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THE SPARSE CIRCULAR LAW, REVISITED

ASHWIN SAH, JULIAN SAHASRABUDHE, AND MEHTAAB SAWHNEY

Abstract. Let An be an n×n matrix with iid entries distributed as Bernoulli random variables

with parameter p = pn. Rudelson and Tikhomirov, in a beautiful and celebrated paper, show

that the distribution of eigenvalues of An · (pn)−1/2 is approximately uniform on the unit disk

as n → ∞ as long as pn → ∞, which is the natural necessary condition.

In this paper we give a much simpler proof of this result, in its full generality, using a

perspective we developed in our recent proof of the existence of the limiting spectral law when

pn is bounded. One feature of our proof is that it avoids the use of ε-nets entirely and, instead,

proceeds by studying the evolution of the singular values of the shifted matrices An − zI as we

incrementally expose the randomness in the matrix.

1. Introduction

For an n×n matrixM , we define the spectral distribution ofM to be the probability measure

µM that puts a point mass of equal weight on each eigenvalue of M :

µM = n−1
∑

δλ.

The study of the spectral distribution of random matrices M goes back to the seminal work

of Wigner [19] in the 1950s who showed that the spectral distribution of random symmetric

matrices (so called Wigner matrices) converges to the, so-called, semi-circular law in the large

n limit, after an appropriate rescaling.

Determining the limiting spectral distribution for matrices with iid entries proved to be

substantially more difficult and was only resolved by Tao and Vu [18] after a long succession of

important papers going back to the 1960s [1, 4, 6, 8, 12, 13, 17]. They showed that the spectral

measure for such matrices, after appropriate rescaling, tends to the circular law as n → ∞,

which is the probability measure that is uniform on the unit disc in C.

Theorem 1.1 (Tao and Vu). Let ξ be a complex random variable with mean 0 and variance 1.

For each n, let An be a random matrix with iid entries distributed as ξ. If we put A∗
n = An ·n−1/2

then the spectral measure µA∗

n
converges to the circular law in probability.

Actually Tao and Vu also proved Theorem 1.1 for the stronger notion of almost sure con-

vergence but we express their theorem in terms of convergence in probability as we will be

exclusively interested in this form of convergence. Indeed, we say a sequence of measures µn
converges to the circular law in probability if for all s, t ∈ R, we have

lim
n→∞

µn((−∞, s)× (−∞, t)) =
1

π

∫ s

−∞

∫ t

−∞
1x2+y261 dydx.

While Theorem 1.1 gives us a very good understanding of the limiting spectral law of the

spectrum of “dense” matrices, it does not tell us anything about matrices where the non-zero

entries are sparse. Of particular interest are iid Bernoulli matrices where all entries are iid and

distributed as1 Ber(p) for p = pn → 0.

Sah was supported by the PD Soros Fellowship. Sah and Sawhney were supported by NSF Graduate Research

Fellowship Program DGE-2141064. Part of this work was conducted when Sawhney was visiting Cambridge with

support from the Churchill Scholarship.
1Here Ber(p) denotes, as is standard, a {0, 1}-Bernoulli random variable taking 1 with probability p.
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This sparse setting was considered by Götze and Tikhomirov [8], who proved that the limiting

spectral distribution is still the circular law when p > n−1/4+ε. Tao and Vu [17] improved this

range to cover all p > n−1+ε, and Basak and Rudelson further improved this to cover all

p > ω(n−1(log n)2).

Then, in a difficult and celebrated paper, Rudelson and Tikhomirov [15] proved that pn→ ∞
is sufficient for convergence to the circular law, which is also the natural necessary condition: if

pn is bounded it is easy to see that the limiting measure must have a large atom at zero.

In fact, they prove a more general result that allows for the non-zero entries to be replaced

with iid copies of a random variable ξ of variance 1. Indeed let An ∼ ∆n(p, ξ) indicate that An

is a n× n random matrix where each entry is an iid copy of Ber(p) · ξ.

Theorem 1.2 (Rudelson and Tikhomirov). Let ξ be a real random variable with E ξ2 = 1, let

np → ∞ and p → 0 and for each n, let An ∼ ∆n(ξ, p). If we put A∗
n = An · (pn)−1/2 then µA∗

n

converges to the circular law in probability.

This long line of results leaves open the case of p = d/n, for constant d > 0, which has proven

to be the most difficult and subtle case. In our paper [16], we complete this program by proving

the existence of the limiting measure in this case.

Theorem 1.3. For d > 0 and each n, let An be an n× n matrix with iid entries distributed as

Ber(d/n). There exists a distribution µd on C so that µAn converges to µd, in probability.

In this paper we give a new and considerably shorter proof of Theorem 1.2 based on the

method which we used in [16] to prove Theorem 1.3.

The method and “philosophy” of our proof is considerably different from that of Rudelson

and Tikhomirov. We completely avoid any direct use of ε-nets and, instead, favour of a more

“dynamic” approach, where we track the evolution of the point processes defined by the singular

values of the shifted matrices A−zI as we expose a new rows and columns. To pull this analysis

off we need only to rely on a few “quasi-randomness” conditions on the graph defined by the

non-zero entries.

One added advantage of our approach is that it allows us to effortlessly generalize Theorem 1.2

of Rudelson and Tikhomirov to allow for complex random variables ξ with unit variance. It

appears the work of Rudelson and Tikhomirov would not generalize to this complex case without

significant new ideas. Thus our main theorem here is the following.

Theorem 1.4. Let ξ be a complex random variable with E |ξ|2 = 1, np→ ∞ and p→ 0 and for

each n, let A = An ∼ ∆n(ξ, p). If we put A∗
n = A · (pn)−1/2 then µA∗

n
converges to the circular

law, in probability.

We now turn to sketch the proof of Theorem 1.4 and setup the remainder of the paper.

2. Description of method

To establish the convergence of the spectral law to the circular law it is enough to prove the

convergence of the logarithmic potential of the spectral law to the logarithmic potential of the

circular law. For us, we may use Girko’s “hermitization” method (see e.g. [2]) to express the

logarithmic potential of the spectral law as the (random) function

(1) Un(z) = − 1

n

n∑

j=1

log
(
σj
(
A∗

z

))
,

where we set d = pn, here and throughout the paper, and define

A∗
z = A∗ − zIn = d−1/2A− zIn.
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Here we have also used the notation σ1(M) > σ2(M) > · · · > σm(M), to denote the (right)

singular values of the n ×m matrix M . Our main task is to prove that for all z ∈ C \ {0} we

have

(2) lim
n
Un(z) = U◦(z) =

{
− log |z|, if |z| > 1;

(1− |z|2)/2, if |z| 6 1,

with probability 1, where U◦ is the log potential of the circular law. Once we have proved this

we can simply appeal to the general theory of logarithmic potentials to conclude the convergence

in probability µn → µ◦.
Given the expression (1), there are traditionally two steps to establish (2). First, one shows

that the limit of the empirical distribution of the singular values σj(Az) is “what it should

be” by a (fairly standard) method of moments and truncation argument: this tells us that the

“bulk” of the sum in (1) converges to what it is supposed to. Second, one shows that the small

singular values σn, σn−1, . . . don’t spoil the bulk convergence of this sum by getting too small

and dominating the sum (1). Since we have good tools for establishing the first step these days,

it is this second step that represents the core challenge and, in particular, one essentially needs

to prove bounds of the type

(3) P
(
σn−k(A

∗
z) 6 exp(−εn/k)

)
= o(1),

for any ε > 0 and all k = 1, 2, . . ..

