our approach is to “build up” the matrix, a row

and column at a time, and study the evolution of the point process defined by the singular values

of the shifted matrices An − zI as we add rows and columns. Our methods additionally give a

considerably shorter proof of the difficult and celebrated theorem of Rudelson and Tikhomirov

[25] who proved the existence of the limiting spectral law in the case pn → ∞. The details of

this are contained in the sister paper [27].

We remark that the real problem here is for d > 1. In the “subcritical” and “critical”

regimes, d < 1 and d = 1, it is not hard to show that almost all of the eigenvalues of An are
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0 and therefore µd = δ0. We include these details in Section 3. On the other hand, we expect

that for d > 1, µd is a rich, non-trivial distribution. Thus p = 1/n represents the threshold for

the “birth” of the spectrum of An.

While in this paper we are almost exclusively focused on the existence of the limiting dis-

tribution µd, many properties of µd can deduced, using other methods, now that it has been

shown to exist. For example, it is possible to show that each µd is rotationally invariant, which

incidentally falls out of some calculations we need in the course of proving Theorem 1.1 (see

Lemma 11.1).

Let us also remark that our proof also can be adapted to the case where all non-zero entries

are iid copies of a random variable ξ with variance 1 and with moments that decay sufficiently

quickly.

So far we have been somewhat loose in our discussion of the precise mode of convergence

for the random measures µAn . In Theorem 1.1, and throughout this paper, we are concerned

with convergence in probability : a sequence of random measures µn converges in probability to

a probability measure µ, if for all continuous bounded functions f : C → C, and all ε > 0, we

have

(1)

∣

∣

∣

∣

∫

f dµn −
∫

f dµ

∣

∣

∣

∣

< ε

with probability 1 − o(1). If this holds we write µn  µ. It is also natural to consider the

stronger notion of almost sure convergence of µAn to µd, which is a problem we leave open for

future work.

1.1. The least singular value problem. Before we discuss the history of the limiting spectral

laws for iid random matrices, we highlight a consequence of our results that is of independent

interest and essentially resolves another question raised by Tikhomirov in his ICM survey [32,

Problem 7].

Here we are interested in proving that the spectrum of An does not “clump” about a point

z ∈ C. This “clumping” is captured in the extreme behaviour of the least singular value of the

random shifted matrices An − zI. Recall that for an n× n matrix M , its least singular value is

σn(M) = min
v∈Sn−1

‖Mv‖2.

In this paper we prove the following “qualitative” estimates on σn(An − zI) conjectured by

Tikhomirov [32].

Theorem 1.2. Fix d > 1 and ε > 0. Then for Lebesgue almost all z we have the following.

For each n, let An be an n× n matrix with iid entries distributed as Ber(d/n). Then

P

(

σn(An − zI) 6 exp(−εn)

)

= o(1).

In fact, a careful analysis of our proof reveals that we may take ε = n−1/2+o(1) and the o(1)

probability bound can be taken to be (log n)−Ω(1). However, these quantitative aspects are not

the focus of this work and thus our methods are not tailored to this problem. We briefly discuss

these dependencies in Remark 13.6.

We also note that the proof in the paper can be modified to handle d < 1 in the setting of

Theorem 1.2, but we do not pursue the study of this sub-critical regime here, in the interest of

brevity.
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1.2. History of the limiting spectral law for iid random matrices. The project of deter-

mining the limit laws for random matrix models goes back to the seminal work of Wigner who

proved the famous “semi-circular” law for random symmetric matrices (or Wigner matrices).

We let Mn be an n×n random symmetric matrix with entries (Mn)i6j uniform in {0, 1}. Since

symmetric matrices have all real eigenvalues it then makes sense to define, for a < b, Nn(a, b)

to be the number of eigenvalues of Mn in the interval (a, b). Wigner’s semi-circular law says

that

lim
n→∞

Nn(a
√
n, b

√
n)

n
=

1

2π

∫ b

a
(4 − x2)

1/2
+ dx

almost surely.

While these methods led to a very good understanding of symmetric and Hermitian ran-

dom matrix models, determining the limiting spectral distribution for matrices with iid (non-

symmetric) entries proved to be substantially more difficult. Here the first steps were taken by

Mehta [22], who in the 1960s showed that when An has iid complex Gaussian entries, the spec-

tral distribution of n−1/2An converges to the uniform measure on the unit disc {z ∈ C : |z| 6 1},

the so-called circular law. Mehta’s proof relied deeply on the symmetries of complex Gaussian

random variables and it was not until the 1990s that Edelman [9] managed to prove the same

result for real Gaussian random variables.

The case of more general coefficient distributions was studied in the 1980s by Girko [12], who

developed very influential ideas such as the “hermitization” technique, but his method relied on

an unproven statement about the least singular value of iid matrices. This statement was then

circumvented in the 1990s by Bai [1], who extended the theorem of Edelman to matrices where

the entries are iid mean 0, variance 1, and satisfy some smoothness and moment conditions.

These results where then improved by Götze and Tikhomirov [14], Pan and Zhou [23] and Tao

and Vu [29], by using the method of Bai along with methods of Rudelson and Vershynin [26]

and Tao and Vu [31] to control the least singular value. Finally, Tao and Vu [30] proved the

full “universality” theorem, showing the circular law holds for any sequence of iid matrix with

entries distributed as a mean 0 variance 1 random variable. The method, relying on their

breakthroughs in inverse Littlewood–Offord theory, provides a full understanding of empirical

spectral distributions of “dense” random matrices.

Theorem 1.3 (Tao and Vu). Let ξ be a complex random variable with mean 0 and variance 1, let

An be a sequence of random matrices with iid entries distributed as ξ. If we put A∗
n = An ·n−1/2

then the spectral measure νA∗
n
converges to the circular law in probability1.

While this celebrated line of results gives us a very good understanding of the limiting spectral

laws of dense matrices, it does not tell us anything about matrices where the non-zero entries

are sparse, as is often interesting in combinatorial settings. Of particular interest are Bernoulli

random matrices: random iid matrices where all entries are Bernoulli random variables that

take 1 with probability p = pn → 0 and 0 otherwise.

The spectral laws of such matrices were considered by Götze and Tikhomirov [14], who proved

that the limiting spectral law of An is still the circular law (with appropriate normalization) for

all p > n−1/4+ε. Tao and Vu [29] improved this range to p > n−1+ε, and Basak and Rudelson [2]

improved this range further to account for all p > ω(n−1(log n)2).

Then, in an important and difficult paper, Rudelson and Tikhomirov [25] extended these

results to account for all pn → ∞. This work is of particular interest since it is not hard to

see that that the condition pn → ∞ is necessary for convergence to the circular law: for pn

bounded there is always an atom at zero.

1In fact, Tao and Vu prove this result for the stronger notion of “almost sure” convergence.
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Theorem 1.4 (Rudelson and Tikhomirov). Let p = pn be such that pn → ∞ and p → 0.

For each n, let An be an n × n matrix with iid entries distributed as Ber(p). If we put A∗
n =

(pn)−1/2An then µA∗
n
tends to the circular law, in probability.

In fact, they prove a more general result that allows for each non-zero entry to be a copy of

an iid random variable ξ with mean 0 and variance 1. We point the reader to [25] or our sister

paper [27], where we give a simple proof of a variant of this theorem that subsumes all of these

previous results.

This leaves open what has proven to be the most difficult and subtle case, the case of p = d/n

for constant d > 0. As mentioned before, the real problem is for d > 1, as it is not too hard to

see that2 for d 6 1, the limiting measure is the point mass at 0. As soon as d > 1, however, the

limiting distribution µd becomes a rich and interesting distribution. In this paper we establish

the existence of the limiting spectral law for all d, down to its “birth” at d > 1.

2. Outline of Proof

Before describing our method, we note that in our paper [27] we adapt the methods of this

paper to reprove the sparse circular law of Rudelson and Tikhomirov [25]. There, we are dealing

with matrices for which an entry is nonzero with probability p, where pn → ∞, which allows

us to avoid several significant challenges that occur in this paper. Thus one may find it easier

to absorb our method by first understanding [27] and then returning to this paper. Of course,

we will not assume any knowledge of [27] in our treatment here.

2.1. Convergence of the logarithmic potential. To establish the convergence of the spec-

tral law, it is enough to prove the point-wise, almost everywhere, convergence of the logarithmic

potential of the spectral law, which is (although we don’t need this expression here) the (ran-

dom) function

Un(z) = − 1

n

∑

λ

log |λ− z|,

where the sum is over the eigenvalues λ of our random matrix An. Note here the limit necessarily

does not match logarithmic potential of the circular law, which presents a key difficulty. We

start by using Girko’s “hermitization” method (see e.g. [5]) to express

(2) Un(z) = − 1

n

n
∑

j=1

log
(

σj
(

An − zIn
))

,

where σ1(M) > · · · > σm(M) denote the (right) singular values of the n×m matrix M .

The big advantage of this expression is that it is in terms of singular values, rather than

eigenvalues, which have the advantage that they are the real and, in particular, the eigenvalues

of the Hermitian matrix (An − zIn)†(An − zIn). The point is that, if we define the measure

νz = n−1
∑

δσ ,

where the sum is over the singular values σ ∈ {σn(An− zIn), . . . , σ1(An− zIn)}, we can recover

the bulk behaviour of νz by simply computing the trace moments of (An − zIn)†(An − zIn),

using now standard techniques.

While this is a good (and far from novel) first step, this does not imply the convergence of

the log potential since it is a priori possible for some singular values in the sum (2) to disrupt

the convergence of the bulk, either by being very large or by being very small. The possible

problem of σ1 being large is easily brought under control by standard estimates, which brings

us to the heart of the matter: abnormally small singular values.

2This is also implicit in the work of Coste [6] for d < 1.
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Traditionally, one needs to prove estimates roughly of the form

(3) P
(

σn−k(An − zI) 6 exp(−εn/k)
)

= o(1),

for any ε > 0, all k 6 n − 1, and for Lebesgue almost every z ∈ C. Indeed, heuristically we

have σn−k = Θ(kd1/2n−1), typically, and thus (3) perhaps appears to be an easily surmounted

obstacle, as it represents (what we expect to be) extremely abnormal behaviour. However,

obtaining bounds of this type has recently been the significant challenge in this area. Indeed,

proving (3) is one of the principle achievements of the work Tao and Vu [30] in their work on

the circular law for dense matrices. For sparse matrices, the challenge is greater still as there is

less “randomness” to use. For their sparse circular law, Rudelson and Tikhomirov [25] develop

a whole toolbox of sophisticated techniques to prove singular value estimates of the type3 (3).

2.2. The evolution of windows of singular values. In this paper, our focus is slightly

different, and we instead look to control the bottom window of singular values

(4) Wn,0(z) = − 1

n

δn
∑

j=0

log
(

σn−j(An − zIn)
)

,

by showing that for all ε > 0 and almost all z ∈ C, we have that

(5) P
(

Wn,0(z) 6 ε
)

= 1 − o(1).

Here δ is chosen to be sufficiently small relative to d, z, ε.

While this, so far, is not much of a departure from the task of proving (3), our principal

difference comes from how we approach Wn,0(z), which is fundamentally dynamic: we build up

the randomness in the matrix bit by bit and track how the singular values evolve.

To best explain this, we first describe an approach that is simpler than our true approach but

only works for sufficiently large (but fixed) d. We then describe a more complicated revelation

process that works for all d down to the threshold d > 1. The case of d 6 1 is handled differently

by a direct graph theoretic method, which is not relevant to our discussion here.

In this simplified version, the idea is to set m = (1 − ε)n and start by revealing the top left

m×m sub-matrix4 Am = Am,m of An. We will then “build up” the matrix An by alternately

adding rows and columns until we fill out all of An:

Am,m → Am,m+1 → Am+1,m+1 → · · · → An,n.

At each step we will upper bound a (sliding) window of δn singular values. Precisely, we

define the window of At at height r to be

Wt,r(z) = − 1

n

r+δn
∑

j=r

log
(

σt−j(At − zIt)
)

,

and look to maintain an upper bound of Wt,r(z) = oδ→0(1), as t increases and r decreases.

We initialize our process by controlling the window of Am at height r0 = ε4m

Wm,r0(z) = − 1

n

r0+δn
∑

j=r0

log
(

σm−j(Am − zIm)
)

.

3In fact, both Tao and Vu [30] as well as Rudelson and Tikhomirov [25] obtain better estimates on the least

singular value than required, but this is not relevant to our discussion here.
4Here we let As,t denote the submatrix of An defined by (Aij)i∈[s],j∈[t]. We define Am = Am,m.
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To deal with this initial window we prove that, for all z ∈ C outside a set of measure 0, there

is a τ(z) > 0 so that

(6) P

(

σ(1−ε4)m(Am − zI) > τ(z)
)

= 1 − o(1).

In fact, the core of this step is simply an abstract argument about eigenvalues of general matrices.

For the remainder of the proof, we restrict our attention to the values of z which satisfy (6),

which is enough for us: we don’t mind losing control on a set of zero measure in z. Thus, by

applying (6), we have the upper bound of

Wm,r0(z) 6 δε4(log τ−1(z))

on our initial window, with high probability.

We now describe how our process evolves. Let us index time in our process by t ∈ [m,n], so

that at time t we have exposed At. When we progress from t → t + 1 we add a column to At
and then row, so that we have filled out At+1. We now shift the height of our window downward

by one at time t, that is r → r − 1, if after our column and row additions we have

(7) Wt+1,r−1(z) 6Wt,r(z) + δr,

where δr > 0 is the amount that we are willing to lose when we take on the rth smallest singular

value. The key property of the δr is simply that
∑r0

r=0 δr = o(1).

We now need to consider the probability that the good event (7) occurs, and that we actually

make downward progress in our process. Here the intuition is that the addition of a row or

column to At (or At,t+1)“pushes”, monotonically, all of the singular values of At upward. We

shall see that often the two singular values that are just below our current window are pushed

hard enough for us to “capture”, by moving our window downward, without increasing our

logarithmic sum by too much. Since we also create a new singular value, as the dimension

increases by 1, we move r → r − 1 whenever (7) occurs.

In particular, we shall show that (7) occurs with decent probability: if d is large then we have

(8) P
(

Wt+1,r−1(z) 6Wt,r(z) + δr
)

= 1 − od→∞(1),

subject to At (and then At,t+1) satisfying several quasi-randomness conditions. Here the prob-

ability in (8) is only over the new row and column addition, which allows us to naturally think

of the evolution the height as a random process in t. We remark that proving (8) is one of the

main technical challenges of this paper. We briefly discuss the ingredients that go into proving

this in Section 2.4 below.

To see that (8) ensures that we make sufficient downward progress, let Xt be the height of

our window at time t. The trajectory of Xt is defined by

Xt+1 6 Xt−1 + 1 if (8) fails; and Xt+1 = Xt − 1 if (8) holds.

Since we have εn steps in our process; each step has downward drift of nearly 1; and our

starting point is Xm = ε4m < ε4n, a standard martingale analysis reveals that we have sufficient

downward drift to ensure Xn = O(1), with high probability.

But here we encounter a difficulty right at the end of the process. The above analysis only

guarantees that Xn = O(1), with high probability, while we require that Xn = 0, with high

probability. The key observation here is that a random iid Bernoulli matrix, with p = d/n for

d > 1, will actually have a few rows that have a large number of 1s. Thus we arrange that a few

of these rows appear at the very end of the process, so that we obtain a stronger probability

bound on (8) and therefore create a strong downward drift for Xt in the last few steps, which

ultimately guarantees that Xn = 0, with high probability.
6



In particular, we arrange that we encounter, at the end of the process, ℓ = (log n)2 iid rows

with approximately
√

log n 1s in each. This allows us to ensure that

P
(

Wr−1(z) 6Wr(z) + δr
)

> 1 − (log n)−c,

for c > 0, in the last ℓ steps of the process.

2.3. Extending to the threshold. While the proof we have sketched above can be made to

work for all sufficiently large d, the bound we obtain in (8) is not good enough to accommodate

smaller d. To get down to the threshold d > 1, we need one further idea. Again the idea is to

move a bunch of rows and columns with support size ≫ 1 to the end of the process, where they

are most useful. Here, however, our technique is slightly different than that described above

and based on a similar manoeuvre found in [10,13].

This idea is best explained if we think of our matrix as a directed graph on [n] where (i, j) is an

edge if the ijth entry is 1. We start by setting aside the first (1−ε)n vertices (which corresponds

to the top left principal submatrix). We now expose the degrees (both in and out) of the vertices5

(1− ε)n, . . . , n− ℓ within [n− ℓ] and define the value of a vertex j ∈ {(1− ε)n, . . . , n− ℓ} to be

val(j) = min{deg+(j, [n − ℓ]),deg−(j, [n − ℓ])}.
We then move the ε3n vertices among {(1− ε)n, . . . , n− ℓ} with the largest value to the end of

our ordering. Note that we expect that these vertices will have value > (log 1/ε)1−o(1).
Being careful that we maintain enough independence after these degree exposures, we can

prove a variant of (8) of the form

(9) P
(

Wt+1,r−1(z) 6Wt,r(z) + δr
)

= 1 − oε→0(1),

where the the little o terms now (crucially) tends to zero as ε→ 0. Hence we recover the same

behavior we saw for d sufficiently large at (8).

We now run our process on the last ε3n+ℓ rows and columns, again setting aside ℓ = (log n)2

rows with ≈ √
log n 1s to help us at the end. That is, we initialize our process at

t0 = m = n− ε3n− ℓ and with initial window height r0 = ε4n

and then fill out An by adding the remaining ε3n+ ℓ rows and columns.

To see that we have enough downward drift in our window height Xt, we note that Xm =

ε4m < ε4n and that in each of our ε3n steps we have downward drift of nearly 1, from (9). Thus

a standard martingale analysis again tells us that we have Xn−ℓ = O(1) with high probability.

We can then ensure Xn = 0, with high probability, after exposing the last ℓ rows which we set

aside previously.

2.4. The proof of (8), the key step. One of the key components of the paper is the proof

of (8) and its relative (9). Our first step toward (8) is to prove the following inequality that

quantifies how much our window is pushed after on the addition of a new column (or row) X:

(10)

r−1+δn
∏

j=r−1

σt−j(At,t+1) > ‖PX‖2 · (‖X‖22 + σt−r−δn(At)
2)−1/2 ·

t+δn
∏

j=r

σt−j(At),

The key thing to observe here is that our bound crucially depends on the quantity ‖PX‖2,

where P is the orthogonal projection onto the span of the singular directions which are below

our window. In particular, small ‖PX‖2 is bad for us here, while large ‖PX‖2 is good.

Thus (10) reduces our task to proving that it is unlikely for X to have small projection onto

the span of the smallest singular directions below our current window. While this is not true

5Here and throughout we use the notation [n] = {1, . . . , n}.
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for a general matrix, we are able to prove that this is true for quasi-random At. More precisely

we show that if At satisfies certain quasi-randomness conditions, we have

(11) PX

(

‖PX‖2 < exp(−nδr)
)

= oε→0(1).

While proving “unstructured” theorems of this type can be quite challenging in general, here

we can get away with a very weak notion of quasi-randomness, based on a simple variant of

a graph expansion property: this is our so called “unique neighbourhood expansion” property.

From this quasi-randomness condition, we can deduce that all vectors that are close to the

kernel of A are reasonably “flat”. This then allows us to deduce that the span of the singular

directions is sufficiently quasi-random to imply (11).

2.5. Organization of the paper. In Section 3 we prove Theorem 1.1 when d 6 1 using graph

theoretic techniques. In Section 4 we define the extraction procedure for high degree vertices

and construct the natural filtration by which to run the random walk. In this section we also

define various notation regarding the random walk which will be used throughout the paper. In

Section 5 we prove the coupling estimate between a Ber(d/n) matrix and a matrix where the

final set of rows and columns have modified entries to ensure high degree at the very end of the

process.

In Section 6, we prove that various digraphs in the walk exhibit unique neighborhood expan-

sion. In Section 7, we transfer this expansion into unstructuredness of near minimal singular

vectors. In Section 8, we prove that this implies that the image of the new row or column added

is unlikely to lie near the subspace spanned by near minimal singular vectors. In Section 9, we

prove a basic result regarding random walks with drift.

In Section 10 we prove the crucial linear algebra lemma which relates knowledge of the

projection onto near minimal singular vectors into control allowing a shift of the window of

singular values downward. In Section 11 we prove convergence of the singular values of shifted

random matrices. In Section 12 we prove that the shifted singular value measures have no atom

at 0 for Lebesgue almost all z. Finally, in Section 13 we run the random walk in order to

complete the proof by combining various ingredients proven earlier.

3. Handling d 6 1

We prove Theorem 1.1 in the case when d 6 1. The proof is purely graph theoretic. We view

An as the n× n adjacency matrix of a digraph (see Appendix A.1). Let D(n, p) be the random

directed graph where each directed edge (including self loops) in included with probability p.

Thus, An is the adjacency matrix of G′ ∼ D(n, d/n). Since d 6 1, we can find a joint distribution

of random digraphs such that G′ ∼ D(n, d/n), G ∼ D(n, (1 + ε)/n), and G′ ⊆ G almost surely.

We will consider such couplings where ε is a fixed constant such that ε ∈ (0, 1), and ultimately

consider the behavior as ε→ 0.

We first have the following result regarding the structure of strongly connected components

of D(n, p) coming from  Luczak [20, Theorem 1(ii)].6

Theorem 3.1. Fix ε ∈ (0, 1). Let G ∼ D(n, p) with p = (1 + ε)/n. The strongly connected

components of G consist of one component of size Ωε(n) and the remaining are either cycles of

length at most log log n or components of size 1.

6 Luczak [20] and Karp [17] consider D(n, p) without loops but this leaves the structure of strongly connected

components unchanged. Furthermore  Luczak considers D(n,m) but the desired result follows in an unchanged

manner.

8



We will also the require the following set of results due to Karp [17]. In order to simplify

notation, we say that u→ v (with respect to a directed graph G) if there exists a directed path

from u→ v (with the convention u→ u). We define

XG(u) = {v ∈ V (G) : u→ v} and YG(u) = {v ∈ V (G) : v → u}.

We have the following results concerning XG(u) and YG(v) due to Karp [17, Theorems 1, 3].

Theorem 3.2. Fix ε ∈ (0, 1). Let G ∼ D(n, p) with p = (1 + ε)/n and define θ = θ(ε) to be the

unique nonzero solution of 1 − x− e−(1+ε)x = 0. Then with probability 1 − n−ω(1), we have for

all v ∈ [n] that

XG(v) ∈ [0, (log n)2] ∪ [θn− n1/2 log n, θn+ n1/2 log n]

and by symmetry the same for YG(v).

Furthermore, with probability 1−n−ω(1), if |XG(u)| > θn/2 and |YG(v)| > θn/2, then u→ v.

We now prove Theorem 1.1 in the case when d 6 1. We will in fact prove that µd is an Dirac

mass at 0.

Proof of Theorem 1.1 for d 6 1. Fix ε > 0. One can jointly sample G′ ∼ D(n, d/n) and G ∼
D(n, (1 + ε)/n) such that G′ ⊆ G almost surely. We define a vertex v to have trivial image in

G′ (and analogous for G) if for all u ∈ XG′(v), we have that the strongly connected component

corresponding to u in G′ has size 1 and u does not have a self-loop. We claim that all but at

most 2θn vertices in G have trivial image whp, where θ = θ(ε) is as in Theorem 3.2.

Given this, note that there can only be more vertices with trivial image in G′. Additionally,

note that if A is the adjacency matrix corresponding to digraph G′ then Anev = 0 for all v with

trivial image. Therefore we deduce that An is nonzero only on a dimension at most 2θn space.

This immediately implies that A has at least (1− 2θ(ε))n many eigenvalues equal to 0. Finally,

note that θ(ε) → 0 as ε → 0, so it follows that all but o(1) fraction of the eigenvalues of A are

0. Thus the (random) spectral measure converges in probability to the Dirac mass at 0.

We now prove the above claim. Assume the outcomes of Theorems 3.1 and 3.2 hold, which

occurs whp. Let S be the set of vertices in the unique giant strongly connected component

guaranteed by Theorem 3.1. Let S− be the set of vertices u for which XG(u) ⊇ S and let S+
be the set of vertices u for which YG(u) ⊇ S. (Note S ⊆ S+ ∩ S−.) Let T = S ∪ S+ ∪ S−. By

Theorem 3.2, for all v ∈ S+ we have |YG(v)| ∈ [θn± n1/2 log n].

In particular, applying this for v ∈ S demonstrates that |S−| ∈ [θn±n1/2 log n]. Then apply-

ing it for v ∈ S+ shows that YG(v) contains at most 2n1/2 log n vertices not in S−. Furthermore,

if v ∈ V (G) satisfies |YG(v)| > θn/2 then the final part of Theorem 3.2 implies that u → v for

all u ∈ S, i.e., v ∈ S+. So, if v /∈ S+ then |YG(v)| < θn/2 hence in fact |YG(v)| ∈ [0, (log n)2] by

Theorem 3.2. Combining these cases, we have |YG(v) \ S−| 6 2n1/2 log n for all v ∈ V (G).

Finally, consider a vertex u /∈ S− which does not have trivial image. By Theorem 3.1, there

must exist v ∈ XG(u) such that v ∈ S or v /∈ S and v is in a cycle of length at most log log n

(where a self-loop is a treated as a cycle of length 1). In the former case, we must have u ∈ S−,

which contradicts u /∈ S−. Thus the latter case holds. Additionally, note that u ∈ YG(v) \ S−
holds.

Thus, any u /∈ S− which does not have trivial image must be in YG(v) \ S− for some v in

a cycle of length at most log log n. There are at most no(1) such v whp, and by the previous

paragraph each such v satisfies |YG(v) \ T | 6 2n1/2 log n. Thus u must be in a set of vertices of

size at most n1/2+o(1).

Putting this together, we deduce there are at most |S−| + n1/2+o(1) 6 2θn many vertices

u ∈ V (G) that do not have trivial image. We are done. �
9



4. Definition of the random process

We now formally define the crucial sequence of random matrices which we will be concerned

with for the remainder of the paper. Fix a constant d 6= 1; d will be fixed throughout the proof

and constants will always be allowed to depend on d (specifically, its size and its distance from

1). Let ℓ = ⌊(log n)2⌋.
Let A be an n× n matrix with independent {0, 1}-entries such that

(12) P(Aij = 1) = d/n.

Let B be an n× n matrix with independent {0, 1}-entries such that

(13) P(Bij = 1) = d/n if max(i, j) 6 n− ℓ and P(Bij = 1) =
√

log n/n otherwise.

Let ε = P(Pois(d) > ∆) for an integer ∆ to be chosen later. Throughout the proof we will

ensure that various parameters are independent of ∆; we will ultimately take ∆ → ∞ at the

end of the proof.

We will build B iteratively by adding columns and rows alternately. However the order that

we add them in will be rather delicate. Further define

T1 = [⌊n(1 − ε)⌋], T2 = [⌊n(1 − ε)⌋ + 1, n− ℓ], and T3 = [n− ℓ+ 1, n].

We now define the set of high-degree indices in T2. For each index j in T2, define the value

of j to be

val(j) = min(deg+B(j, [n − ℓ]),deg−B(j, [n − ℓ])),

where we associate {0, 1}-matrices to digraphs as outlined in Appendix A.1. (We will use the

conventions there in the remainder of the paper without further mention.)

Let H be defined as the ⌊ε3n⌋ indices j in T2 with largest val(j) (breaking ties by choosing

earlier indices in the integer ordering first).

We now iteratively build our matrix B such that Bn = B; the precise ordering of indices

will depend on the parameter ε. Define m = m(ε) = n− ℓ− ⌊ε3n⌋. Then define a sequence of

random sets Sj for m 6 j 6 n and random indices vj for m+ 1 6 j 6 n iteratively as

Sm = T1 ∪ (T2 \H),

vj+1 = Unif(H \ Sj), for m 6 j < n− ℓ,

vj+1 = j, for n− ℓ 6 j < n,

Sj+1 = Sj ∪ {vj+1}, for m 6 j < n.

Finally, define

Bj = B[Sj, Sj ] for m 6 j 6 n and B∗
j = B[Sj−1, Sj ] for m+ 1 6 j 6 n.

Less formally, for the last ℓ steps of the process we build the matrix B by adding back in

columns and then rows in the obvious manner. For the first ⌊ε3n⌋ steps of the process though,

we extract the vertices in T2 with high in-degree and out-degree (with respect to the digraph

given by restricting attention T1 ∪ T2), and add them back in a random order. Given this it is

natural to define m 6 j 6 n− ℓ as the first epoch and n− ℓ+ 1 6 j 6 n as the second epoch.

We state a series of elementary properties regarding the random walk and matrices Bt.

Fact 4.1. We have Sn−ℓ = [n− ℓ] deterministically. Furthermore, indices Bi,j for max(i, j) >

n− ℓ+ 1 are jointly independent of Bt, B
∗
t for t 6 n− ℓ.

Proof. The fact Sn−ℓ = [n − ℓ] follows by construction of the sequence vj . For the second part

of the claim, note that the ordering of indices to form Sn−ℓ is only dependent on the entries

of Bi,j with max(i, j) 6 n − ℓ (and independent randomness). Since Bt, B
∗
t are submatrices of

10



Bn−ℓ defined in terms of randomness independent from the last ℓ rows and columns, the desired

result follows from the initial definition of B. �

We now state the state the obvious but crucial symmetry property of B.

Fact 4.2. Conditional on the value
∑

16i,j6n−ℓBij, the matrix Bn−ℓ is uniform over all (n −
ℓ) × (n− ℓ) matrices with {0, 1} entries and exactly

∑

16i,j6n−ℓBij many 1s.

We next prove that the distribution of Bt is a mixture of degree-constrained random graphs.

This property will be used to establish unique-neighborhood expansion facts.

Fact 4.3. The set H is measurable given the degree sequence (dn−ℓ,d′
n−ℓ) of Bn−ℓ. Additionally,

given j such that m 6 j 6 n− ℓ, conditional on the index set Sj , and conditional on the degree

sequence (dj ,d
′
j) of Bj, the random variable Bj is a uniformly random bipartite graph with

degree sequence (dj ,d
′
j).

Remark. The analogous result holds for B′
j; this will not be required for the proof.

Proof. The first claim follows as H is defined via examining val(j) for j ∈ T2, which is measurable

in terms of the degree sequence of Bn−ℓ by construction. Since
∑

16i,j6n−ℓBi,j is measurable

in terms of the degree sequence of Bn−ℓ, applying Fact 4.2 we have that Bn−ℓ is a uniformly

random digraph given its degree sequence. Note that the sets Sj are determined given the degree

sequence of Bn−ℓ and independent randomness. Furthermore, if we reveal the degree sequence

of Bj = Bn−ℓ[Sj , Sj ] then the conditional digraph Bj is independent of the “outside” digraph

corresponding to edges of Bn−ℓ not fully contained in Sj . These facts allow us to deduce the

second claim. �

We now define the filtration Fj under which the random walk will occur. We abuse notation

and identify a σ-algebra with a collection of random variables; such a σ-algebra is thus defined

as the minimal σ-algebra such that the collection of random variables is jointly measurable.

Define the set of pairs of indices

R = (Sm × Sm) ∪ (T2 ×H) ∪ (H × T2).

R will correspond to the set of revealed entries of B for the initial setup of the random walk.

In particular R reveals all edges in the initial Sm and all edges between H and T2
Define

Fm = {Bij}(i,j)∈R
⋃

{deg+B(i, [n − ℓ]),deg−
B(i, [n − ℓ])}i∈T2 ,

Fj = Fj−1

⋃

{Sj−1, Bj−1}, for m+ 1 6 j < n,

F ′
j = Fj

⋃

{Sj}, for m+ 1 6 j < n.

Fm can be viewed as revealing all edges of Bn−ℓ in R and the degrees of all vertices in T2 with

respect to the digraph Bn−ℓ. Fj is obtained from Fj−1 by revealing the vertex vj−1 and its

edges to all vertices in Sj−1. F ′
j is obtained from Fj by revealing the identity of vj . (So, Fj+1

compared to F ′
j is only additionally revealing the in- and out-neighborhood of vj within Bj.)

We now state a series of claims regarding the σ-algebra Fj which can be easily seen by chasing

definitions.

Fact 4.4. We have the following:

• Fj for m 6 j 6 n forms a filtration;

• H is measurable with respect to Fm;
• deg+B(i, T1) and deg−B(i, T1) for i ∈ T2 are measurable with respect to Fm;
• (Bj)k,ℓ are F ′

j-measurable except if vj ∈ {k, ℓ} and {k, ℓ} ∩ T1 6= ∅;
11



• deg+Bj
(vj) and deg−Bj

(vj) are F ′
j-measurable.

The last bullet point follows since Fm reveals R, which includes all pairs in H × H. Now,

the crucial property of the sequence of σ-algebras Fj is that the “remaining” randomness of Bj
given Fj and Sj is particularly simple.

Fact 4.5. Given F ′
j we have that {(Bj)vj ,i}i∈T1 and {(Bj)i,vj}i∈T1 are independent uniformly

random {0, 1}-vectors conditional on the sums
∑

i∈T1(Bj)i,vj and
∑

i∈T1(Bj)vj ,i, respectively.