Now, heuristically we expect that typically σn−k = Θ(kd1/2n−1), and thus (3) may not ap-

pear to be a particularly difficult obstacle to overcome, as it represents an extremely abnormal

behaviour, heuristically. However, obtaining bounds of this type has recently represented the

significant challenge in this area. Indeed, bounds of this type represent one of the main achieve-

ments of the work Tao and Vu [18] in their work on the circular law for dense matrices. For

sparse matrices, the challenge is greater still as there is less “randomness” to use. For their

sparse circular law, Rudelson and Tikhomirov [15], develop a whole toolbox of sophisticated

techniques for constructing ε-nets to prove singular value estimates of the type2 (3).

In this paper, we take a more direct route to proving (2) that is substantially different and

considerably simpler. Instead of directly working with the singular values, we look to compare

Un with a “truncated” version of the log potential of a principal minor of A∗. To elaborate on

this, let ε→ 0 sufficiently slowly and set m = (1− ε)n. We will understand A∗
m,z to be the top

left m ×m principal minor of A∗
z. The main objective of the proof will be to compare Un(z)

with the truncated sum

Tn(z) = − 1

n

(1−ε/4)m∑

j=1

log
(
σj
(
A∗

m,z

))
.

The point here is that the sum T (z) is much easier to deal with than the corresponding log

potential: the smallest εm/4 singular values have been removed from the sum. Thus a simple

variant of the trace moment method is sufficient to establish

Tn(z) = U◦(z) + o(1)

with high probability as n→ ∞. The core of the proof, therefore, lies in making the comparison

between Un and Tn, and in particular showing Un(z) 6 Tn(z) + o(1), which we achieve dynam-

ically: we “build up” A∗
n,z from A∗

m,z by alternately adding rows and columns. Simultaneously,

we build up Un from Tn by taking more singular values into our sum, when possible. For this,

we index time in half-integer steps t ∈ [m,n] so that at each integer time t we have that A∗
t is

2In fact, both Tao and Vu [18] well as Rudelson and Tikhomirov [15] obtain better estimates on the least

singular value than required, but this is not relevant to our discussion here.
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a t× t matrix and at time t+ 1/2, we define A∗
t+1/2 to be the t× (t+ 1) matrix which is A∗

t+1

with the bottom-most row deleted. Thus we build A∗
n,z from A∗

m,z as

A∗
m,z → A∗

m+1/2,z → · · · → A∗
n−1/2,z → A∗

n,z.

The point of this is that each row and column addition has the crucial property that it “pushes”

all the singular values up and thus we aim to take more singular values into our sum as these

values get “pushed” throughout the process. Let us define the sum

Tr,t(z) = − 1

n

r∑

j=1

log
(
σj
(
A∗

t,z

))
.

Our crucial lemma tells us that we can take on singular values rather often: if At,0 satisfies

some quasi-randomness conditions and r < t then

(4) P
(
Tr+1,t+1/2(z) 6 Tr,t(z) + δr+1

)
= 1− od→∞(1),

where the probability is only over the new row/column being added and δr is a sequence with

the property that

(5)
n∑

r=(1−ε/4)m

δr = o(1).

However this is not the end of the story; every time we add a column to our matrix we “create”

a new singular value at 0 that needs to be taken under control in the following steps. Thus we

need to ensure that our random process has sufficient drift to ensure that we can take on all

new singular values by the end of the process.

To see this is the case, consider the random process r(t), which is defined as the number of

singular values that we have taken on by time t. It makes sense to consider the “height” of this

process defined by h(t) = t− r(t), which represents the number of singular values we don’t have

in our possesion at time t. Thus the goal of our work can be phrased as showing that h(n) = 0

with high probability. Note that at the start of this process, we have

h(m) = m− (1− ε/4)m = εm/4

and at each step we have a downward drift of (1/2 − o(1)) with each row or column addition.

Since there are 2εn row or column additions we expect the total drift to be εn which is signifi-

cantly larger than εn/4, and should give h(n) = 0 whp. Of course the wrinkle is that we need

to ensure that these quasi-randomness conditions, mentioned above, occur sufficiently often.

To prove (4) we are led to study the structure of the vector space spanned by the ⌈t⌉ − r

smallest singular vectors of M (left-singular vectors for integral t and right-singular vectors for

half-integral t). In particular, we will need to show that if X is a new row or column of our

matrix and Ph,M is the orthogonal projection onto the space spanned by the h smallest singular

vectors of the appropriate side then for “quasi-random” M we have

(6) PX

(
‖P⌈t⌉−r,MX‖2 < exp(−nδr)

)
= O(ε+ (log(2) d)

−1/2).

While theorems of this type can be quite challenging, here we can get away with a very weak

notion of quasi-randomness, based on the number of rows that have a unique non-zero entry

in a set of columns. From this quasi-randomness condition, we can deduce the following basic

structural information about vectors v ∈ C
t that are near-singular vectors of M :

(7) |{i : vi > exp(−nδr)n−1/2}| > (n/(2d)) log(2) d.

This in, in turn, allows us to deduce (6).

In Section 4 we define the notion of a “unique neighbourhood expansion” which our quasi-

randomness notion is based on. In Section 5 we use this quasi-randomness property to derive (7).
4



In Section 6 we prove that if the kernel has the property (7) then we can deduce (6). Then in

Section 7 we prove (4), showing how the process evolves in a single step. In Section 8 we give

the simple analysis of this random walk. In Section 9 we show the convergence of Tn to U◦ and

complete the proof of Theorem 1.4.

3. A few preliminaries

In what follows we fix ξ to be a complex random variable with

E |ξ|2 = 1.

We regard ξ as fixed throughout the paper and allow various quantities to depend on ξ. Given

such a random variable ξ, we define β = β(ξ) 6 1 to be such that

max
y

P
(
‖ξ − y‖ < β

)
6 1− β.

Note that either β(ξ) > 0 or β(Ber(1/2) · ξ) > 0 and thus adjusting p and rescaling if necessary

we may assume that β(ξ) > 0.

We define ∆n,m(p, ξ) to be the probability space of all n×mmatrices of A where Ai,j = δi,jξi,j,

all of the ξi,j and δi,j are independent, and δi,j ∼ Ber(p) and ξi,j is distributed as ξ. We define

∆n(ξ, p) = ∆n,n(ξ, p). We define Coln(ξ, p) to be the random column vector X ∈ R
n where Xi

are independent and distributed as Ber(p) · ξ. We define Rown(ξ, p) similarly. For a matrix M

we also define ‖M‖2HS =
∑

i,j |Mi,j |2.
We define for easy reference the quantities δr mentioned in the proof outline. We define

δr =

{
n−1(log(n/(n − r + 1)))2 for r < n(1− d−1/4);

Cn−1(log d)8(log(n/(n− r + 1)))8 for r > n(1− d−1/4).

As we required in (5) it is not hard to check that
∑n

r=(1−ε/4)n δr = o(1). To save on clutter, it

also makes sense to define

ηr = exp(−nδr).
In addition to the fixing of ξ, we make a few more global assumptions throughout the paper.

We assume throughout n is sufficiently large and that Cn−1 6 p 6 1/2, where C is a sufficiently

large constant depending only on ξ. We assume t ∈ 1
2Z∩ [m,n] and m = (1− ε)n. Throughout,

for t ∈ N, At will be our t× t random matrix for time t and At+1/2 will be a t× (t+1) random

matrix, obtained as submatrices of A. Throughout we will define At,z = At − zI, where I is

either a square identity or (t−1/2)× (t+1/2) identity matrix depending if we are at an integer

or half-integer time. As in the previous section, define A∗
t,z = d−1/2At − zI. We also allow

ourselves the convention that d = pn and that z ∈ C. All whp statements are meant with

respect to n→ ∞ and therefore d→ ∞.