(These sums are deterministic given F ′
j , by the last bullet point of Fact 4.4.)

5. Coupling estimates

We first require the following coupling estimate between A and B.

Lemma 5.1. Let A and B be as in (12) and (13) and let Pσ be a uniformly random n × n

permutation matrix. For n sufficiently large,

TV(A,P Tσ BPσ) 6 n−1/4.

Lemma 5.1 follows immediately by iterating the following result, which states that the total

variation distance is small if we replace a random Ber(d/n) row and column with a random

Ber(
√

log n/n) row and column. We remark that beyond implying Lemma 5.1, Lemma 5.2 in

fact shows that one can somewhat freely pass permutation-symmetric events that hold whp

between an independent model with probability p = d/n and an independent model where a

small number of rows or columns have an altered probability; we will briefly remark when we

are doing this.

Lemma 5.2. Suppose that d ∈ [(log n)−1/3, (log n)1/3] and τ ∈ [(log n)1/2/(2n), 2(log n)1/2/n].

Define probability distributions P1,P2 on n× n {0, 1}-matrices M :

• P1: Each entry Mij is 1 with probability d/n independently at random.

• P2: Let σ be a uniformly random element of [n]. If σ ∈ {i, j}, then Mij = 1 with

probability τ ∈ [(log n)1/2/(2n), 2(log n)1/2/n]; else Mij = 1 with probability d/n.

We have

TV(P1,P2) 6 n−1/3+o(1).

Proof. Let L = (log n)(log log n)−1/2 and note that

PP1

(

max
i∈[n]

n
∑

j=1

Mij > L

)

6 n

(

n

L

)(

d

n

)L

6 n ·
(

en

L

)L(d

n

)L

6 n−ω(1),

and similar for columns. For a matrix M , let

Sℓ(M) = #
{

k :
n
∑

i=1

Mik +
n
∑

j=1

Mkj −Mkk = ℓ
}

and note for ℓ 6 2L that

EP1Sℓ(M) = n

(

d

n

)ℓ(2n− 1

ℓ

)(

1 − d

n

)2n−1−ℓ
= (1 ± n−1+o(1))

n(2d)ℓe−2d

ℓ!

and

EP1Sℓ(M)2 6 EP1Sℓ(M) + (1 ± n−1+o(1))n2
(

(2d)ℓ

ℓ!
e−2d

)2

6 (1 ± n−1+o(1))(EP1Sℓ(M) + (EP1Sℓ(M))2).
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Thus by Chebyshev’s inequality, we have for all 0 6 ℓ 6 2L that

|Sℓ(M) − EP1Sℓ(M)| 6 n1/6+o(1)
√

EP1Sℓ(M) + n−1/3+o(1)
EP1Sℓ(M)

with probability at least 1 − n−1/3. Let G denote the set of matrices M ∈ {0, 1}n×n such that

|Sℓ(M) − EP1Sℓ(M)| 6 n1/6+o(1)
√

EP1Sℓ + n−1/3+o(1)
EP1Sℓ

for 1 6 ℓ 6 2L and Sℓ(M) = 0 for ℓ > 2L hold simultaneously. Therefore we find

TV(P1,P2) =
∑

M ′∈{0,1}n×n

(PM∼P1(M = M ′) − PM∼P2(M = M ′))1PM∼P1
(M=M ′)>PM∼P2

(M=M ′)

6
∑

M ′∈{0,1}n×n

M ′∈G

∣

∣

∣
PM∼P1(M = M ′) − PM∼P2(M = M ′)

∣

∣

∣
+ PM∼P1(A /∈ G)

6
∑

M ′∈{0,1}n×n

M ′∈G

PM∼P1(M = M ′) ·
∣

∣

∣

∣

∣

1 − PM∼P2(M = M ′)
PM∼P1(M = M ′)

∣

∣

∣

∣

∣

+ n−1/3.

However, for all M ′ ∈ G we have
∣

∣

∣

∣

∣

1−PM∼P2(M = M ′)
PM∼P1(M = M ′)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

1 − 1

n

∑

06ℓ62L

Sℓ(M
′)
(√

log n

d

)ℓ(

1 −
√

log n

n

)2n−1−ℓ(
1 − d

n

)−(2n−1−ℓ)
∣

∣

∣

∣

∣

6

∣

∣

∣

∣

1 − 1

n

∑

06ℓ62L

n(2d)ℓe−2d

ℓ!

(√
log n

d

)ℓ

e−2
√
logn+2d

∣

∣

∣

∣

+ n−1+o(1)

+
1

n

∑

06ℓ62L

(

n1/6+o(1)
(

n(2d)ℓe−2d

ℓ!

)1/2

+ n−1/3+o(1)

(

n(2d)ℓe−2d

ℓ!

))(√
log n

d

)ℓ

e−2
√
logn+2d

6

∣

∣

∣

∣

1 − 1

n

∑

06ℓ62L

n(2d)ℓe−2d

ℓ!

(√
log n

d

)ℓ

e−2
√
logn+2d

∣

∣

∣

∣

+ n−1/3+o(1) 6 n−1/3+o(1).

Therefore

TV(P1,P2) 6
∑

M ′∈{0,1}n×n

M ′∈G

PM∼P1(M = M ′) ·
∣

∣

∣

∣

∣

1 − PM∼P2(M = M ′)
PM∼P1(M = M ′)

∣

∣

∣

∣

∣

+ n−1/3+o(1) 6 n−1/3+o(1),

and we are done. �

6. Unique neighbourhood expansions

We now define the set of unique neighbors of a set S for a {0, 1}-matrix. Let M be an m× ℓ

matrix and let S ⊆ [ℓ] be a set of columns of M . We define U(S) ⊆ [m] to be a subset of rows

in two stages. We first define

U(S) \ S =
{

i ∈ [m] \ S : Bij = 1 for a unique j ∈ S
}

.

We then define

U(S) ∩ S =
{

i ∈ [m] ∩ S : Bij = 0 for all j ∈ S
}

.

We fix α(x) = (log(n/x))−2 (here n is taken to be the same as the global parameter n defining

A). The key output of this section will (essentially) be proving with high probability that we

may assume that |U(S)| > α(|S|)|S| for S of the relevant size in the process.
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6.1. Calculations in the independent model. We now bound the number of small sets

which do not have many unique neighbors; the analysis here is nearly identical to that in our

companion paper [27, Lemma 4.2].

Lemma 6.1. Fix δ > 0, consider integers m and ℓ ∈ {m,m+ 1}, and choose pm ∈ [1 + δ, δ−1].

Suppose M is an m× ℓ matrix with iid Ber(p) entries, and assume m/n ∈ [1/2, 2]. There exist

constants c > 0, C > 0 depending only on δ such that the following holds.

For all k ∈ [0, cn], we have

EM

∣

∣

∣

∣

∣

{

S ∈
(

[ℓ]

k

)

: |U(S)| < α(k)k

}

∣

∣

∣

∣

∣

6 Ce−ck.

Remark. The assumption that pm > 1 + δ is used in a crucial manner although the proof may

be adjusted to handled pm 6 1 − δ.

Proof. For the sake of simplicity we will consider the case when ℓ = m + 1; the other case is

strictly simpler. Fix a set S ⊆ [ℓ] of columns of size k. Note that

|U(S)| =
∑

i∈[m]

1(i ∈ U(S)),

where the sum is over the rows and therefore a sum of independent random variables. Note

that for i ∈ [ℓ] we have

(14) P(i ∈ U(S)) = (1 − p)k =: q1 if i ∈ S and P(i ∈ U(S)) = (1 − p)k−1pk =: q2 if i 6∈ S.
Let k′ = |S ∩ [m]| ∈ {k− 1, k} and set T = α(k)k. Now |U(S)∩ S| is distributed as binomial

random variable B(k′, q1) and |U(S) \ S| is distributed as B(m − k′, q2). Note by Bernoulli’s

inequality that 1 − q1 6 pk and q2 > (1 − p)kpk > (1 − pk)pk. Take η to be a sufficiently small

constant with respect to δ to be chosen later. By taking c sufficiently small in terms of η, we

have pk 6 η and k 6 ηm.

Therefore we have

E

∣

∣

∣

∣

{

S ∈
(

[ℓ]

k

)

: |U(S)| < T

}
∣

∣

∣

∣

6 E

∣

∣

∣

∣

{

S ∈
(

[ℓ]

k

)

: |U(S) ∩ S| < T, |U(S) \ S| < T

}
∣

∣

∣

∣

6
∑

i,j<T
k′∈{k−1,k}

(

m

k′

)

P(B(k′, q1) = i) · P(B(m− k′, q2) = j)

6
∑

i,j<T
k′∈{k−1,k}

(

m

k′

)(

k′

i

)

(1 − q1)
k′−i ·

(

m− k′

j

)

(1 − q2)
m−k′−j

6 (T + 1)2
(

m

⌊T ⌋

)2
∑

k′∈{k−1,k}

(

m

k′

)

(pk)k
′−T · (1 − pk + (pk)2)m−k′−T

6 2(T + 1)2
(

m

⌊T ⌋

)2

(pk)−2T (emp)k · (1 − pk + (pk)2)m−k.

Using
(a
b

)

6 (eab )b and 1 − x 6 e−x, we have

2(T + 1)2
(

m

⌊T ⌋

)2

(pk)−2T (emp)k · (1 − pk + (pk)2)m−k

6 exp
(

O(T log(m/T ))) · (emp)k · (1 − pk(1 − η))m(1−η)

6 exp
(

O(T log(m/T ))) · (emp)ke−pkm(1−η)2
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= exp
(

O(T log(m/T ))) · (empe−pm(1−η)2)k 6 Ce−ck.

The final line follows since if δ ≫ η ≫ c then for x > 1 + δ, we have ex 6 ex(1−η)
2−2cx. �

We will also require the following exceptional case which is used to handle steps near the end

of the process.

Lemma 6.2. Fix δ > 0 and consider integers m, ℓ such that ℓ = m+ 1. There exists C > 0 de-

pending only on δ such that the following holds. Let pm ∈ [1+δ, δ−1], τm ∈ [
√

logm/2, 2
√

logm],

and letM have independent {0, 1}-entries such thatMij ∼ Ber(p) for j ∈ [m] andMiℓ ∼ Ber(τ).

For k ∈ [0, (logm)1/3], we have

EM

∣

∣

∣

∣

∣

{

S ∈
(

[ℓ]

k + 1

)

: ℓ ∈ S and |U(S)| = 0

}

∣

∣

∣

∣

∣

6 C exp(−(logm)1/2/16).

Proof. As in Lemma 6.1, we have

P(i ∈ U(S)) > (1 − p)k(1 − τ) > 1 − pk − τ if i ∈ S,

P(i ∈ U(S)) > P(Miℓ = 1) · (1 − p)k >
√

logm/(4m) if i /∈ S.

Therefore

EM

∣

∣

∣

∣

∣

{

S ∈
(

[ℓ]

k + 1

)

: ℓ ∈ S, |U(S)| = 0

}

∣

∣

∣

∣

∣

6

(

m

k

)

· (pk + τ)k(1 −
√

logm/(4m))m−k

6 ek(m/k)k ·
(

3
√

logm

m

)k

exp(−
√

logm/8) 6 exp(−(logm)1/2/16),

where we have used that m is sufficiently large with respect to δ−1 hence pk 6
√

logm. �

6.2. Calculations in the configuration model. The analysis in Lemmas 6.1 and 6.2 will be

sufficient to analyze the unstructured of vectors arising from the second epoch. For the first

epoch, we will require a more delicate analysis based on the configuration model. We first state

the precise regularity conditions on the degree sequence that will be required.

Definition 6.3. Consider degree sequences d,d′ both of length m. We say the degree sequence

(d,d′) is (d, µ,C)-regular if:

• m/n ∈ [1 − µ, 1 + µ];

• ∑

i∈S(di + d′i) 6 C(d+ log(m/|S|))|S| for all S ⊆ [m];

• ∑m
i=1 di =

∑m
i=1 d

′
i = (1 ± µ)dm;

• ∑m
i=1 d

−did′i = (1 ± µ)ed exp(−d)m.

We will use d to denote the degree sequence of the columns and d′ for the rows.

Lemma 6.4. Fix δ > 0 and C > 0. There exists c = c(δ, C) > 0 such that the following holds.

Let d ∈ [1 + δ, δ−1] and (d,d′) be a degree sequence which is (d, c, C)-regular.

Let M be sampled as a uniformly random bipartite graph with degree sequence (d,d′) and

identify M as an bipartite adjacency matrix.

For k ∈ [0, cm], let Yk be the collection of sets S of size k satisfying

• |∑i∈S di − k| 6 k/
√

log(m/k);

• |U(S)| 6 α(k)k.

Then

E|Yk| 6 c−1 exp(−ck).
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Proof. To perform our calculations, we will operate in the configuration model. Using the

second and third bullet points of Definition 6.3 and by Lemma A.6, we have that the associated

configuration model is simple with probability ΩC,d(1) and therefore it suffices to prove the

result where the graph associated to M is sampled from the configuration model.

We first bound the probability of the event S ∈ Yk for a specific subset S ⊆ [m]. Define

V = {i : d′i > (log(m/k))3},
U1 = S ∩ ([m] \ U(S)) ∩ ([m] \ V ),

U2 = ([m] \ S) ∩ ([m] \ U(S)) ∩ ([m] \ V );

by the second item of Definition 6.3 we have that |V | 6 α(k)k.

In order to compute the probability that S ∈ Yk, we seek to understand the probability that

j ∈ U1 has no neighbors in S while for j ∈ U2 we need to understand the probability that it has

exactly one neighbor in S. Then we will take a union bound over possible revelations of U1, U2

and study the chance that neither of these happen over all relevant indices.

It suffices to understand the number of stubs attached to each vertex on the right which

connect to S. This distribution is given precisely by choosing each stub on the right to connect

to S independently with probability (
∑

i∈S di)/(
∑

i∈[m] di) and conditioning on exactly
∑

i∈S di
stubs being chosen. Note that the probability that the associated binomial distribution has

value exactly
∑

i∈S di is Ω(1/k).

Let q = (
∑

i∈S di)/(
∑

i∈[m] di) and c′ = (log(1/c))−1/4. By the first item in the lemma

assumptions and the third item of Definition 6.3, we see that q ∈ (1 ± c′)k/(dm). For given

possible values of U1, U2, the probability that S ∈ Yk is bounded by

OC,d(k) ·
∏

i∈U1

(qd′i)
∏

i∈U2

(1 − qd′i(1 − q)d
′
i−1) .C,d (1 + 2c′)k

∏

i∈U1

kd′i
dm

∏

i∈U2

(1 − qd′i + (qd′i)
2)

.C,d e
2c′k

∏

i∈U1

kd′i
dm

∏

i∈U2

(

1 − (1 − 2c′)
kd′i
dm

)

.C,d e
2c′k

∏

i∈U1

kd′i
dm

· exp

(

− (1 − 2c′)
∑

i∈U2

kd′i
dm

)

.

Next note that as c is sufficiently small with respect to C and d, we have

∑

i∈[m]\U2

kd′i
dm
6

2k

dm
· C(d+ log(m/k))k 6 c1/2k.

Note that we are using that [m] \ U2 6 |S| + |V | + |U(S)| 6 2k by assumption.

Now fix a constant η sufficiently small with respect to δ, and suppose c is chosen sufficiently

small with respect to η. Note that |S \ U1| 6 |V | + |U(S)| 6 2α(k)k. It follows that

e2c
′k

∏

i∈U1

kd′i
dm

· exp

(

− (1 − 2c′)
∑

i∈U2

kd′i
dm

)

6 e3c
′k

∏

i∈U1

k(d′i + η)

dm
· exp

(

− (1 − 2c′)
∑

i∈[m]

kd′i
dm

)

6 e6c
′k
∏

i∈S

k(d′i + η)

dm
·

∏

i∈S\U1

dm

kη
· exp(−k)

6 e6c
′k−k∏

i∈S

k(d′i + η)

dm
·
(

dm

kη

)2α(k)k

6 e7c
′k−k∏

i∈S

k(d′i + η)

dm
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Since |S \ U1|, |(m \ U(S)) \ U2| 6 2α(k)k by S ∈ Yk, we have that there are at most

∑

j62α(k)k

(

k

j

)

·
∑

j62α(k)k

(

m

j

)

6

(

em

kα(k)

)5α(k)k

6 exp(c′k)

choices for U1, U2 (given S). Therefore by the union bound

P(S ∈ Yk) .C,d e8c
′k−k∏

i∈S

k(d′i + η)

dm
.

We now use the Rankin trick in order to bound the sum over all S. Namely, we use the

inequality
∑

S∈([m]
k )

∏

i∈S
yi 6

1

k!

( m
∑

i=1

yi

)k

with the choices yi = d−dik(d′i + η)/(dm). From this we deduce

d−k−(c′)2k
E|Yk| .C,d e8c

′k−k · 1

k!

( m
∑

i=1

d−di
k(d′i + η)

dm

)k

;

note that if S ∈ Yk is counted then
∑

i∈S di 6 k + (c′)2k. By the third item of Definition 6.3

recall
∑m

i=1 d
−did′i = (1 ± c)ed exp(−d)m. Additionally, Stirling’s formula shows k! . k(k/e)k.

Recalling k 6 cm and that c′ is small with respect to d, we find

EYk .C,d e
9c′k((1 + c)ed exp(−d) + η)k.

Now since c, c′ ≪ η ≪ δ we have (1 + c)ed exp(−d) + η 6 exp(−9c′ − c) for all d > 1 + δ (since

ex exp(−x) < 1 for x > 1, similar to the conclusion of the proof of Lemma 6.1). This concludes

the proof. �

6.3. Regularity of degree sequences. We now check various properties of the degree se-

quence.

Definition 6.5. Let ∆, ε be as in Section 4 and

γ = ε ·
EX,Y∼Pois(d)[X1min(X,Y )>∆]

d
.

For j, k > 0, let

ρj,k(∆) = (1 − ε3)−1

(

∑

a>j

∑

a′>k

(

ℓ

j

)(

ℓ′

k

)

γa+a
′−j−k(1 − γ)j+k((1 − ε) + ε1min(a,a′)<∆)

dae−d

a!

da
′
e−d

a′!

)

.

Lemma 6.6. Fix ∆ > 1 and suppose ε = P(Pois(d) > ∆). With probability at least 1− n−ω(1),
we have:

• For all x, y > 0,

#{i ∈ [n] : (deg+A(i),deg−
A(i)) = (x, y)} =

dxe−d

x!

dye−d

y!
n+O(n1/2+o(1)).

• For all x, y > 0,

#{i ∈ V (Bm) : (deg+Bm
(i),deg−

Bm
(i)) = (x, y)} = ρx,y(∆)m+O(n1/2+o(1)).

Proof. The first item follows from straightforward concentration arguments. We use per-

mutation concentration. We can condition on the number of edges in A, which is dn +

O(
√
n log n) with probability 1 − n−ω(1). Then the probability a single vertex has degree (x, y)

is (dxe−d/x!)(dye−d/y!) + O(n−1/2+o(1)), so the expectation matches our prediction. Finally,

we can use Lemma A.3 to obtain the desired result, noting that we can view this conditioned
17



model as a uniformly random injection of approximately dn edges into n2 total possibilities,

and noting that changing an edge changes our statistic by at most 4.

In fact, by the same argument we may deduce that the first n− ℓ−⌊εn⌋ vertices and the next

⌊εn⌋ vertices have the same in/out-degree distribution in this sense within the random model

Bn−ℓ.
We now deduce the second item from this fact. After revealing the degrees within Bn−ℓ, we

know the digraph is uniform over digraphs with this degree sequence. We thus use the config-

uration model, which we can easily check succeeds with positive probability using Lemma A.6.

We now work within the digraph configuration model to prove the desired result.

For every vertex in {n− ℓ−⌊εn⌋+1, . . . , n− ℓ} with minimum of in-degree and out-degree at

least ∆, mark it red. Then mark its incoming and outgoing edges red. Let the rest of the edges

and vertices of Bn−ℓ be green. We care about the green degree distribution among the vertices

left after deleting the red vertices: with probability 1− n−ω(1) this recovers Bm except that we

may delete O(n1/2+o(1)) more or fewer vertices than intended. With probability 1 − n−ω(1) the

maximum degree of Bn−ℓ is at most log n, so such deletions affect the degree statistics by an

error of at most O(n1/2+o(1)). So, let us focus on this “red-deletion” model, which has adjacency

matrix M .

We claim that the number of vertices that go from having degrees (a, a′) in Bn−ℓ to having

degrees (x, y) in this final green digraph M is

(

a

x

)

γa−x(1 − γ)x
(

a′

y

)

γa
′−y(1 − γ)y((1 − ε) + ε1min(a,a′)<∆)

dae−d

a!

da
′
e−d

a′!
n+O(n1/2+o(1))

with probability 1 − n−ω(1).
Indeed, note that a γ+O(n−1/2+o(1)) fraction of out-stubs are red (call this fraction γ′), and

the same for in-stubs, with appropriately high probability. To study the configuration model, we

care about a uniformly random matching of out-stubs and in-stubs, and we specifically consider

the number of edges at each green vertex that are not partially formed from a red stub.

The joint distribution of green in/out-degree statistics computed over green vertices can

easily be compared to the model where among the green vertices, each stub is retained with

probability 1 − γ′ independently. We start with roughly (1 − ε)n vertices which are definitely

green (which contributes roughly fraction (dae−d/a!)(da
′
e−d/a′!) to the count of green vertices

of total in/out-degree (a, a′)) and roughly εn vertices, of which the same fraction is contributed

as long as 1min(a,a′)<∆ = 1. Then we retain the resulting stubs as green independently with

probability 1−γ′, which leads to the above estimate for the number of green vertices with green

in/out-degree (x, y) with probability 1 − n−ω(1). This finishes the proof of the claim.

Now, summing over in/out-degrees (a, a′) of magnitude at most log n (which the maximum

degree is bounded by with probability 1 − n−ω(1)), we obtain the desired result, recalling that

(1 − ε3)−1m ≈ n. �

We will need the following claim, which essentially captures that the neighborhoods of the

vertices in H = V (Bn−ℓ) \ V (Bm) are sufficiently uniform relative to a large portion of the

digraph coming from T1.

Lemma 6.7. Assume the setup in Section 4 and suppose that 1/n ≪ ε≪ 1/d. With probability

1−n−ω(1), all but ε5n many t ∈ T2 satisfy min(deg+Bn−ℓ
(t, T1),deg−Bn−ℓ

(t, T1)) >
√

log(1/ε) and

max(deg+Bn−ℓ
(t),deg−Bn−ℓ

(t)) 6 (log(1/ε))2.

Proof. The second part holds for all but at most ε5n/3 vertices immediately given the second

item of Lemma 6.6 and basic computation.
18



Let us consider the number of total vertices in T2 with at least 7 out-neighbors in T2, which

is a set of size ⌊εn⌋. By Chernoff, it is easy to see that with probability 1 − n−ω(1), we have

at most ε5n/3 vertices with at least 7 out-neighbors in T2. The same holds for in-neighbors.

We obtain a combined exceptional set in T2 is of size at most ε5n. It suffices to check that for

t ∈ T2 not in this exceptional set, we have min(deg+Bn−ℓ
(t, T1),deg−Bn−ℓ

(t, T1)) >
√

log(1/ε).

Now note that Bn−ℓ and A can be coupled so that Bn−ℓ is a sub-digraph of A almost surely.

We can thus apply the first item of Lemma 6.6 (holding with probability 1 − n−ω(1)).
Given this event, by the definition of T2 as the highest ε2 quantile (of minimum in- and

out-degree within Bn−ℓ) from a fixed set of size εn, we have with probability 1 − n−ω(1) that

min(deg+Bn−ℓ
(v),deg−

Bn−ℓ
(v)) > 2

√

log(1/ε) for all v ∈ T2. Since deg+Bn−ℓ
(v, T1) > deg+Bn−ℓ

(v) −
7 >

√

log(1/ε) outside of our exceptional set, and the same holds for in-degrees, we are done.

�

Next we will require the following basic estimate regarding the maximum number of entries

in a small diagonal block of the matrix.

Lemma 6.8. With probability at least 1 − n−1+o(1), for all m 6 t 6 n and any S with |S| 6√
log n we have

∑

i,j∈S
(Bt)ij 6 |S|.

Proof. Noting the monotone nature of the estimate, it suffices to prove that
∑

i,j∈S
Bij 6 |S|

for all |S| 6 √
log n. We have

P

(

∃S ⊆ [n] : |S| 6
√

log n,
∑

i,j∈S
Bij > |S| + 1

)

6
∑

k6
√
logn

(

n

k

)(

k2

k + 1

)(√
log n

n

)k+1

6
∑

k6
√
logn

(

en

k

)k

(ek)k+1

(√
log n

n

)k+1

6
∑

k6
√
logn

k(e2
√

log n)k+1n−1,

hence this failure probability is bounded by n−1+o(1) as desired. �

We will also require the following variant event which handles sets that are substantially

larger.

Lemma 6.9. Let A be as in Section 4. There exists an absolute constant C > 0 such that the

following holds. Let 1 6 t 6 s 6 n exp(−Cd). Then with probability at least 1 − e−sn−1/2, we

have

sup
|S|=s
|T |=t
S∩T=∅

∑

i∈S
j∈S∪T

Aij 6 s+ t+
Cs log(2d)

log(n/s)
.

Proof. Let g(s) =
⌊

Cs log(2d)
log(n/s)

⌋

. We have

P

[

sup
|S|=s
|T |=t
S∩T=∅

∑

i∈S
j∈S∪T

Aij > s+ t+ g(s) + 1

]

6

(

n

s

)(

n

t

)

P

[

∑

i∈[s]
j∈[s+t]

Aij > s+ t+ g(s) + 1

]
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6

(

en

s

)s(en

t

)t( s(s+ t)

s+ t+ g(s) + 1

)(

d

n

)s+t+g(s)+1

6

(

en

s

)s(en

t

)t

(es)s+t+g(s)+1

(

d

n

)s+t+g(s)+1

6 (ed)4(s+t)n−g(s)−1s−st−tssstsg(s)+1

6 (ed)8s(s/t)t(s/n)g(s)+1 6 es(ed)8s(s/n)g(s)+1

6 e−sn−1/2.

The final inequality is trivial to check when g(s) 6= 0 and when g(s) = 0, (3d)40s 6 n and hence

the desired inequality also holds. �

6.4. Unstructuredness events. We now define the set of events which will be used to guar-

antee that the kernel vectors to Bt and B∗
t are unstructured. We consider the hierarchy of

constants

ε≪ κ≪ 1/d

where κ will control the size of the support of set; recall ε = P(Pois(d) > ∆) and at the end

of the argument we will take ∆ → ∞ slowly. (At various points we will use that κ is small in

terms of d.)

We say a {0, 1}-matrix M is in D if the degree sequence associated to M is (d, ε1/2, 16)-regular

(Definition 6.3) and for all sets S of size at most
√

log n we have
∑

i,j∈SMij 6 |S|.
We say a {0, 1}-matrix M is in U(r) if for all sets S of size in [r, κn] we have

|U(S)| > α(|S|)|S|.
Finally, we say that a {0, 1}-matrix M of with row indices T and column indices T ∪ {t} for

t /∈ T is in U∗ if all column subsets S ⊆ T ∪ {t} containing t satisfy

U(S) > 1.

We now show that our random matrices Bt (and B†
t , and also B∗

t ) are in unstructuredness

sets U(r) and D for various choices of r and t.

Lemma 6.10. We have

P

(

⋂

m6t6n

{B†
t ∈ D} ∩

⋂

m6t6n

{Bt ∈ D}
)

> 1 − n−1+o(1).

Proof. That the degree sequence of B is (d, n−1/4, 8)-regular follows from Lemma 6.6, noting

that A and B can be coupled to differ in at most (log n)3 entries with probability 1−n−ω(1), and

noting that the maximum degree of B is bounded by log n with probability 1 − n−ω(1) (which

allows control of the second bullet point of Definition 6.3 for small S).

Noting that Bt is obtained from B by removing at most εn + ℓ vertices and the largest εn

vertices have total in- and out-degree bounded by O(ε(log(1/ε) + d)n) from regularity of the

degree sequence of B, the desired (d, ε1/2, 16)-regularity for all Bt follows immediately since

ε≪ 1/d. This establishes the first part of D for all relevant matrices.

The second part of the definition of D holds for all our matrices with probability 1−n−1+o(1)

due to Lemma 6.8. �

Lemma 6.11. We have

P

(

⋂

m6t6n−ℓ
{B†

t ∈ U((log n)3/2)} ∩
⋂

m6t6n−ℓ
Bt ∈ {U((log n)3/2)}

)

> 1 − n−ω(1).
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Proof. It suffices to prove that for any m 6 t 6 n− ℓ, we have

P
(

Bt ∈ U((log n)3/2)
)

> 1 − n−ω(1);

the case of B†
t follows by symmetry. Note that Bt has a (d, ε1/2, 16)-regular degree sequence

with probability 1−n−ω(1). Therefore by Lemma 6.4 applied with c = c(min(d− 1, 1/d), 16), it

follows that the probability there exists a set S of k with |∑v∈S deg+Bt
(v) − k| 6 k/

√

log(n/k)

and |U(S)| 6 α(k)k is at most c−1 exp(−ck) + n−ω(1) by Markov’s inequality. We can take a

union bound over k > (log n)3/2 to handle these S.

We now handle S such that |∑v∈S deg+Bt
(v) − k| > k/

√

log(n/k). If
∑

i,j∈S(Bt)ij 6 k −
k/(4

√

log(n/k)), note that

|S ∩ U(S)| > |S| −
∑

i,j∈S
(Bt)ij > k/(4

√

log(n/k)) > kα(k).

Thus we may restrict to sets S such that
∑

v∈S deg+Bt
(v) > k+k/

√

log(n/k) and
∑

i,j∈S(Bt)ij >

k − k/(4
√

log(n/k)).

Further assuming that U(S) 6 α(k)k occurs, there exists a set T such that |T | 6 3k/(8
√

log(n/k))

with T ∩ S = ∅ such that
∑

i∈S
j∈S∪T

(Bt)i,j > k +
k

2
√

log(n/k)
.

In particular, T can be taken to be the set of vertices outside S with at least 2 neighbors in S,

truncating T to the appropriate size if it is too large. This contradicts Lemma 6.9 (which holds

with probability > 1 − e−kn−1/2) since

k + |T | +
Ck log(2d)

log(n/k)
< k +

k

2
√

log(n/k)

with C as in Lemma 6.9 and since κ≪ 1/d. �

Lemma 6.12. We have

P

(

⋂

n−ℓ6t6n
{B†

t ∈ U((log log n)2)} ∩
⋂

n−ℓ6t6n
{B∗

t ∈ U((log log n)2)}
)

> 1 − (log n)−ω(1).

Proof. The result follows immediately from Lemma 6.1 and taking the union bound over sizes

larger than (log log n)2 if Bt has independent Ber(d/n) entries. We can couple to the correct

model with a polynomial loss in TV-distance by the remarks after Lemma 5.1. �

Lemma 6.13. We have

P

(

⋂

n−ℓ6t6n
{B∗

t ∈ U∗}
)

> 1 − (log n)−ω(1).

Proof. Unique-neighbor expansion of sets for size larger than (log log n)2 follows immediately

from Lemma 6.12. The remaining result follows immediately from Lemma 6.2 and the remarks

following Lemma 5.1 to account for slight differences in the random model. �

7. Spreadness of near kernel vectors

We now extract the crucial vector spreadness estimates for our results, Propositions 7.1, 7.2,

and 7.3. Recall the digraph unstructuredness events U(r),D,U∗. Proposition 7.1 will handle

the first epoch.
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Proposition 7.1. Suppose that ε≪ 1/d and fix z ∈ C \ {0}. There are constants c = c(d) > 0

and C ′ = C ′(d, z) > 0 so that the following holds. Let m 6 t 6 n − ℓ and M ∈ {Bt, B†
t }.

Suppose that M ∈ U((log n)3/2) and M ∈ D. Whenever (log n)7/4 6 k 6 n and v ∈ C
t is a

vector such that v∗k > (k/t)2/
√
t and

‖(M − zIt)v‖2 6 exp(−C ′(log(2n/k))6),

we must have

sup
θ∈R

#

{

i : |vi − θ| 6 exp(−C ′(log(2n/k))7)√
n

}

6 (1 − c)n.

Propositions 7.2 and 7.3 will handle the second epoch. The proofs of these are similar except

the proof of Proposition 7.3 is strictly more complicated, so we omit the proof of Proposition 7.2.

Proposition 7.2. Suppose ε≪ 1/d and fix z ∈ C \ {0}. There are constants C ′ = C ′(d, z) > 0

and c = c(d) > 0 such that the following holds. Consider n − ℓ 6 t 6 n − 1 and let M = B†
t .

Suppose M ∈ U((log log n)2) and M ∈ D. Then whenever v ∈ C
t is a unit vector and

‖(M − zIt)v‖2 6 exp(−C ′(log n)6),

we must have

v∗⌊cn⌋ >
exp(−C ′(log n)7)√

n
.