4. Unique neighbourhood expansions and quasi-randomness properties

The goal of this section is to define the quasi-randomness event Er that will allow us to show

that we can take on the rth singular value into our sum, with high probability, assuming r 6 ⌊t⌋.
We define this event Er in three parts

Er(ξ, p) = Ur(ξ, p) ∩ B(p) ∩ Q(ξ, p) ∩R(ξ, p).

Even before defining Er we state the main lemma of this section which is essentially the only

thing we need to carry forward in the paper.

Lemma 4.1. If r > t− n/d1/4 then

P(At ∈ Er) > 1− exp(−d1/2(⌈t⌉ − r + 1)).
5



We now define Ur. For this, let B be an m× ℓ matrix and let S ⊆ [ℓ] be a set of columns of

B. We define U(S) ⊆ [m], a subset of the rows of B, in two parts. We first define

U(S) \ S =
{
i ∈ [m] \ S : Bi,j 6= 0 for a unique j ∈ S and |Bi,j| > β

}
.

We then define

U(S) ∩ S =
{
i ∈ [m] ∩ S : Bi,j = 0 for all j ∈ S

}
.

We fix α(x) = (log(n/x))−2 and say B ∈ Ur if for all subsets of columns S with

c∗(⌈t⌉ − r + 1) 6 |S| 6 (n/(2d)) log(2) d we have |U(S)| > α(|S|)d|S|,
where c∗ > 0 is the absolute constant appearing in the statement of Lemma 6.3. (It is not

heuristically important what this parameter is precisely, only the scale of the lower limit on

|S|.)

Lemma 4.2. If r > t− n/d1/4 then

P(At ∈ Ur) > 1− exp(−2d1/2(⌈t⌉ − r + 1)).

Now define At ∈ B if for all subsets S ⊆ [⌊t⌋] of the rows, we have

1

|S|
∑

i∈S

⌈t⌉∑

j=1

δi,j = O(d+ log(n/|S|)),

and analogously for the columns.

Furthermore, define At ∈ Q if there are at most

2dn/H2 + (log n)2 entries of At which are > 8H/β in magnitude

for each H ∈ [1, n4], and additionally the maximum value of At is at most n3.

Finally define At ∈ R if for all ℓ > 1, if we put L = (dn/(βℓ))5 then

∣∣{i :
⌈t⌉∑

j=1

|(At)i,j| > L/β
}∣∣ 6 α(ℓ)dℓ/4

and similarly for columns.

Lemma 4.3. We have

P(At ∈ B ∩ Q ∩R) > 1− n−3.

The proof of all of these lemmas are entirely standard union bound computations and are

deferred to Appendix A.

5. Spreadness of near-kernel vectors from graph quasi-randomness

The goal of this section is to prove the following lemma, which says that if At ∈ Er and

v is “close” to the small right-singular vectors of At,z then it has (n/(2d)) log(2) d ≫ n/d

coordinates that are bounded away from zero by ηrn
−1/2. The point here is that each new

row and column has random support of size d, on average. So, crucially, the intersection of

these supports is typically ≫ 1. For this lemma we define the notation, for v ∈ C
n and x > 0,

λ(v;x) = |{i : |vi| > x}|.

Lemma 5.1. For t > r > n(1 − d−1/4), let At ∈ Er and 1 6 |z| 6 d. Put k = c∗(⌈t⌉ − r + 1),

where c∗ is as in Section 4, and let v ∈ C
⌈t⌉ satisfy

‖At,zv‖2 6 d1/2ηr and λ(v; k2n−5/2) > k.

Then

λ(v; ηrd
1/2k−1/2) > (n/(2d)) log(2) d.
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We prove this lemma by using the unique neighbourhood expansions. This link starts to

become apparent with the following simple observation.

For this we define a few uses of notation. For v ∈ C
n and S ⊆ [n], we let vS ∈ C

n be

the vector with (vS)i = vi for i ∈ S and 0 otherwise. It is also useful to define, for a vector

v = (v1, . . . , vn), the vector v∗ = (v∗1 , . . . , v
∗
n) where the entries of v∗ are the |vi|, but have been

permuted so that v∗1 > · · · > v∗n.

Observation 5.2. For ℓ 6 t, let v ∈ C
⌈t⌉ and let S be the set of the ℓ largest coordinates of v

in absolute value. If |z| > 1 then |(At,zvS)i| > v∗ℓβ for all i ∈ U(S).

Proof. We consider two cases. If i ∈ U(S) \ S there is unique j ∈ S with (At,z)i,j 6= 0. For this

j, we additionally have |ξi,j| > β. Thus the observation is easily proved in this case.

For i ∈ U(S) ∩ S we have (At,z)i,j = 0 for all j ∈ S with j 6= i. So

|(At,zvS)i| = |(At,z)i,ivi| = |(A− zI)i,ivi| = |z||vi| > v∗ℓβ,

which proves the observation. �

Recall that above we defined the function α(x) = (log(n/x))−2. Here we define the function

(8) g(x) =

⌈
dα(x)x

C ′(d+ log(n/x))

⌉
,

where C ′ is a sufficiently large constant. (It is chosen based on the O(·) in the definition of the

event B.)
We prove Lemma 5.1 by iterating the following lemma. This lemma says that if the mass of

v is clustered on fewer than (n/(2d)) log(2) d coordinates then At,zv has many large coordinates

and is therefore is not close to the small singular vectors.

Lemma 5.3. For r 6 t let At ∈ Er and let c∗(⌈t⌉ − r + 1) 6 ℓ 6 (n/(2d)) log(2) d, where c
∗ is

as in Section 4. If v ∈ C
⌈t⌉ satisfies

v∗ℓ+g(ℓ) 6 v∗ℓ

(
βℓ

dn

)7

.

and 1 6 |z| 6 d then

(9) λ
(
At,zv ; βv

∗
ℓ /2

)
> α(ℓ)dℓ.

Proof. Let S be the set of the ℓ largest coordinates of v in absolute value. Write v = x + y,

where x = vS and y = vSc and note that by Observation 5.2 we have

|(An,zx)i| > |(An,zx)i| − |(An,zy)i| > v∗ℓβ − |(An,zy)i|,
for all i ∈ U(S). Since At ∈ Er we have that |U(S)| > α(ℓ)dℓ and thus it suffices to prove

(10)
∣∣{i ∈ U(S) : |(An,zy)i| > βv∗ℓ /2

}∣∣ < α(ℓ)dℓ/2.

To prove (10), let B be the set in (10) and define S∗ ⊇ S to be the set of indices of the ℓ+g(ℓ)−1

largest coordinates of v in magnitude. If i ∈ B then either row i has unusually large magnitude

or row i has a non-zero entry in S∗ \ S. More precisely, define

B1 =

{
i :

⌈t⌉∑

j=1

|δi,jξi,j| > L/β

}
and B2 =

{
i :

∑

j∈S∗\S
δi,j > 0

}
,

where we have set L = (dn/(βℓ))5. We now claim that B ⊆ B1 ∪ B2. To see this, assume

i /∈ B1 ∪B2 and observe that

|(An,zy)i| 6
∑

j /∈S
|δi,jξi,j − z1j=i||vj | =

∑

j /∈S∗

|δi,jξi,j − z1j=i||vj |,

7



since i 6∈ B2. Using that |vj | 6 v∗ℓL
−1(βℓ/(dn))2 for j 6∈ S∗, we see the above is at most

(
βℓ

dn

)2

· v
∗
ℓ

L
·
(
d+

∑

j /∈S∗

|δi,jξi,j|
)

6

(
β

d

)2

· v
∗
ℓ

L
· (d+ β−1L) 6 βv∗ℓ /2,

where we have used that |z| 6 d, ℓ 6 n, and i /∈ B1. Thus B ⊆ B1 ∪B2.