Proposition 7.3. Suppose ε≪ 1/d and fix z ∈ C \ {0} such that |z| 6= 1. There are constants

C ′ = C ′(d, z) > 0 and c = c(d) > 0 such that the following holds. Consider n − ℓ 6 t 6 n − 1

and let M = B∗
t . Suppose M ∈ U((log log n)2) and M ∈ D. Additionally, suppose that M ∈ U∗.

Then whenever v ∈ C
t is a unit vector and

‖(M − zI(t−1)×t)v‖2 6 exp(−C ′(log n)6),

we must have

v∗⌊cn⌋ >
exp(−C ′(log n)7)√

n
.

7.1. Initial estimates and setup. We first require the connection between unique neighbor-

hood expansion and the images of vectors.

Observation 7.4. Let M be a (t−1)×t or t×t dimensional {0, 1}-matrix. For ℓ 6 t, let v ∈ C
t

and let S be the set of the ℓ largest coordinates of v in absolute value. Then |((M − zI)vS)i| >
v∗ℓ min(|z|, 1) for all i ∈ U(S) where U(S) is defined with respect to the matrix M and I is the

identity matrix with dimensions corresponding to M .

Proof. We consider two cases. If i ∈ U(S) \ S there is unique j ∈ S with (M − zI)ij 6= 0. As

M is a {0, 1}-matrix, we additionally have Mij = 1 and we have |((M − zI)vS)i| = |vi| > v∗ℓ .
This proves the observation in this case.

For i ∈ U(S) ∩ S we have Mij = 0 for all j ∈ S. So

|((M − zI)vS)i| = |(M − zI)iivi| = |(−z)vi| = |z||vi| > v∗ℓ |z|,

which proves the observation. �

Recall that above we defined the function α(x) = (log(n/x))−2. Here we define the function

(15) g(x) =

⌈

α(x)x

215(d+ log(n/x))

⌉

.

We require the following trivial iteration lemma.
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Lemma 7.5. Let k0 = k and define

ki = ki−1 + g(ki−1),

for all i > 1. Let τ be the minimal value such that kτ > n/2. Then τ 6 217d(log(n/k))4.

Proof. For k > n/2, the result is trivial. Furthermore note that it takes at most 215(d +

log(n/k))/α(k) 6 216d(log(n/k))3 steps to double. As there are at most 2 log(n/k) doublings

required, the desired result follows immediately. �

We finally will require the following graph-theoretic estimate which will allow us to eliminate

graphs with extremely large level sets.

Lemma 7.6. Consider an ℓ × m dimensional {0, 1}-matrix M with ℓ ∈ {m − 1,m}, z 6= 0,

and let θ > 0. Suppose that M has at least e−dn/2 vertices with in-degree zero (i.e., zero rows).

Then for a unit vector v ∈ C
m such that

‖(M − zIℓ×m)v‖ 6 θ|z|,
there are at least e−dn/4 indices j such that

|vj | 6 2ed/2θn−1/2.

Proof. Note that for any index i ∈ [ℓ] such that deg−M (i) = 0, we have

((M − zIℓ×m)v)i = −zvi.
Therefore since ‖(M − zIℓ×m)v‖ 6 θ|z|, we have

∑

deg−M (i)=0

|zvi|2 6 θ2|z|2.

Applying Markov’s inequality we derive the desired conclusion. �

7.2. Unstructured almost-kernel vectors for the first epoch. We are now in position to

prove Proposition 7.1.

Proof of Proposition 7.1. As M ∈ D, we have that M has at least e−dn/2 vertices with out-

degree zero. Therefore by Lemma 7.6, we have that
∣

∣{|vi| 6 2ed/2|z|−1 exp(−C ′(log(2n/k))6)/
√
n}

∣

∣ > e−dn/4.

Taking C ′ sufficiently large, we have that for all |θ| > 2 exp(−C ′(log(2n/k))7)/
√
n that

#

{

i : |vi − θ| 6 exp(−C ′(log(2n/k))7)√
n

}

> e−dn/4.

Thus it suffices to prove that

#

{

i : |vi| 6
4 exp(−C ′(log(2n/k))6)√

n

}

6 (1 − c)n.

By assumption, we have that v∗k > (k/t)2/
√
t. We claim that it suffices to prove for all

k′ ∈ [k, cn] that

v∗k′+g(k′) > v
∗
k′ ·

(

k′

dnmin(|z|, |z|−1)

)2

.

This immediately implies the desired result since then

v∗cn > v
∗
k ·

τ
∏

i=1

(

ki
dnmin(|z|, |z|−1)

)2

> exp(−C ′ log(n/k)5)/
√
n,

choosing C ′ sufficiently large and defining ki, τ with bounds as in Lemma 7.5.
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To prove the claim, suppose that

v∗k′+g(k′) < v∗k′ ·
(

k′

dnmin(|z|, |z|−1)

)2

and let k′ is chosen to be minimal such value in [k, cn]. Let S denote the indices of the largest k′

coordinates of v and S′ denote the indices of the coordinates with magnitude from the (k′ +1)st

largest to the (k′ + g(k′))th largest. By Observation 7.4, for all j ∈ U(S) we have

|((M − zI)vS)j | > v∗k′ min(|z|, 1).

Since M ∈ U((log n)3/2), we have |U(S)| > α(k′)k′. Since M ∈ D, by the second item of

Definition 6.3, we have that there are at most

16(d+ log(m/g(k′)))g(k′) 6 α(k′)k′/4

neighbors of S′. Furthermore by the second item of Definition 6.3, for t > 32d there are at most

exp(−t/32)n vertices of in-degree larger than t. In particular, there are at most α(k′)k′/4 of

in-degree larger than n/k′ assuming that c is a sufficiently small function of d.

Therefore, define a row index j in U(S) to be suitable if it has in-degree bounded by n/k′

and is not adjacent to any column index in S′. Note we have proven that there are at least

α(k′)k′/2 suitable indices. For each suitable index j, we have that

|((M − zI)v)j | = |((M − zI)(vS + vS′ + v([t]\(S∪S′)))j |
= |((M − zI)(vS + v([t]\(S∪S′)))j |

> v∗k′ min(|z|, 1) −
(

n

k′
+ |z|

)

v∗k′+g(k′) > v
∗
k′ min(|z|, 1)/2.

This gives us a contradiction as v∗k′ > exp(−C ′(log(2n/k))5)/
√
n and therefore

‖((M − zI)v)‖2 >
(

α(k′)k′/2
)1/2 · exp(−C ′(log(2n/k))5) min(|z|, 1)/(2

√
n)

> exp(−C ′ log(n/k)6)

since C ′ is sufficiently large as a function of d and z. �

7.3. Unstructured almost-kernel vectors for the second epoch. In order to deal with

the cases t > n − ℓ, we split into two cases. For large support almost-kernel vectors, we use

a similar argument to the proof of Proposition 7.1. On the other hand, small support almost-

kernel vectors must essentially be kernel vectors of circulant matrices, which we can explicitly

handle using the following Lemma 7.7.

Lemma 7.7. Let Y be the s× s matrix where Yij = 1 if and only if i ≡ j + 1 (mod s). Then

σs(Y − zIs) > |zs − 1|/(|z| + 1)s−1.

Proof. Notice that by direct computation that

det((Y − zIs)
†(Y − zIs)) = |zs − 1|2

and that

σ1(Y − zIs) 6 |z| + 1.

The desired result follows from

det((Y − zIs)
†(Y − zIs)) 6 σs(Y − zIs)

2 · σ1(Y − zIs)
2(s−1)

and dividing. �
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Proof of Proposition 7.3. It suffices to prove that v∗k′+1 > v
∗
k′/(C

′n) for k′ 6 (log log n)3. This is

sufficient since after this point a modification of the argument in Proposition 7.1 easily completes

the proof.

Otherwise suppose that v∗k′+1 6 v
∗
k′/(C

′n) for a minimal such k′ 6 (log log n)3, and note that

since v is a unit vector we have v∗1 > 1/
√
n. Let S be the set of indices corresponding to the k′

largest coordinates. Furthermore notice that the in- and out-degree of every vertex is bounded

by (log n)2 since M ∈ D. If |U(S)| > 1, for any j ∈ U(S) we have

|((M − zI(t−1)×t)v)j | > v∗k′ · min(|z|, 1) − ((log n)2 + |z|)v∗k′+1 > v
∗
k′ · min(|z|, 1)/2.

Notice that v∗k′ > exp(−C ′(log n)2) which provides the desired contradiction in this case.

Therefore we may assume that U(S) = ∅. By U∗, we deduce that t /∈ S. Furthermore, since

t /∈ S and U(S) = ∅, every vertex in S has at least 1 in-neighbor from S. By the final condition

of M ∈ D, we have
∑

i,j∈S
Mij 6 |S|

and thus every vertex in S has exactly 1 in-neighbor from S. We refine S as follows. If there is

no vertex in the current set with out-degree zero terminate; else remove a vertex of out-degree

zero and iterate. This process terminates with a set T in which the induced directed subgraph

is exactly a collection of cycles (possibly of length 1). Furthermore for any vertex in T , we

have that it has no in-neighbor from S \ T . Adding −z to the diagonal entries of the adjacency

matrix of the induced digraph M [T ], we get a disjoint collection of circulant matrices of exactly

the form in Lemma 7.7. This argument uses crucially that t /∈ S and therefore t /∈ T .

Finally, applying Lemma 7.7 we have, writing s = (log log n)3,

‖(M − zI(t−1)×t)v‖2 > ‖((M − zI(t−1)×t)v)T ‖2
= ‖((M − zI(t−1)×t)vS)T ‖2 −

√
n((log n)2 + |z|)v∗k′+1

= ‖((M − zI(t−1)×t)vT )T ‖2 −
√
n((log n)2 + |z|)v∗k′+1

> ‖vT ‖2 · min{|zt − 1|/(|z| + 1)t−1 : t ∈ [s]} −√
n((log n)2 + |z|)v∗k′+1

> v∗k′ · ||z| − 1|/(|z| + 1)s−1 −√
n((log n)2 + |z|)v∗k′+1

> v∗k′ · ||z| − 1| exp(−C ′(log log n)4) −√
n((log n)2 + |z|)v∗k′+1

> exp(−C ′(log n)2)

given that C ′ is a sufficiently large function of z and d. This contradicts the assumption in the

lemma statement and completes the proof. �

8. Anticoncentration estimates

We will require the following cutoff parameters; note that in the definition below the constant

K = K(d, z) will be chosen later. We define

εr = exp(−K(log(n/r))9).

We will now consider the result of adding in vertex vt in our walk. From now on we will use

the common abuse of writing et for the column identity vector which is supported only on the

index corresponding to vt. (In fact, we may relabel so that vt is labeled t if we so desire, since

conjugation by a permutation matrix does not change the spectrum nor the singular values.)

We first prove that the projection onto the bottom set of singular vectors is unlikely to be

extremely small; we initially restrict to the first epoch.
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Lemma 8.1. There exists C = C(d) > 0 such that the following holds. Fix z 6= 0 and let

m+ 1 6 t 6 n− ℓ and r > (log n)5/3. Let B†
t−1, Bt−1 ∈ U((log n)3/2) ∩ D and suppose that

min(deg+Bn−ℓ
(vt, T1),deg−Bn−ℓ

(vt, T1)) >
√

log(1/ε)

(which is measurable given F ′
t).

Define Pr,M to denote the projection onto the bottom r right-singular vectors of M . If

σ(t−1)−r/2(Bt−1 − zIt−1,t−1) 6 εr, then for all u ∈ C
t−1,

P
(

‖P
r,B†

t−1−zIt−1
(B∗

t et + u)‖2 < εr|F ′
t

)

6 C(log(1/ε))−1/4.

Furthermore for all u ∈ C
t,

P
(

‖Pr,B∗
t −zI(t−1)×t

(B†
t et + u)‖2 < εr|F ′

t , B
∗
t

)

6 C(log(1/ε))−1/4.

The second lemma handles the analogous projection onto the bottom singular vector (which

is all that is needed) in the second epoch.

Lemma 8.2. There exists C = C(d) > 0 such that the following holds. Let |z| 6= 0, 1 and

n− ℓ+ 1 6 t 6 n. Define Pr,M to denote the projection onto the bottom r right singular vectors

of M .

If σt−1(Bt−1 − zIt−1) 6 ε1, B
†
t−1 ∈ U((log log n)2) and B†

t−1 ∈ D, then for all u ∈ C
t,

P
(

‖P
1,B†

t−1−zIt−1
(B∗

t et + u)‖2 < ε1|Ft
)

6 C(log n)−1/4.

Furthermore if B∗
t ∈ U((log log n)2), B∗

t ∈ U∗ and B†
t−1 ∈ D then for all u ∈ C

t,

P
(

‖P1,B∗
t −zI(t−1)×t

(B†
t et + u)‖2 < ε1|Ft, B∗

t

)

6 C(log n)−1/4.

These projection inequalities are designed to complement the crucial linear algebra input in

this paper which is Proposition 10.3.

8.1. Anticoncentration estimates against a fixed vector. We will first require the Lévy

concentration function. For a (real or complex) random variable Γ,

L(Γ, t) = sup
z∈C

P(|Γ − z| 6 t).

We will require the following anticoncentration inequality due to Kolmogorov–Lévy–Rogozin

[18,24] (see e.g. [25, Lemma 3.2]).

Lemma 8.3. There exists an absolute constant C > 0 such that the following holds. Let

ξ1, . . . , ξn be independent real or complex random variables. Then, for any real numbers r > 0,

we have

L
( n
∑

i=1

ξi, r

)

6
C

√
∑n

i=1(1 − L(ξi, r))
.

We will also require the following “slice” anticoncentration inequality; the proof is essentially

a quantitative version of the [11, Lemma 4.2].

Lemma 8.4. There exists C > 0 such that the following holds. Fix δ, γ > 0 and sample

ξ ∈ {0, 1}n uniformly at random such that
∑n

i=1 ξi = m and 1 6 m 6 n/2. Let v ∈ C
n such

that

sup
θ∈C

#{i : |vi − θ| 6 δ} 6 (1 − γ)n.

Then

L
(

n
∑

i=1

ξivi, δ

)

6 C

(

(γm)−1/2 + exp(−C−1γ2m)
)

.
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Proof. Let π be a uniformly random injective function {1, . . . , 2m} → {1, . . . , n} and let x =

(x1, . . . , xm) be a sequence of independent Ber(1/2) random variables. Then choose the positions

of the m ones in ξ as follows. For each i ∈ {1, . . . ,m}, if xi = 0 we set ξπ(i) = 1 and ξπ(i+m) = 0,

and if xi = 1 let ξπ(i+m) = 1 and ξπ(i) = 0. All other indices of ξ are set to 0. It is clear that ξ

has the correct distribution.

We call an index i separated if

|vπ(i) − vπ(i+m)| > δ
and let Y denote the number of separated indices, which is dependent only on π. Note that

#{(i, j) : |vi − vj| > δ} > γn2/2,
else there exists an index i such that

#{j : |vi − vj| 6 δ} > (1 − γ)n}
and taking θ = vi we have violated our assumption. Thus EY & γm and by applying Lemma A.3

we easily see P(Y 6 EY/2) 6 exp(−Ω(γ2m)).

Therefore,

sup
θ∈C

P

(
∣

∣

∣

n
∑

i=1

ξivi − θ
∣

∣

∣
6 δ

)

6 P(Y 6 EY/2) + sup
θ,π

1Y>EY/2P

(
∣

∣

∣

m
∑

i=1

ξπ(i)vπ(i) + ξπ(i+m)vπ(i+m) − θ
∣

∣

∣
6 δ

∣

∣

∣
π
)

6 P(Y 6 EY/2) + sup
θ,π

1Y>EY/2P

(∣

∣

∣

m
∑

i=1

(vπ(i) + xi(vπ(i+m) − vπ(i))) − θ
∣

∣

∣
6 δ

∣

∣

∣
π
)

. exp(−Ω(γ2m)) + (γm)−1/2

where we have used that (xi)i∈[m] is distributed as Ber(1/2)⊗m given π and then applied

Lemma 8.3 to the set of separated i where |vπ(i+m) − vπ(i)| > δ (i.e., those counted by Y >

EY/2 & γm). �

8.2. Existence of a well-balanced basis. We require the existence of a well-balanced basis

for the span of the least singular vectors. The following lemma of Litvak, Lytova, Tikhomirov,

Tomczak-Jaegermann, and Youssef [19, Lemma 4.3] gives a decent basis for any vector space.

Lemma 8.5. Let V ⊆ C
n be a k-dimensional C-vector space. There exists an orthonormal

basis B of V so that for all v ∈ B, we have v∗ck > ck
1/2n−1, where c > 0 is an absolute constant.