To conclude (10), we just need to show |B1|, |B2| < α(ℓ)dℓ/4. Since At ∈ Er, the definition

of event B tells us

|B2| 6
∑

i∈S∗\S

∑

j

δi,j 6 O(g(ℓ)(d + log(n/g(ℓ)))) 6 α(ℓ)dℓ/4.

Recall that in the definition of g, C ′ is chosen sufficiently large. Additionally, the definition of

event R tells us |B1| 6 α(ℓ)dℓ/4. This completes the proof. �

We now iterate Lemma 5.3 to obtain Lemma 5.1. To understand how many times we need

to iterate Lemma 5.3, we need the following basic numerical fact. For this, we think of k as in

Lemma 5.1 and we define the sequence (kt)t>0, by setting k0 = k and then defining

ki = ki−1 + g(ki−1),

for all i > 1.

Fact 5.4. Let τ be the minimum value for which kτ > (n/(2d)) log(2) d. Then τ = O((log(n/k))4).

We prove this fact in Appendix A and now jump to the proof of Lemma 5.1.

Proof of Lemma 5.1. We let kt and τ be as above. We claim that for all i ∈ [τ ] we have

(11) v∗ki > v∗ki−1
· δ,

where δ = (βk/(dn))7. For a contradiction assume i ∈ [τ ] is the smallest failure of this inequality.

We will then apply Lemma 5.3 to show that this contradicts the assumption that v is close to

the small singular vectors.

Indeed, the failure of (11) allows us to apply Lemma 5.3 to v to learn

(12) λ
(
At,zv ; βv

∗
ki−1

/2
)
> α(ki−1)dki−1 > k(log(n/k))−2.

Since i is the minimum such value for which (11) fails, we have

(13) v∗kt−1
> δ7(i−1)v∗k0 > δ7(i−1)k2n−5/2,

where the last inequality holds by the given lower bound on v∗k0 = v∗k. Now (12) and (13) taken

together imply

‖At,zv‖22 > k(log(n/k))−2 · β2δ14(i−1)k4n−5/4 > δ14i.

Since i 6 τ 6 O((log(n/k))4), we see that this contradicts the assumption

‖At,zv‖22 6 η2rd 6 exp(−C(log(n/k))8(log d)8),

where we have used that k = c∗(⌈t⌉− r+1) and k 6 n/d1/4. So in fact (11) holds for all i ∈ [τ ],

as claimed.

Now iterating (11) we obtain the desired result, using that we have τ = O((log(n/k))4) and

kτ > (n/(2d)) log(2) d. �
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6. Projection anti-concentration

As discussed in Section 2, our ability to “take on” the singular value σr depends on the

magnitude of the projection of our new row or column onto the space spanned by the vectors

un, . . . , ur, corresponding to the smallest singular directions σn, . . . , σr (on the appropriate side).

Here we prove that it is unlikely for this projection to be small assuming At ∈ Er (or A†
t ∈ Er).

Recall that for a t× t or (t−1/2)×(t+1/2) matrixM , we let Pr,M be the orthogonal projection

onto the ⌈t⌉ − r + 1 smallest right-singular directions of M .

Lemma 6.1. For t − 2εn 6 r 6 ⌈t⌉, let At ∈ Er, let 1 6 |z| 6 d, and put M = At,z. If

X ∼ Row⌈t⌉(ξ, p) and σr(M) 6 d1/2ηr then for all w ∈ C
⌈t⌉,

PX

(
‖Pr,M (X + w)†‖2 < d1/2ηr

)
= O(ε+ (log(2) d)

−1/2).

The remainder of this section is devoted to a proof of this lemma. The proof is broken into

different regimes, when the co-dimension is large, meaning h = ⌈t⌉−r+1 > nd−1/4, and when it

is small, meaning h 6 nd−1/4. We warm up by proving the large h case, since this is significantly

easier and does not need At ∈ Er. When h is small we will have to appeal to the results that

we proved in the previous section about matrices At ∈ Er.

6.1. Proof of the large h case. We take care of the case of large h with the following.

Lemma 6.2. For h > nd−1/4, let X ∼ Row⌈t⌉(ξ, p) and let P be an orthogonal projection onto

an h-dimensional subspace. Then for all κ > 0 and w ∈ C
n we have

PX

(
‖P (X + w)†‖2 < κ · d1/2h3/2n−3/2

)
= O(κ+ d−1/4).

The following lemma of Litvak, Lytova, Tikhomirov, Tomczak-Jaegermann, and Youssef [11,

Lemma 4.3] gives a decent basis for this space.

Lemma 6.3. Let V ⊆ C
n be a k-dimensional C-vector space. There exists an orthonormal

basis B of V so that for all v ∈ B, we have v∗c∗k > c∗k1/2n−1, where c∗ > 0 is an absolute

constant.

We also need the following anti-concentration inequality, which is a straightforward conse-

quence of the classical inequality due to Lévy–Kolmogorov–Rogozin [10,14].

Lemma 6.4. Let X ∼ Coln(ξ, p), and let v ∈ C
n satisfy v∗k > ρ. Then

max
y∈C

P
(
|〈X, v〉 − y| 6 r

)
6

Cβ

(kp)1/2
· r
ρ
,

for all r > βρ/
√
2. Here we can take Cβ = O(β−3/2).

We include the simple deduction of this lemma in Appendix A. We are now prepared to prove

Lemma 6.2, which takes care of Lemma 6.1 for large h.

Proof of Lemma 6.2. Let V be the image of P . By Lemma 6.3 there exists an orthonormal basis

B of V so that v∗c∗h > c∗h1/2n−1 for each v ∈ B. Write ‖P (X + w)†‖22 =
∑

v∈B |〈v,X + w〉|2
and note that

1(‖P (X + w)†‖2 6 κ · d1/2h3/2n−3/2) 6
2

h

∑

v∈B
1(|〈v,X + w〉| 6 2κ · d1/2hn−3/2),

since if ‖P (X+w)†‖2 < κ·d1/2h3/2n−3/2 then at most h/2 inner products on the right-hand-side

are > 2κ · d1/2hn−3/2. Taking expectations gives

P(‖P (X +w)†‖2 6 κ · d1/2h3/2n−3/2) 6
2

h

∑

v∈B
P(|〈v,X +w〉| 6 2κ · d1/2hn−3/2) = O(κ+ d−1/4),
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where we applied Lemma 6.4 to each term in the sum with k = c∗h, ρ = c∗h1/2n−1 and

r = max{2κ · d1/2hn−3/2, βρ/
√
2}. Indeed, if r = βρ/

√
2 we may apply Lemma 6.4 to obtain

the upper bound of O((kp)−1/2) = O(d−3/8). On the other hand, if r = 2κ · d1/2hn−3/2 then we

can apply the lemma and obtain an upper bound of O(κ). �

6.2. Proof of the small h case. The proof of Lemma 6.1 is similar to the proof of Lemma 6.2

but we will additionally need to appeal to our results that tell us the small singular vectors are

unstructured.

Proof of Lemma 6.1. After applying Lemma 6.2 and using h 6 2εn, we may assume 1 6 h <

nd−1/4 here. We let V be the subspace spanned by the h smallest right-singular directions of

M . As before, we apply Lemma 6.3 to find an orthonormal basis B of V so that

(14) v∗c∗h > c∗h1/2n−1

for each v ∈ B. Again write ‖PM,rX‖22 =
∑

v∈B |〈v,X〉|2 and again note we have

(15) P(‖Pr,MX‖2 6 ηrd
1/2) 6

2

h

∑

v∈B
P(|〈v,X〉| 6 2ηr(d/h)

1/2).

Now fix v ∈ B and express v =
∑h

i=1 ciwi where ui are unit vectors associated with the least

right-singular directions of M and
∑h

i=1 |ci|2 = 1. We use σ⌈t⌉−h+1(At,z) = σr(At,z) 6 d1/2ηr to

see

(16) ‖At,zv‖22 = 〈v,A†
t,zAt,zv〉 =

h∑

i=1

h∑

j=1

cicj〈ui, A†
t,zAt,zuj〉 =

h∑

i=1

|ci|2σ2⌈t⌉−i+1 6 dη2r ,

where we have used that ui are orthogonal eigenvectors of A†
t,zAt,z, by definition. Due to (14)

and (16) we may apply Lemma 5.1 to see

v∗ℓ > ηrd
1/2h−1/2 where ℓ = (n/(2d)) log(2) d.

Thus the expected intersection of the support of X with the coordinates of v with |vi| >

ηrd
1/2h−1/2 is pℓ = (1/2) log(2) d→ ∞. In particular, we can use Lemma 6.4 to see

(17) P(|〈v,X〉| 6 ηr(d/h)
1/2) = O((log(2) d)

−1/2).

with the choice of r = ρ = ηrd
1/2h−1/2. Applying (17) to each term in (15) concludes the proof

of Lemma 6.1. �

7. A step in the process

The following crucial lemma tells us that each row or column addition allows us to bring a

new singular value under our control, with probability 1− od→∞(1).

Lemma 7.1. For t − 2εn 6 r < ⌈t⌉, let A†
t ∈ Er+1 if t is integral and let At ∈ Er+1 if t is

half-integral, and d−1/2 6 |z| 6 d1/2. Then

P
(
Tr+1,t+1/2(z) 6 Tr,t(z) + δr+1

)
= 1−O(ε+ (log(2) d)

−1/2),

where the probability is over the new row or column.

To prove this we will have to track how the singular values evolve when we add a row

or column to At. In particular we use the following basic linear-algebraic lemma along with

Lemma 6.1, the main lemma from the previous section.
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Lemma 7.2. Let M be an n×m matrix and let M ′ be an (n+ 1)×m obtained by adding the

row X to M . For r < m, we have

r+1∏

i=1

σi(M
′) > ‖PX†‖2 ·

r∏

i=1

σi(M),

where P is the orthogonal projection onto the span of the m − r smallest right-singular vector

of M .

Proof. Let Q be any (r+1)×(n+1) matrix such that QQ† = Ir+1. By Courant–Fischer applied

to M ′M ′†, we have that sk(QM
′M ′†Q†) 6 σk(M

′)2 for all k and therefore

det(QM ′M ′†Q†) 6
r+1∏

i=1

σi(M
′)2.

We now choose Q such that det(QM ′M ′†Q†) is exactly the RHS of the claimed inequality. Let

Q′ be an r × n matrix with rows corresponding to biggest r unit left-singular vectors of M .

Q is obtained by adding an extra row and column to Q′ which are all zeros, except for the

bottom right entry which is 1. It is trivial to verify using orthogonality of singular vectors that

QQ† = Ir+1.

Note that QM ′ is an (r + 1) × m matrix. The first r rows of QM ′ are exactly the first r

right-singular vectors of M ′ with the i-th largest singular vector scaled by σi(M
′); this is most

easily seen by using the singular value decomposition of M ′. The final row of QM ′ is exactly

X. Therefore using the base times height formula for determinants, we have that

det(QM ′M ′†Q†) = dist(X, spanC({eiQ′M}16i6r))
2

r∏

i=1

σi(M)2 = ‖PX†‖22 ·
r∏

i=1

σi(M)2,

which completes the proof. �

We also require Cauchy interlacing (for singular values).

Fact 7.3. Let M be an n×m matrix and let M ′ be M with a row added. Then

σm(M) 6 σm(M ′) 6 σm−1(M) 6 σm−1(M
′) 6 · · · 6 σ1(M) 6 σ1(M

′).

We now prove Lemma 7.1.

Proof of Lemma 7.1. We only need to put the pieces together that we have already built up.

Note that A∗
t,z = d−1/2A − zI = d−1/2(A − zd1/2I) = d−1/2At,zd1/2 . If σr+1(A

∗
t,z) > ηr+1 then

we have
r+1∏

i=1

σi(A
∗
t+1/2,z) >

r+1∏

i=1

σi(A
∗
t,z) > ηr+1

r∏

i=1

σi(A
∗
t,z),

where the first inequality holds by interlacing. Thus we are done in this case.

Otherwise σr+1(A
∗
t,z) < ηr+1, in which case we use that At ∈ Er+1. Let us focus on the

situation where t is half-integral and we are adding a row. The integral case is similar except

we apply the relevant argument to A†
t , so we omit it. By Lemma 7.2,

r+1∏

i=1

σi(A
∗
t+1/2,z) > ‖Pr+1,A∗

t,z
(d−1/2X + w)†‖2 ·

r∏

i=1

σi(A
∗
t,z),

where X ∼ Row⌈t⌉(ξ, p) is the new row added and w is all 0 except perhaps a nonzero element

corresponding to −z on the diagonal (when t is half-integral). We may now apply Lemma 6.1
11



with r replaced by r + 1 to see

PX

(
‖Pr+1,A∗

t,z
(d−1/2X + w)‖2 < ηr+1

)
= PX

(
‖Pr+1,A

t,zd1/2
(X + d1/2w)‖2 < d1/2ηr+1

)

= O(ε+ (log(2) d)
−1/2)

as desired. �

8. Analysis of the process

Recall that we index time in half-integer steps from the interval [m,n] so that at each integer

time t we have that At is a t×t matrix and at time t+1/2, At+1/2 is the t×(t+1) matrix which is

At+1 with the bottom-most row deleted. Recall r(t) can be defined by setting r(m) = (1−ε/4)m
and

r(t+ 1/2) =

{
r(t) + 1 if Tr(t)+1,t+1/2(z) 6 Tr(t),t(z) + δr(t)+1;

r(t) otherwise.

In what follows, if M is an n×m matrix, we define σr(M) = 0 if r > m. We track the evolution

of the random variable h(t) = t− r(t). The main goal of this section is to show that, whp, we

have taken all singular values into our sum by the end of the process.

Lemma 8.1. For all z ∈ C \ {0}, we have

P(h(n) = 0) = 1− o(1).

We shall also see that this immediately implies the following result, which is the “hard”

direction of our two-sided comparison of Tn(z) and Un(z).

Lemma 8.2. For all z ∈ C \ {0}, we have Un(z) 6 Tn(z) + o(1) with probability 1− o(1).

To prove these lemmas we study how h(t) evolves. For convenience when analyzing cases

h(t) = 0, however, we define the slightly modified function

h∗(t) :=

{
h(t) if h(t) 6= 1/2;

0 if h(t) = 1/2.