8.3. Proof of Lemma 8.1. We are now in position to prove Lemma 8.1.

Proof of Lemma 8.1. We only prove the second item of the lemma; the first item is strictly

simpler. Recall that B∗
t is a (t−1)×tmatrix and note that B†

t et is the Hermitian conjugate of the

row added to B∗
t to obtain B†

t . By assumption we have σ(t−1)−r/2(Bt−1−zIt−1) 6 εr. By Cauchy

interlacing applied for singular values (see e.g. Fact 10.1) we have that σt−r/2(B∗
t − zI(t−1)×t) 6

εr.

Therefore there exists a vector space W ⊆ C
t of dimension r/2 such that for unit vectors v

in W we have ‖(B∗
t − zI(t−1)×t)v‖2 6 εr. Let W ′ = W ∩ {vt = 0: v ∈ C

t} and note that the

dimension of W ′ is at least r/2− 1 > r/4. Letting π : (x1, . . . , xt) → (x1, . . . , xt−1), we have for

all unit vectors v in W ′ that

‖(B∗
t − zI(t−1)×t)v‖2 = ‖(Bt−1 − zIt−1)π(v)‖2 6 εr.
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Applying Lemma 8.5, there exist unit vectors w1, . . . , wr/4 in W ′ such that

(wj)
∗
cr > cr

1/2n−1

for all j 6 r/4 and an absolute constant c > 0. Since ‖(B∗
t − zI(t−1)×t)wj‖2 = ‖(Bt−1 −

zIt−1)wj‖2 6 εr, we may use Proposition 7.1. We have

sup
θ∈C

#{i : |(wj)i − θ| 6 exp(−C ′(log(n/r))7)n−1/2} 6 (1 − c′)n

for all 1 6 j 6 r/4, where c′ is a constant depending only on d while C ′ is a function of d and z.

Note that B†
t et given F ′

t ∪B∗
t is deterministic on the indices outside of T1 and on the indices

T1 is a uniformly random {0, 1}-vectors with a fixed sum by Fact 4.5. Furthermore note that

since |T1| = ⌊n(1 − ε)⌋ > n(1 − c′/4) (as ε ≪ 1/d), we still have that the largest approximate

level set of each wj when restricted to T1 occupies at most a (1 − c′/2)-fraction.

Note that the fixed sum of B†
t et on T1 is at least

√

log(1/ε) by assumption and at most

(log n)2 by the maximum degree assumption implicit in D. Therefore for any deterministic

vector u we have

P(|〈wk, B†
t et + u〉| 6 exp(−C ′(log(n/r))7)n−1/2|F ′

t , Bt)

6 sup
θ∈C

P(|〈(wk)T1 , (B
†
t et)T1〉 − θ| 6 exp(−C ′(log(n/r))7)n−1/2|F ′

t , Bt) . (log(1/ε))−1/4,

where the inequality follows from Lemma 8.4 (note that the implicit constant here depends only

on c′ in the size of the largest level set and hence only on d).

Note that for a set of nonnegative random variables X1, . . . ,Xk, by Markov’s inequality

P

( k
∑

i=1

Xi 6 τ

)

6 P
(

|{i : Xi 6 2τ/k}| > k/2
)

6
2

k
E

[ k
∑

i=1

1Xi62τ/k

]

6 2 sup
i∈[k]

P(Xi 6 2τ/k).

Therefore

P
(

‖Pr,B∗
t −zI(t−1)×t

(B†
t et + u)‖2 < εr|F ′

t ∪B∗
t

)

6 P

( r/4
∑

k=1

|〈wk, B†
t et + u〉|2 < ε2r|F ′

t , B
∗
t

)

6 sup
k

2P
(

|〈wk, B†
t et + u〉| < εr · (r/8)−1/2|F ′

t , B
∗
t

)

. (log(1/ε))−1/4,

which is precisely the desired result. Here we have used that the constant K defining εr is

chosen as a sufficiently large function of d and z. �

8.4. Proof of Lemma 8.2. We now prove Lemma 8.2; since the randomness in the second

epoch is purely independent, the analysis simplifies substantially in this case.

Proof of Lemma 8.2. We will only prove the second case; the first is essentially identical except

we use Proposition 7.2. Let w denote the least singular vector of B∗
t − zI(t−1)×t; as this is a

(t− 1) × t matrix we have (B∗
t − zI(t−1)×t)w = 0. By Proposition 7.3, we have

w∗
cn > exp(−C ′(log n)7)n−1/2 =: γ

with C ′ = C ′(d, z) > 0 and c = c(d) > 0. Therefore

P
(

‖P1,B∗
t −zI(t−1)×t

(B†
t et + u)‖2 < ε1|Ft, B∗

t

)

= P
(

|〈w,B†
t et + u〉| 6 ε1|Ft, B∗

t

)

6 sup
θ∈C

P
(

|〈w,B†
t et〉 − θ| 6 ε1|Ft, B∗

t

)
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= sup
θ∈C

Pδj∼Ber(
√
logn/n)

(
∣

∣

∣

t
∑

j=1

wjδj − θ
∣

∣

∣
6 ε1

)

6
1

√

∑t
j=1(

√
log n/n) · 1|wj|>γ

. (log n)−1/4

We have used Fact 4.1 to rewrite 〈w,B†
t et〉 as an sum of weighted independent random Bernoulli

random variables and applied Lemma 8.3 with r = γ and ξi = wiδi. The implicit constant in

the final inequality comes from the implicit constant on the number of coordinates in w with

size larger than γ, which depends only on d by Proposition 7.3. �

9. Random walk lemma

We now prove the following simple probabilistic lemma which shows that if (Xs)
k
s=1 has

sufficient downward drift, then Xk is small with sufficiently high probability. Results of this

form originate in work of Costello, Tao, and Vu [7] on singularity of symmetric random matrices,

and have been used to study singularity and rank in sparse random matrices [10,13].

Lemma 9.1. There exists an absolute constant C > 0 such that the following holds. Let (Fs)ks=1

be a filtration and let (Xs)
k
s=1 be a sequence of random variables for which Xs is Fs-measurable.

Suppose that:

• X1 6 k/4 almost surely;

• Xi+1 6 Xi + 1 almost surely;

• If Xt > ⌊(k − t)/8⌋, we have P(Xt+1 6 Xt − 1 + 1Xt=0|Fs) > 1 − p.

Then for t > 1, we have

P(Xk > t) 6 (Cp)t/2.

Proof. We will choose C at the end of the proof sufficient large. We may assume that p 6 C−1

as otherwise the result is vacuous. Furthermore we may assume that k > 5; for k 6 4 we have

P(Xk > t) 6
(

k
t

)

pt 6 16pt/2.

Define Yt = (1/
√
p)Xt − 1. We claim that

(16) E[Yt+1|Ft] 6 p−⌊(k−t)/8⌋/2 + (2
√
p)Yt + 2

√
p 6 3p−⌊(k−t)/8⌋/2 + (2

√
p)Yt.

Indeed, notice that if Xt < ⌊(k− t)/8⌋ then we have Xt+1 6 Xt + 1 6 ⌊(k− t)/8⌋ and the result

follows immediately. Else if Xt > 0 and Xt > ⌊(k − t)/8⌋ then we have

E[Yt+1 + 1|Ft] 6
√
p(Yt + 1) + p · (1/

√
p)(Yt + 1),

which also implies (16). Finally if Xt = 0 and Xt > ⌊(k − t)/8⌋ then we have

E[Yt+1 + 1|Ft] 6 (1/
√
p− 1)p 6

√
p,

which gives (16); thus we have verified (16) in all cases. Let Zt = p(k−t)/8Yt and note for

t 6 k − 1 that

E[Zt+1|Ft] 6 p(k−t−1)/8(3p−⌊(k−t)/8⌋/2 + (2
√
p)Yt) 6 3 + p1/3Zt

if p 6 C−1 6 1/224. Iterating this bound we have

EZk 6 3 + 3 · p1/3 + 3 · (p1/3)2 + · · · + p(k−1)/3
EZ1

6 4 + p(k−1)/3p(k−1)/8p−k/8 6 5

as p 6 C−1 and k > 5. By Markov’s inequality, for p 6 C−1 we have

P(Xk > t) = P(Zk > p
−t/2 − 1) 6 6pt/2,

as desired. �
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10. Singular value update formula

The goal of this section is to prove the key singular value update formula Proposition 10.3

which will allow us to gain control of the least singular values of our final matrix by passing

control along the random walk. This section is self-contained and we do not adopt any of

the global variables that are present in the other parts of the paper. We first require Cauchy

interlacing for singular values.

Fact 10.1. Let M be an n×m matrix and let M ′ be M with a row added. Then

σm(M) 6 σm(M ′) 6 σm−1(M) 6 σm−1(M ′) 6 · · · 6 σ1(M) 6 σ1(M
′).

Next we require the following basic fact from linear algebra.

Fact 10.2. Let M be an n ×m matrix with n 6 m. We have σi(M) = σi(M
†) for i 6 n and

σi(M) = 0 for n+ 1 6 i 6 m.

Finally we require a lemma which relates the product of a given segment of singular values of

M to M ′. Note that unlike the corresponding lemma [27, Lemma 7.2] in our companion paper,

the number of singular values considered is the same on both sides. We make progress as we

move our chunk of singular values “closer” in index to the minimal singular values for M ′.

Proposition 10.3. Let n 6 m, let M be an n×m matrix, and let M ′ be an (n+ 1)×m matrix

obtained by adding the row X to M . For 1 6 k − 1 6 ℓ < m, we have

ℓ+1
∏

i=k

σi(M
′) > ‖PX†‖2 · (‖X‖22 + σk−1(M)2)−1/2 ·

ℓ
∏

i=k−1

σi(M),

where P is the orthogonal projection onto the span of the m− ℓ smallest right-singular vectors

of M .

We first note the following fact regarding the singular values of M ′ given the singular vectors

of M .

Fact 10.4. Let M be an n×m matrix and let M ′ be an (n+ 1)×m matrix obtained by adding

the row X to M . Let vi(M) denote the ith right singular vector of M . Then the roots of

(17) 0 =

m
∏

i=1

(σi(M)2 − x) +

m
∑

i=1

|〈vi(M),X†〉|2
∏

j 6=i
(σi(M)2 − x)

are precisely σi(M
′)2 for i ∈ [m].

Proof. Note that (M ′)†M ′ = M †M +X†X. Also, we have the rank one orthogonal decomposi-

tion

M †M =
m
∑

i=1

σi(M)2vi(M)vi(M)†

and hence for all x /∈ {σi(M)2 : i ∈ [m]} we have

(M †M − xIm)−1 =
m
∑

i=1

(σi(M)2 − x)−1vi(M)vi(M)†.

Next, the matrix determinant lemma gives det(A + uv†) = (1 + v†A−1u) detA. Therefore by

direct computation, for generic x we have

det((M ′)†M ′ − xI) = (1 +X(M †M − xIm)−1X†) det(M †M − xIm)
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=
m
∏

i=1

(σ2i (M) − x) +
m
∑

i=1

|〈vi(M),X†〉|2
∏

j 6=i
(σ2i (M) − x).

The resulting equality is in fact valid for all x ∈ C by the identity theorem. Finally, the roots

of det((M ′)†M ′ − xI) = 0 are the squares of the singular values of M ′, so the desired result

follows. �

Proof of Proposition 10.3. Note that the statement is vacuous for ℓ > n+1 as the right-hand side

is zero; thus it suffices to consider ℓ 6 n. We fix unit right-singular vectors v1(M), . . . , vm(M)

such that ‖Mvi(M)‖2 = σi(M). We may write

M =
n
∑

i=1

σi(M)ui(M)†vi(M)

where ui(M)† is the ith left-singular vector of M .

Via a continuity argument, it suffices to assume that σi(M) are distinct for i 6 n and

〈vi(M),X†〉 6= 0 for all i. In particular, let M ε = M +
∑n

i=1 εZiui(M)†vi(M) where Zi are

uniform in [0, 1] and let Xε = X + εZ ′ where Z ′ is a standard m-dimensional Gaussian. For

any sufficiently small fixed ε > 0, with probability 1, Xε and M ε satisfy 〈vi(M), (Xε)†〉 6= 0,

M ε has the same left- and right-singular vectors as M (up to reordering the ones which were

for the same singular value), and the singular values of M ε are distinct. Taking ε → 0+ gives

the desired result.

Now define

F (x) = 1 +

m
∑

i=1

|〈vi(M),X†〉|2
σi(M)2 − x

.

Roots of F (x) are σi(M
′)2 for i 6 min(n+ 1,m) by Fact 10.4 and since the σi(M) are distinct.

F (x) is increasing in (σi(M)2, σi−1(M)2) (where we write σ0(M) = +∞) for 1 6 i 6 n. Finally,

for 1 6 i 6 n we have

lim
x→σi(M)+

F (x) = −∞ and lim
x→σi(M)−

F (x) = +∞.

Let η =
∑m

i=ℓ+1 |〈vi(M),X†〉|2 and note that η = ‖PX†‖22. For x ∈ (σℓ+1(M)2, σk−1(M)2),

we have

F (x) 6 1 +

∑k−1
i=1 |〈vi(M),X†〉|2
σk−1(M)2 − x

+

m
∑

i=k

|〈vi(M),X†〉|2
σi(M)2 − x

6 1 +

∑k−1
i=1 |〈vi(M),X†〉|2
σk−1(M)2 − x

+

ℓ
∑

i=k

|〈vi(M),X†〉|2
σi(M)2 − x

+

m
∑

i=ℓ+1

|〈vi(M),X†〉|2
−x

= 1 +

∑k−1
i=1 |〈vi(M),X†〉|2
σk−1(M)2 − x

+

ℓ
∑

i=k

|〈vi(M),X†〉|2
σ2i − x

+
η

−x =: G(x).

Via direct inspection G(x) has ℓ − k + 3 zeros σ∗20 > σ∗21 > · · · > σ∗2ℓ−k+2. Using F (x) 6 G(x)

we have that 0 6 σ∗i 6 σi+k−1(M
′) for 1 6 i 6 ℓ− k+ 2 and σ∗0 > σk−1(M). By Vieta’s formula

we have
ℓ−k+2
∏

i=0

σ∗2i = η

ℓ
∏

i=k−1

σi(M)2.

Finally, note that G is increasing and starts near −∞ for x close to σ2k−1 from above and

G(σk−1(M)2 + ‖X‖22) > 1 − 1

‖X‖22

( k−1
∑

i=1

|〈vi(M),X†〉|2 +

ℓ
∑

i=k

|〈vi(M),X†〉|2 + η

)

= 0.
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Thus the additional root satisfies the bound σ∗20 6 σ
2
k−1 + ‖X‖22. Finally, we deduce

ℓ+1
∏

i=k

σi(M
′)2 >

ℓ−k+2
∏

i=1

σ∗2i = ησ∗−2
0

ℓ
∏

i=k−1

σ2i > η(‖X‖22 + σ2k−1)
−1

ℓ
∏

i=k−1

σ2i .

Taking square roots completes the proof. �

11. Singular value convergence

The key output of this section is convergence of the singular value measures associated to

shifted copies of Bm and Bn. As this material is a completely standard application of the

method of moments, we will be brief with details.

Lemma 11.1. Fix z ∈ C and Bm and B be as in Section 4 (treating ε as fixed). Let ν ′z,n, νz,n
be the empirical spectral measures of Bm−zI and B−zI respectively. There exist deterministic

measures ν ′|z|,ε and ν|z| such that ν ′z,n  ν ′|z|,ε and νz,n  ν|z|.

We first prove the necessary convergence in moments.

Lemma 11.2. Let Bm, B, d, and ε be as in Section 4 (treating ε as fixed). Furthermore for a

matrix M , define M (1) = M and M (−1) = M †. Then for r 6 log log n, ~s = (s1, . . . , sr) ∈ {±1}r
there exist constants M(~s, ε),M ′(~s) such that

P

(
∣

∣

∣

∣

1

m
Tr

r
∏

i=1

B(si)
m −M(~s, ε)

∣

∣

∣

∣

> n−1/2+o(1)

)

. n−ω(1),

P

(∣

∣

∣

∣

1

n
Tr

r
∏

i=1

B(si) −M ′(~s)

∣

∣

∣

∣

> n−1/2+o(1)

)

. n−ω(1).

Furthermore
∣

∣

∣

∣

E

[

1

m

m
∑

i=1

(

σi(Bm − zI)2r − σi(Bm − |z|I)2r
)

]
∣

∣

∣

∣

.|z| n
−1/2+o(1),

∣

∣

∣

∣

E

[

1

n

n
∑

i=1

(

σi(B − zI)2r − σi(B − |z|I)2r
)

]∣

∣

∣

∣

.|z| n
−1/2+o(1).