At the start of the process we have

h∗(m) 6 m− (1− ε/4)m = εm/4 < εn/4,

by definition. For all t < n, we have

h∗(t+ 1/2) 6 h∗(t) + 1/2 + (1/2)1h∗(t)=0,

and finally, if A†
t ∈ Er(t)+1 for t integral or At ∈ Er(t)+1 for t half-integral, we know from

Lemma 7.1 that

P
(
h∗(t+ 1/2) 6 h∗(t)− (1/2)1h∗(t)>0

)
= 1− od→∞

ε→0
(1).

Of course, for this to be useful, we need to guarantee the required event sufficiently often. One

difficulty here is that our bounds on the failure of Er are not sufficiently strong to ensure that

our matrix always satisfies the appropriate condition. To get around this we use a simple idea:

if at time t we have h∗(t) < ⌊(n− t)/8⌋ then we don’t worry about certifying that new singular

values are taken into our sum, as we are already “over-achieving” at such a time. Thus we only

need to union bound over all pairs (t, r) where r 6 t−⌊(n− t)/8⌋. Thus, for all times in (1/2)Z,

we define

Qt =

{⋂t−⌊(n−t)/8⌋
r=1 {At ∈ Er} if t half-integral;

⋂t−⌊(n−t)/8⌋
r=1 {A†

t ∈ Er} if t integral;
and then set Q̃t =

⋂

t′6t

Qt,
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where the latter intersection is over all t ∈ (1/2)Z ∩ [m, t]. Of course the key point here is that

Q̃ holds with high probability.

Lemma 8.3. P(Q̃n) = 1− o(1).

Proof. We apply Lemma 4.1 to bound P
(
Q̃c

)
above by

∑

t

t−⌊(n−t)/8⌋∑

r=1

P(At ∈ Er) 6
∑

t,r

exp(−d1/2(⌈t⌉ − r + 1)) 6
∑

k>1

2 exp(−kd1/4),

which tends to zero as d tends to infinity. �

To avoid the property Q̃n running interference with the independence in the row/column

revelation process, we couple h∗(t) to a simpler process. For this let Ft be the σ-algebra

corresponding to the matrix At. Now define the random variablesXt = h∗(t)1Q̃t
. This definition

is crafted so that on Q̃n, if Xn = 0 then h∗(n) = 0. We now prove the following simple

probabilistic lemma which shows that Xt has sufficient downward drift to ensure P(Xn = 0) with

high probability. Such lemmas originate in the work of Costello, Tao, and Vu [3] on singularity

of symmetric random matrices, and have been used more recently to study singularity and rank

in sparse random matrices [5, 7].

Lemma 8.4. Let (Fs)
T
s=0 be a filtration and let (Ys)

T
s=0 be a sequence of random variables for

which Ys is Fs-measurable, Ys ∈ (1/2)Z>0, Y0 6 T/8, Ys+1 6 Ys + 1, and such that

P(Ys+1 6 Ys − (1/2)1Ys>0 |Fs) > 1− q,

whenever Ys > ⌊(T − s)/16⌋. Then

(18) P(YT = 0) > 1− 4q1/8.

Proof. We proceed by considering an appropriate exponential moment: define the random vari-

ables Zs = q(T−s)/16q−Ys/2 and note

P(YT > 1/2) = P(ZT > q−1/4) 6 q1/4 · EZT .

We now show that EZT 6 4 by bounding how much the expectation moves in each step. Indeed,

for each s 6 T − 1 we claim we have

(19) E[Zs+1 | Fs ] 6 1 + 2q1/8Zs.

To see this, first consider the case Ys < ⌊(T − s)/16⌋. Here Ys+1 6 ⌊(T − s)/16⌋+1/2 and thus

Zs+1 6 q(T−s−1)/16−1/2⌊(T−s)/16⌋−1/4 6 1.

Otherwise we have Ys > ⌊(T − s)/16⌋ and we calculate

E[Zs+1 | Fs ] 6 q(T−s−1)/16
(
q−1/2(Ys−(1/2)1Ys>0) + q · q−1/2(Ys+1)

)
6 1 + 2q1/8Zs.

This establishes (19). We now iteratively apply (19) to see

E[ZT ] 6 1 + 2q1/8 + (2q1/8)2 + · · ·+ (2q1/8)T−1 + (2q1/8)TE[Z0] 6 2 + (2q1/8)T 6 4.

For the inequality we used the fact we may assume q 6 1/216, otherwise the conclusion at (18)

is trivial. �

Proof of Lemma 8.1. All that remains is to check the pieces fit together. Note that Xt is Ft-

measurable, by definition. Let Ys = Xm+s/2 for s ∈ [0, 2(n−m)]∩Z. We have T = 2εn for our

process and our starting point Y0 = Xm satisfies Y0 6 m/4 6 εn/4 = T/8, by definition. We

now claim that

(20) P
(
Xt+1/2 6 Xt − (1/2)1Xt>0 | Ft

)
> 1− od→∞(1),
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whenever Xt > ⌊(n− t)/8⌋. We check this inequality pointwise. If At ∈ Qc
t then (20) holds, by

definition, since then Xt+1/2 = Xt = 0. On the other hand, if At ∈ Qt then we apply Lemma 7.1

to see that

P
(
Xt+1/2 6 Xt − (1/2)1Xt>0 |Qt

)
= P

(
h∗(t+1/2) 6 h∗(t)− (1/2)1h∗(t)>0 |Qt

)
> 1− od→∞

ε→∞
(1).

Thus Xt is a random process that satisfies the hypothesis of Lemma 8.4. We apply Lemma 8.3

and then Lemma 8.4 to see that

P
(
h∗(n) > 0

)
= P

(
h∗(n) > 0 ∩ Q̃n

)
+ o(1) 6 P

(
Xn > 0

)
+ o(1) = o(1).

Using that h∗(n) = 0 implies h(n) = 0 (since n is integral), we are done. �

We now deduce the important consequence of Lemma 8.1, Lemma 8.2, which says that

Un(z) 6 Tn(z) + o(1), for all z 6= 0.

Proof of Lemma 8.2. Assume h(n) = 0. Thus for each (1 − ε/4)m 6 r 6 n, there exists

t(r) ∈ [m,n] ∩ 1
2Z so that

Tr,t(r)(z) 6 Tr−1,t(r)−1/2(z) + δr

and such that t(·) is a strictly increasing function. Additionally, by Fact 7.3 we have Tr,t(z) 6

Tr,t−1/2(z).

Chaining these inequalities together gives

Un(z) = Tn,n(z) 6 · · · 6 Tm,(1−ε/4)n(z) +

n∑

r=(1−ε/4)m

δr = Tn(z) + o(1),

and we’re done. �

9. Completion of the proof

With the main difficulty of the proof behind us, we no longer need to consider At, and now

simply think of n → ∞. It is convenient to modify Tn(z) to be a function of (A∗
n,z) instead of

(A∗
m,z); define

T (1)
n (z) = − 1

n

(1−ε/4)m∑

i=1

log(σi(A
∗
n,z))

T (2)
n (z) = − 1

n

(1−ε)n∑

i=2εn

log(σi(A
∗
n,z))−

(1− ε/4)m − (1− 3ε)n

n
log(σm(1−ε/4)(A

∗
m,z)).

We now relate Un(z), Tn(z), T
(1)
n (z), and T

(2)
n (z).

Fact 9.1. We have

Tn(z) = − 1

n

(1−ε/4)m∑

i=1

log
(
σi(A

∗
m,z)

)
6 T (2)

n (z)

Un(z) > − 1

m(1− ε/4)

(1−ε/4)m∑

i=1

log(σi(A
∗
n,z)) =

T
(1)
n (z)

(1− ε/4)(1 − ε)
.
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Proof. The second inequality follows from σ1(A
∗
n,z) > σ2(A

∗
n,z) > · · · > σn(A

∗
n,z). For the first

inequality, note that

− 1

n

(1−ε/4)m∑

i=1

log
(
σi(A

∗
m,z)

)

6 − 1

n

m−3εn∑

i=1

log
(
σi(A

∗
m,z)

)
− (1− ε/4)m − (1− 3ε)n

n
log(σ(1−ε/4)m(A∗

m,z))

6 T (2)
n (z)

where the final inequality follows from iterating Fact 7.3 a total of 2εn times. �

Next we will require control on the Hilbert–Schmidt norm of A∗
n,z.

Fact 9.2. With high probability,

‖A∗
n,z‖2HS 6 4(|z|2 + 1)n

Proof. Note that

E ‖A∗
n,z‖2HS = E ‖d−1/2An − zIn‖2HS 6 2(E‖d−1/2An‖2HS + ‖zIn‖2HS) = 2(1 + |z|2)n.

Viewing the square of the Hilbert–Schmidt norm as the entry-wise sum of the squares, the result

follows by Chernoff and the strong law of large numbers. �

Finally we require convergence of the truncated log potential; this is a fairly standard proof

which we defer to the end of the section.

Lemma 9.3. For pn → ∞ and p → 0, let An ∼ ∆n(ξ, p) and let ε → 0 sufficiently slowly.

Then T
(1)
n (z) and T

(2)
n (z) converge to U◦(z) in probability.

To finish the proof we state a simple criterion that allows us to jump from point-wise conver-

gence of Un(z), plus a simple tightness condition, to the convergence of the spectral measures.

The following lemma is a simple reworking of Theorem 2.1 in [18], which gives the following

“abstract” criterion for convergence to a circular law.

Proposition 9.4. For each n, let An be a random n × n matrix and let µn = µd−1/2An
be the

scaled spectral law of An. If E ‖d−1/2An‖HS = O(n1/2) and for almost all z ∈ C we have Uµn(z)

converges to U◦(z) in probability, then µn → µ◦ in probability.

We now prove Thoerem 1.2 given Lemma 9.3.

Proof of Theorem 1.4. By combining the first item of Fact 9.1, Lemma 8.2, and Lemma 9.3, we

have

P(Un(z) 6 U◦(z) + o(1)) = 1− o(1).

Combining the second item of Fact 9.1 and Lemma 9.3, we have

P(Un(z) > U◦(z)− o(1)) = 1− o(1).

Therefore, Fact 9.2 allows us to invoke Proposition 9.4, which completes the proof. �

We now prove Lemma 9.3. Define νn,z to be the empirical measure of all of the singular

values of the shifted matrix A∗
n,z. Since T

(1)
n (z) and T

(2)
n (z) cut out the smallest singular values,

arguments based on just convergence of distribution can control these sums.

Define Gn to be an iid n× n random matrix with entries distributed as variance 1 complex

Gaussians: 1√
2
(Z1 + Z2i), with Z1, Z2 ∼ N(0, 1) iid. Let νGn,z be the empirical measure of the

singular values of the shifted matrix Gn,z = n−1/2Gn− zIn. It is well known that νGn,z converges

in probability to a limit νGz , which satisfies the following properties.
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Fact 9.5. There exists an absolute constant C > 0 such that the following holds. For all z ∈ C,

νGz is a measure on [0, |z| + C] with νz([0, t)) 6 Ct for all t, and

−
∫

log t dνGz = U◦(z).

Next we establish convergence in distribution for the measures νn,z; this is by now standard

and we include a short sketch for completeness.

Fact 9.6. For pn → ∞ and p → 0, let An ∼ ∆n(ξ, p). For all bounded continuous functions

φ : R → R, we have ∫
φ(t) dνn,z →

∫
φ(t) dνGz

in probability.

Proof sketch. Fix M > 1, let ξ
(1)
i,j = ξi,j1|ξi,j |6M , ξ

(2)
i,j = ξi,j1|ξi,j |>M , and note that ξi,j =

ξ
(1)
i,j + ξ

(2)
i,j . Let A

(k)
n have entries δi,jξ

(k)
i,j for k ∈ {1, 2}. By the Chernoff and the strong law of

large numbers, with probability 1− o(1) we have

‖A(2)
n ‖2HS 6 2pn2 · E|ξ(2)i,j |2.

Furthermore, since the entries of A
(1)
n are bounded byM , by a standard trace method argument

we have that the empirical measure of the singular values of the matrix

(pnE|ξ(1)i,j |2)−1/2(A(1)
n − EA(1)

n )− zIn

converges to νGz in probability. Here we have used that the entries of A
(1)
n −EA

(1)
n are distributed

as δi,jξ
(1)
i,j − pEξ

(1)
i,j which has mean zero and variance pE|ξ(1)i,j |2 − p2(|Eξ(1)i,j |)2. Therefore by the

Hoffman–Wielandt inequality [9, Theorem 1] to bound deviations introduced by adding A
(2)
n ,

using that EA
(1)
n is a rank 1 matrix, and finally taking M → ∞, the desired result follows. �

We are now in a position to easily prove Lemma 9.3, which will conclude the proof.

Proof of Lemma 9.3. By the convergence in distribution established in Fact 9.6 as well as

Fact 9.5 (applied with n replaced by m and z by (1− ε)−1/2z) we have that σm−εm/4(A
∗
m,z) .

|z|+1 and σm−εm/4(A
∗
m,z) & ε whp. Given this, establishing that T

(1)
n (z) and T

(2)
n (z) each con-

verge in probability to U◦(z) boil down to essentially identical arguments; we prove convergence

for T
(1)
n (z) explicitly.

Let ε′ = 5ε/4 − ε2/4 and note that

T (1)
n (z) = − 1

n

(1−ε′)n∑

i=1

log(σi(A
∗
n,z)) + o(1)

whp, where the error term arises due to rounding the top index and can be absorbed using

Fact 9.5 and convergence in distribution of σi(A
∗
n,z).

Let τz(ε
′) denote the unique real number such that PX∼νGz

[X 6 τz(ε
′)] > ε′ and PX∼νGz

[X <

τz(ε
′)] 6 ε′. Define νG,ε′

z by letting X ∼ νGz , then outputting X conditional on X > τz(ε
′)

with probability (1− ε′)−1
PX∼νGz

[X > τz(ε
′)] and τz(ε′) with probability (1− ε′)−1(PX∼νGz

[X 6

τz(ε
′)] − ε′). By convergence in distribution (Fact 9.6) and some manipulation, we have that

{σi(An,z)}16i6(1−ε′)n converges in distribution to νG,ε′
z .

Let ψ : R → R be a smooth nonnegative 1-bounded function which is 1 between ε′/(2C) and

|z| + C + ε′−1 and which is 0 outside ε′/(4C) and |z| + C + 2ε′−1, where C as in Fact 9.5.
16



By Fact 9.6 and Fact 9.5, whp σ(1−ε′)n(A
∗
n,z) > ε′/(2C). Furthermore, since ψ(t) log(t) is a

bounded continuous function, Fact 9.6 yields

− 1

n

(1−ε′)n∑

i=1

ψ(σi(A
∗
n,z)) log(σi(A

∗
n,z)) = −

∫
ψ(t) log t dνG,ε′

z + o(1)

whp. Next note that log(|x|+ 1)1|x|>M 6 x2

M . Thus for ε′ sufficiently small and using Fact 9.2,

whp

∣∣∣∣
1

n

(1−ε′)n∑

i=1

(
ψ(σi(A

∗
n,z)) log(σi(A

∗
n,z))− log(σi(A

∗
n,z))

)∣∣∣∣ 6
1

n

(1−ε′)n∑

i=1

1σi(A∗

n,z)>ε′−1 log(σi(A
∗
n,z))

6
ε′

n

n∑

i=1

σi(A
∗
n,z)

2 =
ε′

n
‖A∗

n,z‖2HS 6 ε′1/2,

supposing that ε is sufficiently small in terms of z (which occurs for large n).