Proof. We prove the claims only for Bm; the analogous claim for B is rather simpler noting

that B can be coupled with a Ber(d/n) matrix by changing at most (log n)3 many entries with

probability 1 − n−ω(1).
Note that Tr

(
∏ℓ
i=1B

(si)
m

)

can be interpreted as the number of walks of length ℓ such that the

ith step is taken on the digraph associated to B if si = 1 and is taken on the digraph associated

to B† if si = −1. We prove concentration conditional on the degree sequence of Bm in the

configuration model. To show the different possible outcomes of the degree sequence have close

means, a standard expectation computation in the configuration model and the control from

Lemma 6.6 suffices.

To prove concentration in the configuration model, the pairing used to define the associated

random graph can be viewed as a uniformly random permutation between the left and right

stubs. Furthermore, changing two pairings in this random permutation creates or destroys at

most (log n)log logn = no(1) walks counted by the moment under the assumption that degree

sequence of the digraph associated to Bm has maximum in- and out-degree bounded by log n

(which we may assume, occurring with probability 1−n−ω(1)). The desired concentration then

follows from Lemma A.3.
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For the second part of the lemma for Bm, note that

1

m

m
∑

i=1

σi(Bm − zI)2r =
1

m
tr(((Bm − zI)†(Bm − zI))r).

One may view this as walks of length 2r such that the odd steps correspond to Bm with

potential self-loops of weight −z and the even steps correspond to backwards transversal on

Bm with potential self-loops of weight −z. We break up the contributions to the expectation

of 1
mtr(((Bm − zI)†(Bm − zI))r) based on the precise graph-theoretic structure (within Bm),

decorating special self-loops with either −z or −z. The underlying directed graph is connected.

In order to contribute to the leading term of the expectation, this digraph must have v vertices

with v− 1 total directed edges (not counting special self-loops) and thus is a tree (when viewed

as an undirected graph). Additionally, all self-loops must be decorated by −z or −z. The walk

corresponds to a back-and-forth transversal of this tree which goes through each directed edge

at least once in each direction, along with transversal of the decorated edges, and it returns to

its original point.

Fix such a transversal and analyze the vertex w furthest from the root. We see that the

walk traverses an edge to reach w, then self-loops through w an even number of times (which

contributes |z|2k since the weights must alternate between −z,−z), and then transverses back

along this edge. Factoring out this contribution and proceeding downward inductively, one can

observe that all dominant terms have expectations which are a function of |z| (not simply z).

�

Next we require the following bound on the operator norm of a matrix in terms of the ℓ1
norms of its rows and columns, due to Schur [28].

Lemma 11.3. For any matrix M ,

‖M‖op 6 ‖M‖1/21→1‖M †‖1/21→1.

Remark. Note that the 1 → 1 norm of a matrix is the maximum ℓ1 norm of a column.

Furthermore we will require a variant of Weyl’s inequality which follows immediately by

Courant—Fischer theorem (for singular values).

Fact 11.4. Fix matrices A,B ∈ C
n×n. We have for all 1 6 i 6 n that

|σi(A) − σi(B)| 6 ‖A−B‖op.

The last ingredient is control on the growth rate of the moments of the singular values, which

will allow us to use Carleman’s condition for moment matching of distributions.

Lemma 11.5. Let Bm, B, d, and ε be as in Section 4. There exists a constant C > 0 such

that with probability 1 − n−ω(1), for k 6 log log n we have

m
∑

i=1

σi(Bm − zI)k 6
n
∑

i=1

σi(B − zI)k 6 n

(

O(dk)

log(k + 1)
+ 4|z|

)k

.

Proof. By Fact 10.1 and Fact 11.4 we have that σi(Bm − zI) 6 σi(B − zI) 6 σi(B) + |z|. Thus

it suffices to consider B and consider the case when z = 0. Furthermore one can couple A and

B so that A and B differ in at most (log n)3 entries with probability 1 − n−ω(1); recall that A

is a matrix where all entries are independent Ber(d/n).

Note that

P(Ber(d/n) > t) 6

(

n

t

)

(d/n)t 6

(

ed

t

)t

.
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Therefore applying Chernoff’s inequality to the rows and columns of A separately implies that

there are at most (Cd/t)tn vertices with degree larger t for t ∈ [1,
√

log n] and the maximum

degree is at most log n with probability 1 − n−ω(1). Therefore, using Lemma 11.3 we have

n
∑

i=1

σi(A)k 6 n+

∫

x>1
kxk−1(x/(Cd))−x/C dx+n(log n)k·exp(−Ω((log n)1/2)) 6 n

(

O(dk)

log(k + 1)

)k

.

As A and B differ in at most (log n)3 entries with appropriate probability, an analogous bound

holds for B. �

We now deduce the main output of this section.

Proof of Lemma 11.1. We will restrict attention to convergence of the singular values of Bm −
zIm; the proof is identical for Bn − zIn. Note that

m
∑

i=1

σi(Bm − zIm)2k = Tr(((Bm − zIm)†(Bm − zIm))k).

We use the second part of Lemma 11.2 to replace z with |z| and then use expansion and the

first part to deduce that there are constants C(|z|, k) such that with probability 1 − n−ω(1) we

have
∣

∣

∣

∣

m
∑

i=1

σi(Bm − zIm)2k −mC(|z|, k)

∣

∣

∣

∣

.K,|z| n
−1/3

for all k 6 log log n. Furthermore by Lemma 11.5 we have C(|z|, k) 6
( O(dk)
log(k+1) + 4|z|

)k
.

Let ν̃z,m denote the uniform measure on the set
⋃

16i6m{σi(Bm − zIm),−σi(Bm − zIm)}.

It suffices to prove convergence in distribution of ν̃z,m to a measure ν̃|z|,ε by the continuous

mapping theorem as | · | is continuous everywhere.

By a standard argument (see e.g. [8, Section 3.3.5, p. 140]), it suffices to prove that there

exists a unique distribution with zero odd moments and even moments C(|z|, k). Note that
∑

k>1C(|z|, k)−1/(2k) &d,|z|
∑

k>1(log k)/k = ∞ and therefore Carleman’s condition applies (see

e.g. [8, Theorem 3.3.25, Remark]). Also, evidently the distribution one converges to depends

only on |z|. �

12. Non-atomicity of singular value measures

The key output of this section is that the singular value measure Bm − zIm does not have

an atom at zero for (Lebsegue) almost all z 6= 0. This will be used as the starting point for the

singular value product considered in our proof.

Lemma 12.1. Let Bm be as in Section 4. There is c = c(d,Ξ) > 0 such that for every

τ ∈ (0, 1/2) and γ ∈ (0, 1/2) the following holds.

There exists a subset Γ = Γ(d, γ,Ξ, τ) of {z ∈ C : |z| 6 Ξ} such that the measure of {z ∈
C : |z| 6 Ξ} \ Γ is bounded by exp(1 − cγ log(1/τ)) and for all z ∈ Γ we have

lim
n→∞

P(σ⌈(1−γ)m⌉(Bm − zIm) 6 τ) = 0.

Remark. We believe that the only z for which

lim
τ→0+

lim sup
n→∞

P(σ⌈(1−γ)m⌉(Bm − zIm) 6 τ) 6= 0

is z = 0. This is equivalent to the statement that the limiting singular value measures for z 6= 0

lack an atom at 0; such a technical condition is sufficient to provide us a starting point for the

random walk defined in Section 4. Lemma 12.1 implies the weaker statement that the set of z

which fail is Lebesgue measure zero.
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We first require the following elementary lemma regarding the measure of sets with large

logarithmic potential.

Lemma 12.2. There exists an absolute constant C > 0 such that the following holds. Given

complex numbers (λi)16i6n, define

Sτ =

{

z ∈ C :

n
∏

i=1

|λi − z| 6 exp(−τn)

}

.

If µ denotes Lebesgue measure, then on C that

µ(Sτ ) 6 C exp(−C−1τ).

Proof. Fix z and order λi such that |λ1 − z| > |λ2 − z| > · · · > |λn − z|. Suppose that

|λn+1−i − z| > exp(−τ(n/i)1/2) for each i = 2j with 1 6 2j < n/2. This implies that

n
∏

i=1

|λi − z| >
∏

162j<n/2

(

exp
(

− 8−1τn1/22−j/2
))2j

> exp(−τn).

Thus we must have

Sτ ⊆
⋃

162j6n/2

{

z ∈ C : #{k : |λk − z| 6 exp
(

− τn1/22−j/2
)

} > 2j
}

.

Note that Markov’s inequality gives

µ

({

z ∈ C : #{k : |λk − z| 6 exp
(

− τn1/22−j/2
)

} > 2j
})

6 n2−j · π exp
(

− 2τn1/22−j/2
)

.

The result follows by summing all 1 6 2j 6 n/2. �

We now prove Lemma 12.1.

Proof of Lemma 12.1. By adjusting c appropriately, we may assume τ is small with respect to

d. Consider N , a finite τ2-net of {z ∈ C : |z| 6 Ξ} with |N | . (Ξ/τ2)2.

First, consider the set N ′ of all z ∈ N such that limn→∞ P(σ⌈(1−γ)m⌉(Bm − zIm) 6 τ) 6= 0.

By Lemma 11.1, we find limn→∞ P(σ⌈(1−γ/2)m⌉(Bm − zIm) 6 2τ) = 1. Since N ′ is a finite set,

there is some slowly decaying α(n) → 0 so that

P(σ⌈(1−γ/2)m⌉(Bm − z′Im) 6 2τ for all z′ ∈ N ′) > 1 − α(n).

For any z′ ∈ N ′ we can consider the τ2-disk around it. The union of these disks we set to be

N ∗. We have

P(σ⌈(1−γ/2)m⌉(Bm − z∗Im) 6 3τ for all z∗ ∈ N ∗) > 1 − α(n)

by Fact 11.4 (which shows singular values shift by at most τ2).

This event along with ‖Bm‖2HS 6 2dn (which occurs whp) implies that for z∗ ∈ N ∗ we have

m
∏

j=1

|λj(Bm) − z| =

m
∏

j=1

σj(Bm − zIm) 6 (3τ)γm/3(4d+ 2|z|)n 6 exp(−Ω(γn log(1/τ)))

as long as γ log(1/τ) is sufficiently large (which can be enforced by making c small enough; if

this product is not large then the result is vacuous).

By Lemma 12.2, the above occurs for a set of z of measure at most exp(−Ω(γ log(1/τ))) =

τΩ(γ) if c is small enough. So, with probability at least 1− 2α(n) we have µ(N ∗) 6 τΩ(γ). Since

N ∗ is a deterministic set, we simply have µ(N ∗) 6 τΩ(γ).
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Note that everything in the disk of radius Ξ excluding N ∗, call this set G, is necessarily close

to an element of N \ N ′. We have

lim
n→∞

P(σ⌈(1−γ)m⌉(Bm − zIm) 6 τ) = 0

for z ∈ N \ N ′ so a similar rounding argument to before using Fact 11.4 and τ2 6 τ/2 shows

that

lim
n→∞

P(σ⌈(1−γ)m⌉(Bm − zIm) 6 τ/2) = 0

for all z ∈ G. Changing the parameters γ, τ appropriately and recalling µ(N ∗) 6 τΩ(γ), we are

done. �

13. Proof of Theorem 1.1

13.1. Reduction to tail estimate for shifted singular values. In this section we give the

precise results which convert control over small singular values for shifted random matrices for

(Lebesgue) almost all z into convergence of the associated spectral measure.

We now state the criterion for the convergence of spectral measures; related criteria appear

in work of Tao and Vu [30]. We rely on a criterion given in work of Bordenave and Chafäı [5,

Lemma 4.3, Remark 4.4]. For an n× n matrix M , we define

νM =
1

n

n
∑

i=1

δσi(M).

Proposition 13.1. Let (Mn)n>1 be a sequence of random n×n matrices. Suppose that (νz)z∈C
are (non-random) probability measures on R

+ such that for (Lebesgue) almost all z, for any

ε > 0

νMn−zI  νz and lim
t→+∞

lim sup
n→∞

P

(
∫

| log u|>t
| log u| dνMn−zI(u) > ε

)

= 0.

Then there exists a probability measure µ on C such that

µMn  µ.

We now state a precise tail estimate which will be sufficient to deduce the main theorem.

Lemma 13.2. Fix d > 1 and define B as in Section 4. Assume the associated value of ε is

sufficiently small as a function of d. There exist δ = δ(ε, z) > 0 (with δ → 0 as ε → 0) and

C = C(d, z) > 0 such that for (Lebesgue) almost all z ∈ C,

lim
n→∞

P

( δn
∏

j=0

σn−j(B − zI) 6 exp(−Cεn)

)

= 0.

We now deduce Theorem 1.1 from Lemma 13.2.

Proof of Theorem 1.1 for d > 1 given Lemma 13.2. Let A and B be as in Section 4. For all

z ∈ C, by Lemma 11.1, Lemma 5.1, and noting that permutation matrices are unitary it follows

that νA−zI  ν|z|.
We now verify the crucial uniform integrability condition in Proposition 13.1. Fix ε =

P[Pois(d) > ∆] > 0. For almost all z ∈ C, by Lemma 13.2 there is δ = δ(ε, z) > 0 such that

lim
n→∞

P

(

1

n

δn
∑

j=0

log(σn−j(B − zI)) 6 −Cε
)

= 0.
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By the strong law of large numbers, whp ‖B‖2HS 6 2dn and thus σn/2(B − zI)2 6 8(d + |z|2).

Therefore we have

lim
n→∞

P

(

1

n

n
∑

j=1

log(σj(B − zI))1σj (B−zI)6exp(−2Cε/δ) 6 −Cε− δ · log(8(d + |z|2))

)

= 0;

this is the crucial estimate controlling the lower tail. For the large values of the logarithm, note

that (log x)1x>T 6
x2

T for T > 1. Therefore if ‖B‖2HS 6 2dn then

1

n

n
∑

j=1

log(σj(B − zI))1σj(B−zI)>ε−1(d+|z|2) 6
1

n(ε−1(d+ |z|2))

n
∑

j=1

σj(B − zI)2

6
2(‖B‖2HS + |z|2n)

n(ε−1(d+ |z|2))
6 4ε.

Therefore for almost all z ∈ C, there exists T = T (z, ε) > 0 such that

lim
n→∞

P

(

1

n

n
∑

j=1

| log(σj(B − zI))|1| log(σj(B−zI))|>T > (C + 4)ε+ δ log(4d + |z|2)

)

= 0.

By Lemma 5.1, we therefore have

lim
n→∞

P

(

1

n

n
∑

j=1

| log(σj(A− zI))|1| log(σj(A−zI))|>T > (C + 4)ε+ δ log(4d+ |z|2)

)

= 0.

Taking the countable sequence of possible ε tending to 0 given by taking ∆ → ∞ and recalling

δ(ε, z) → 0 as ε→ 0 verifies the second condition of Proposition 13.1. The result follows. �

13.2. Proof of Lemma 13.2. We now proceed with the proof of the key Lemma 13.2. This

essentially follows from piecing together the ingredients which have been developed in the paper.

Proof of Lemma 13.2. We are now finally in position to run the random walk.

Step 1: Definition of the random walk. Consider Ξj = 2j . By Lemma 12.1 with γ = ε4,

there exists τj > 0 such that for all but a measure 2−j set of values z, we have that

P(σ⌈(1−ε4)m⌉(Bm − zIm) 6 τj) = o(1).

Considering all positive integral j, it follows that for all but a measure 0 set of z there is τ(z) > 0

such that

P(σ⌈(1−ε4)m⌉(Bm − zIm) 6 τ(z)) = o(1).

Define δm = ⌊ε4 min((log(1/τ(z)))−1, 1/25)m⌋ and note that δ 6 ε4/25 which implies that

δ → 0 as ε→ 0. Furthermore with probability 1 − o(1), we have

⌈(1−ε4)m⌉
∏

j=⌈(1−ε4)m⌉−δm
σj(Bm − zIm) > (τ(z))δm > min

(

1, (τ(z))ε
4m/ log(1/τ(z))

)

= exp(−ε4m).

We now define the random walk. We set Xm = m− ⌈(1 − ε4)m⌉ 6 ε4m and therefore

Xm+δm
∏

j=Xm

σm−j(Bm − zIm) > exp(−ε4m).

Recall the definition of εr from Section 8. We iteratively define the random variable Xt+1 when

m 6 t 6 n− ℓ− 1 by:

• If Xt 6 ⌊n− ℓ− t⌋/16, ‖Bt+1‖2HS > 2dn, or t > n− ℓ− (log n)7/4 define Xt+1 = Xt + 1.

• Else if σt−Xt/2(Bt − zIt) > εXt , define Xt+1 = Xt − 1.
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• Else if

either min(deg+Bn−ℓ
(vt+1, T1),deg−

Bn−ℓ
(vt+1, T1)) 6

√

log(1/ε)

or max(deg+Bn−ℓ
(vt+1),deg−Bn−ℓ

(vt+1)) > (log(1/ε))2,

define Xt+1 = Xt + 1.

• Else if

‖P
Xt,B

†
t−zIt

((B∗
t+1 − zIt×(t+1))et+1)‖2 > εXt ,

‖PXt,B∗
t+1−zIt×(t+1)

((B†
t+1 − zIt+1)et+1)‖2 > εXt

both hold, define Xt+1 = Xt − 1.

• Else define Xt+1 = Xt + 1.

When n− ℓ 6 t 6 n− 1 we define Xt+1 by:

• If Xt > 1 and σt(Bt) > ε1, define Xt+1 = Xt − 1.

• Else if Xt = 1 and σt(Bt) > ε1, or Xt = 0 and

‖P1,B∗
t+1−zIt×(t+1)

((B†
t+1 − zIt+1)et+1)‖2 > ε1,

define Xt+1 = 0.

• Else if Xt > 1, σt(Bt) 6 ε1, and

‖P
1,B†

t−zIt
((B∗

t+1 − zIt×(t+1))et+1)‖2 > ε1,

‖P1,B∗
t+1−zIt×(t+1)

((B†
t+1 − zIt+1)et+1)‖2 > ε1

both hold, define Xt+1 = Xt − 1.

• Else define Xt+1 = Xt + 1.

Step 2: Reducing to proving that Xn = 0 whp. Let

τ1 = 8(d(log(2/ε))4 + |z|2) and τ2 = 8n4(1 + |z|2).

We claim that

Xt+1+δm
∏

j=Xt+1

σt+1−j(Bt+1 − zIt+1) > τ−2
1 ε2Xt

Xt+δm
∏

j=Xt

σt−j(Bt − zIt)(18)

for m 6 t 6 n− ℓ− 1 and

Xt+1+δm
∏

j=Xt+1

σt+1−j(Bt+1 − zIt+1) > τ−2
2 ε21

Xt+δm
∏

j=Xt

σt−j(Bt − zIt)(19)

for n− ℓ 6 t 6 n− 1.

Given this claim, if Xn = 0 then iterating shows that

δm
∏

j=0

σn−j(Bn − zIn) > τ
−2(n−m)
1 τ−2ℓ

2

n−ℓ
∏

t=m

ε2Xt
· ε2ℓ1 ·

Xm+δm
∏

j=Xm

σm−j(Bm − zIm)

> exp(−C ′′εn) ·
Xm+δm
∏

j=Xm

σm−j(Bm − zIm) > exp(−2C ′′εn)

for a constant C ′′ = C ′′(d, z). The only nontrivial term to estimate is
∏n−ℓ
t=m ε

2
Xt

. The desired

estimate follows noting that the definition of the walk enforces Xt > ⌊n − ℓ − t⌋/16 − 1 for

m 6 t 6 n− ℓ− 1, and using n−m 6 2ε3n. We now show why (18) and (19) hold, which will

allow us to focus on proving Xn = 0 whp in the remainder of the proof.
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When Xt+1 = Xt + 1, we have that (18) and (19) hold trivially by Facts 10.1 and 10.2. The

second item defining Xt in the first epoch and first item defining Xt in the second epoch are

similarly handled by Facts 10.1 and 10.2 and the lower bounds on singular values that we are

given in these cases.

We now explain how to deduce the claim if the fourth item of the first epoch is used to define

Xt+1; the remaining deductions (corresponding to the second and third items in the second

epoch) are essentially identical and are omitted. Note that the norms of the additional row and

column added are bounded by (2 log(1/ε)4 + 2|z|2)1/2 since the in- and out-degrees of vt+1 are

bounded by (log(1/ε))2. Furthermore note that

σn/2(Bt − zIt)
2 6

‖Bt − zIt‖2HS

n/2
6

2‖Bt‖2HS + 2|z|2n
n/2

6 τ1

since Xt + δm 6 n/3 almost surely and ‖Bt‖2HS 6 2dn.

Therefore applying Proposition 10.3 we have

Xt+δm
∏

j=Xt

σt+1−j(B∗
t+1 − zIt×(t+1)) > τ

−1
1 εXt

Xt+δm
∏

j=Xt

σt−j(Bt − zIt),

Xt+1+δm
∏

j=Xt+1

σt+1−j(Bt+1 − zIt+1) > τ−1
1 εXt

Xt+δm
∏

j=Xt

σt+1−j(B
∗
t+1 − zIt×(t+1)).

Note that in the first item we add a column to Bt to get B∗
t+1; as we are considering right-

singular values one needs Fact 10.2 to relate the left- and right-singular values (and this explains

the conjugate transpose and z in the first part of the fourth item of the first epoch). Multiplying

these inequalities we derive exactly (18) in this case.

Step 3: Creating quasirandomness events and verifying they hold whp. We now define

a sequence of quasirandomness events; these will ultimately be required in order to import the

results of Section 8. For m 6 t 6 n− ℓ− 1, we define

Gt+1 = {Bt ∈ U((log n)3/2)} ∩ {B†
t ∈ U((log n)3/2)} ∩ {Bt ∈ D} ∩ {B†

t ∈ D}.

We define a vertex v ∈ H to be degree-bad if

min(deg+Bn−ℓ
(v, T1),deg−Bn−ℓ

(v, T1)) 6
√

log(1/ε) or

max(deg+Bn−ℓ
(v),deg−

Bn−ℓ
(v)) > (log(1/ε))2.

Furthermore for m 6 t 6 n− ℓ− 1, let Ht+1 be the event that vt+1 is degree-bad and let

Jt+1 =

{

∑

v∈Sn−ℓ\St
1[v is degree-bad]

(n− ℓ) − t
> ε

}

.

For n− ℓ 6 t 6 n− 1, define

Gt+1 = {B†
t ∈ U((log log n)2)} ∩ {B†

t ∈ D}

and for n− ℓ 6 t 6 n− 1, define

G′
t+1 = {B∗

t+1 ∈ U((log log n)2)} ∩ {B∗
t+1 ∈ D} ∩ {B∗

t+1 ∈ U∗}.

We now stitch together various claims regarding these quasi-randomness events.

Claim 13.3. For all t 6 n− ℓ− (log n)7/4, we have

P(Jt+1) 6 n−ω(1) and P(Ht+1|Jt+1 ∪ Ft+1) 6 ε.
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Proof. By Lemma 6.7 at most a 2ε2 fraction of vertices in H are degree-bad. Since we add

vertices in a random order back to form Sj for m 6 j 6 n− ℓ the first result follows by Chernoff

(see e.g. Lemma A.1) for the hypergeometric distribution. The second follows by noting that

Jt+1 guarantees that at most an ε fraction of remaining vertices are degree-bad. �

We next have the following consequence of Lemma 8.1.

Claim 13.4. There is C = C(d) > 0 such that for all t 6 n− ℓ− (log n)7/4, we have

P(Xt+1 6 Xt − 1|Jt+1,Ft+1,Gt+1,Xt > ⌊n − ℓ− t⌋/16) > 1 − C(log(1/ε))−1/4.

Proof. By Claim 13.3, we have

P(Ht+1|Jt+1,Ft+1) 6 ε.

Therefore it suffices to prove that

P(Xt+1 6 Xt − 1|Hc
t+1,F ′

t+1,Gt+1,Xt > ⌊n− ℓ− t⌋/16) 6 C(log(1/ε))−1/4/2.

Note that Gt+1 (and in particular D) and Hc
t+1 guarantees that ‖Bt+1‖2HS 6 2dn. If we have

σt−Xt/2(Bt) > εXt , we instantaneously have Xt+1 = Xt − 1 as desired. Otherwise applying

Lemma 8.1 implies that the fourth item defining Xt+1 in the first epoch holds with the desired

probability bound. Note that t 6 n− ℓ− (log n)7/4 implies that Xt > (log n)7/4/32 due to the

definition of the walk and therefore the necessary dimension lower bound to apply Lemma 8.1

holds. �

In an analogous manner we have the following drift statement for the second epoch; the

proof is analogous except we invoke Lemma 8.2 and keep track of events such as U∗, hence the

inclusion of G′
t+1.

Claim 13.5. There is C = C(d) > 0 such that if Xn−ℓ 6 4(log n)7/4 then for all n−ℓ 6 t 6 n−1,

we have

P({Xt+1 6 Xt − 1 + 1Xt=0} or Gct+1 or G′c
t+1|Ft+1) > 1 − C(log n)−1/4.

Step 4: Proving that Xn = 0 whp. For m 6 t 6 n− ℓ, we define

Yt = Xt · 1
(

⋂

j6t

Gj ∩
⋂

j6t

Jj
)

.

By Claim 13.4, we have

P(Yt+1 6 Yt − 1 + 1Yt=0|Ft+1) > 1 − C(log(1/ε))−1/4

if t 6 n− ℓ− (log n)7/4 and Yt > ⌊n− ℓ− t⌋/16.

Let Zt = Yt for t 6 n− ℓ− (log n)7/4 and Zt+1 = Zt − 1 + 1Zt=0 for n− ℓ− (log n)7/4 6 t 6

n− ℓ− 1. By the random walk Lemma 9.1 we have

P(Zn−ℓ > (log n)7/4) 6 n−ω(1).

This implies that

P(Yn−ℓ−(logn)7/4 6 3(log n)7/4) 6 n−ω(1).

Note here that when we apply Lemma 9.1, we require that C(log(1/ε))−1/4 is smaller than an

absolute constant which requires ε to be small as a function of d only.

By Lemmas 6.10 and 6.11, and by Claim 13.3, we have

P(Yn−ℓ−(logn)7/4 6= Xn−ℓ−(logn)7/4) 6 n−1+o(1).

Therefore

P(Xn−ℓ 6 4(log n)7/4) > 1 − n−1+o(1).
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Next we define for n− ℓ 6 t 6 n

Y ′
t = Xt · 1

(

⋂

n−ℓ+16j6t

Gj ∩
⋂

n−ℓ+16j6t

G′
j

)

.

By Claim 13.5 for n− ℓ 6 t 6 n− 1, we have

P(Y ′
t+1 6 Y

′
t − 1 + 1Yt=0|Ft) > 1 − C(log n)−1/4.

Given Y ′
n−ℓ 6 4(log n)7/4 at the start, which occurs with probability at least 1 − n−1+o(1), and

recalling ℓ = ⌊(log n)2⌋, we have by Lemma 9.1 and Markov’s inequality that

P(Y ′
n > 0) .d (log n)−1/8.

By Lemmas 6.10, 6.12, and 6.13 we find

P(Y ′
n 6= Xn) 6 (log n)−ω(1)

and therefore

P(Xn 6= 0) .d (log n)−1/8.

This (finally) completes the proof. �

Remark 13.6. The logarithmic probability guarantee is immediate from the proof given as well

as noting that Lemma 12.1 can be made sufficiently quantitative. (This is essentially immediate

since Lemma 11.2 holds with sufficiently strong probability.)

For an improved bound on the least singular value, notice that in the above argument we

directly considered the product of last δn singular values. Proving that Xn−√
n 6

√
n/4 whp,

one can see that the (
√
n/4)th smallest singular value of Bn−√

n is at least exp(−O(
√
n)) with

high probability. Iteratively applying Proposition 10.3 with ℓ = k − 1 allows one to push the

index of the unique singular value under consideration until it becomes the least singular value,

at the cost of a factor n−O(1) each time. This gives the quality of bound mentioned in the

remark following Theorem 1.2. It remains an interesting question whether the random walk

approach used in this paper can prove a least singular value bound with probability quality

n−Ω(1) or with singular value size exp(−(log n)O(1)). Such singular value estimates may prove

useful when considering finer local laws.
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Appendix A. Various preliminaries

A.1. Directed graphs, bipartite graphs, and matrices. Throughout this proof, we will

pass freely between the notions of matrices, bipartite graphs, and digraphs. Given an m × n

matrix M with entries in {0, 1}, we may identify this bipartite graph with n vertices on the left

and m vertices on the right and an edge between j ∈ [n] and i ∈ [m] if and only if Mij = 1.

If m 6 n, we may identify M with a digraph by adding n −m empty right vertices, directing

all edges from left to right, and gluing corresponding vertices in the obvious manner. We write

deg+M (v, S) for the number of out-neighbors v has in S (including a self-loop), and similar for

deg−M (v, S); we drop S to refer to the total out- or in-degree. The degree sequence of M (or

equivalently, of the corresponding bipartite graph or digraph) is (d,d′) where d = (deg+M (v))v∈[n]
and d′ = (deg−M (v))v∈[m].
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For the entire paper we will concern ourselves with matrices such that n ∈ {m,m + 1}. Let

Im×n denote the matrix such that (Im×n)ij = 1 if i = j 6 min(m,n) and 0 otherwise; this aligns

with the standard definition of the identity matrix for square matrices. The matrix M − zIm×n
can be identified as a weighted bipartite graph with n vertices on the left and m vertices on the

right (with possible weights of 0, 1,−z, 1 − z).

A.2. Concentration inequalities. We state a Chernoff bound for binomial and hypergeomet-

ric distributions (see for example [16, Theorems 2.1, 2.10]).

Lemma A.1 (Chernoff bound). Let X be either:

• a sum of independent random variables, each of which take values in {0, 1}, or
• hypergeometrically distributed (with any parameters).

Then for any δ > 0 we have

P[X 6 (1 − δ)EX] 6 exp(−δ2EX/2), P[X > (1 + δ)EX] 6 exp(−δ2EX/(2 + δ)).

We will require a version of the classical Bernstein inequality; this appears as [33, Theo-

rem 2.8.1].

Theorem A.2. For a random variable X define the ψ1-norm

‖X‖ψ1 = inf{t > 0: E[exp(|X|/t)] 6 2}.
There is an absolute constant c > 0 such that the following holds. If X1, . . . ,XN are independent

random variables then

P

(
∣

∣

∣

∣

N
∑

i=1

Xi

∣

∣

∣

∣

> t

)

6 2 exp

(

− cmin

(

t2
∑N

i=1‖Xi‖2ψ1

,
t

maxi‖Xi‖ψ1

))

for all t > 0.

We will also require a standard concentration inequality for Lipschitz functions with respect

to the symmetric group (and with respect to injections); this appears as [10, Lemma 3.3].

Lemma A.3. Let m ∈ N, let S be a finite set with |S| > m, let F be the set of functions

{1, . . . ,m} → S and let I ⊆ F be the set of injections {1, . . . ,m} → S. Consider a function

f : F → R with the property |f(π) − f(π′)| 6 ∑m
i=1 ci1π(i)6=π′(i). Let π ∈ I be a uniformly

random injection. Then for t > 0,

P(|f(π) − Ef(π)| > t) 6 2 exp

(

− t2

8
∑m

i=1 c
2
i

)

.

Finally we will require the Azuma–Hoeffding inequality (see [16, Theorem 2.25]).

Lemma A.4 (Azuma–Hoeffding inequality). Let X0, . . . ,Xn form a martingale sequence such

that |Xk −Xk−1| 6 ck almost surely. Then

P(|X0 −Xn| > t) 6 2 exp

(

− t2

2
∑n

k=1 c
2
k

)

A.3. Configuration model. We will also require the definition of the configuration model for

a bipartite graph.

Definition A.5. Consider a pair of degree sequences d = (d1, . . . , dn) and d′ = (d′1, . . . , d
′
m)

such that
∑

di =
∑

d′i. Consider a set of r =
∑

di +
∑

d′i “stubs”, n left buckets, and m right

buckets. Assign di stubs to the ith left bucket and d′i stubs to the ith right bucket. A configuration

is a perfect matching between the r/2 stubs assigned to the left buckets and r/2 stubs assigned

to right buckets. Given a configuration, contracting each of the buckets to a single vertex gives
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rise to a bipartite multigraph with degree sequence d1, . . . , dn in the left and d′1, . . . , d
′
m in the

right.

A random bipartite graph G drawn from the configuration model with degree sequences

G(d,d′) is the bipartite multigraph arising from choosing the perfect matching between the left

and right stubs uniformly at random.

Note that we may implicitly identify vertices on the left and right by identifying the ith

vertex on the left and ith vertex on the right to obtain a digraph as in Appendix A.1. We have

the following fact regarding the configuration model; the first is obvious by construction while

the second is an immediate consequence of the results of Janson [15] (although many earlier

results e.g. [3, 4, 21] would suffice).

Lemma A.6. Sample G ∼ G(d,d′).

• Conditioned on being simple, G is a uniformly random bipartite graph with degree se-

quence d on the left and d′ on the right.

• If di, d
′
i are positive integers and

∑

d2i +
∑

d′i
2
6 C(n + m) and n/C 6 m 6 Cn, we

have that G is simple with probability ΩC(1).
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