Finally, since νGz is supported only on [0, |z| + C] and νGz ([0, t]) 6 Ct by Fact 9.5,
∣∣∣∣U

◦(z) +
∫
ψ(t) log t dνG,ε′

z

∣∣∣∣ =
∣∣∣∣−

∫
log t dνGz +

∫
log t dνG,ε′

z

∣∣∣∣ 6
∫

| log t|1t<ε′/C dνGz 6 ε′1/2

and we are finished upon combining the four centered equations. �

Appendix A. Ommitted proofs

Proof of Lemma 4.2. Assume t − 1/2 is integral so that At is a t′ × (t′ + 1) matrix where

t′ = t−1/2. The other case is strictly simpler so we omit it. We fix a set S ⊆ [t′+1] of columns

of size k. We note that

|U(S)| =
∑

i∈[t′]
1(i ∈ U(S)),

where the sum is over the rows and thus is a sum of independent random variables. Thus we

compute the expectation and then control the deviations. For i ∈ [t′] we have

(21) P(i ∈ U(S)) = (1− p)k if i ∈ S and P(i ∈ U(S)) = P(|ξ| > β)(1− p)k−1pk if i 6∈ S.

If k is such that n/(2d) 6 k 6 (n/(2d)) log(2) d we can just consider the contribution of i 6∈ S

and then use Chernoff. Indeed, picking up from (21) we have

pk(1− p)k−1 > (1/3)(1 − p)(1/(2p)) log(2) d > (1/3) exp(− log(2) d) > (log d)−3/2,

where we have used that d is large and that 1− x > e−2x for x 6 1/2. Thus

E|U(S)| > (t′ − k)(log d)−3/2 > 2(log(n/k))−2dk = 2α(k)dk

and so by Chernoff, we have

(22) P
(
|U(S)| 6 α(k)dk

)
6 P

(
|U(S)| 6 (1/2)E|U(S)|

)
6 exp(−cn/(log d)3/2).

We finish this range of k by simply union bounding over all subsets of size k: the probability

there is a set S of size k with |U(S)| < α(k)dk in this range of k is at most

e−cn(log d)−3/2

(
n

k

)
6 exp

(
− cn/(log d)3/2 + (n/(2d))(log d) log(2) d

)
6 e−d2/3k,

where the last inequality follows since k 6 (n/(2d)) log(2) d and d is sufficiently large.

We now turn to the trickier range c∗(t − r + 1) 6 k 6 n/(2d). For this, define T = α(k)dk

and write

(23) P(∃S, |S| = k, |U(S)| < T ) 6

(
n

k

)
P(|U(S) ∩ S| < T ) · P(|U(S) \ S| < T ).
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For the sake of notation we also set γ = P(|ξ| > β) and then define

q1 = (1− p)k and q2 = γ(1− p)k−1pk.

Note that 1− q1 6 pk and 1− q2 6 1− γkp/4. Let k′ = |S ∩ [t′]|; note that k′ ∈ {k− 1, k}. Now
|U(S) ∩ S| is distributed as binomial random variable B(k′, q1) and |U(S) \ S| is distributed as

B(t′ − k′, q2). Therefore (23) is at most

∑

i,j<T

(
n

k′

)(
k′

i

)
(1− q1)

k′−i ·
(
t′ − k′

j

)
(1− q2)

t′−k′−j

6 (T + 1)2
(
en

k′

)k′

2k
′

(k′p)k
′−T

(
en

T

)T

(1− γkp/4)n/2,

where we used that k′ + T < n/3 and bounds on q1, q2. We bound this by

(4epnd)k
′

(
2en2

kdT

)T

e−γkpn/8 6 (4ed2)k(n/k)5T exp(−γkd/8)

6 (2epn)ke5dk/ log(n/k) exp(−γkd/8) 6 e−d2/3k;

the desired result follows after summing over all k > c∗(t− r + 1). �

Proof of Lemma 4.3. We first address B. Note that for a given i ∈ [⌊t⌋], we have

P

( ⌊t⌋∑

j=1

δi,j > 2d+ x

)
6 exp(−c(d+ x))

by Chernoff. By Chernoff again, for every k we see

#

{
i ∈ [⌊t⌋] :

⌈t⌉∑

j=1

δi,j > C log(n/k)

}
6 n(k/n)2 + (log n)2

with probability at least 1 − n−9. Additionally, every such sum is bounded by d + O(log n)

with probability at least 1 − n−9. We can now see B holds with sufficiently good probability

by considering for each possible size of S the sum of the largest rows (and similarly for the

columns).

For Q, note that E|ξi,j|2 6 1 + β−2 6 2β−2, so we have P(|ξi,j| > 8H/β) 6 1/(32H2),

and hence P(δi,j |ξi,j| > 8H/β) 6 p/(32H2). By the Chernoff bound, there are at most

2pn2/(32H2) + (log n)2 entries of At which are greater than 8H/β in magnitude with prob-

ability at least 1− exp(−(log n)2). Now we take a union bound over a dyadically separated set

of H ∈ [1, n4] and appropriately adjust constants to obtain P(Q) 6 1− 1/(3n3).

For R, note that we may assume ℓ 6 n/2 (else the bound is vacuous) and thus L/β >

d5β−5 > d2E|ξ|. Furthermore note that

E[δi,j|ξi,j |] = pE|ξi,j| 6 pβ−1 and Var[δi,j |ξi,j|] 6 E[δ2i,j |ξi,j|2] 6 p(1 + β−2) 6 2pβ−2.

Thus we have by Chebyshev’s inequality

P

( ⌈t⌉∑

j=1

|(At)i,j| > L/(2β)

)
6

2pnβ−2

(L/(2β) − pnE[|ξi,j|])2
6 2pnβ−2 · (L/(4β))−2 = 32dL−2.

The desired result then follows by Chernoff applied to each row and considering a union bound

over values of ℓ along an exponential sequence, for ℓ > n1/9. (When ℓ is sufficiently small we

can use Q instead.) �
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Proof of Fact 5.4. If k > (n/(2d)) log(2) d then the result is trivial, so we assume the opposite.

Now we consider how many steps it takes us to double the value of kt in two different ranges.

When ℓ 6 n exp(−d) we see d 6 log(n/ℓ) hence

g(ℓ) > (cdℓ/2)(log(n/ℓ))−3.

The right side is increasing in ℓ, thus it takes at most O((log(n/ℓ))3) steps for this recurrence

to go from ℓ to a value which is at least size 2ℓ.

When n exp(−d) 6 ℓ 6 (n/(2d)) log(2) d we have d > log(n/ℓ) so

g(ℓ) > (cℓ/2)(log(n/ℓ))−2.

Thus it takes at most O((log(n/ℓ))2) steps to go from ℓ to at least 2ℓ. Putting these two

observations together we have

τ 6 O

(∑

a>0

(log(n/(2ak)))3
)

= O((log(n/k))4),

as desired. �

We now prove the required anti-concentration inequality Lemma 6.4; for the sake of simplicity

we define for a (real or complex) random variable Γ,

L(Γ, t) = sup
z∈C

P(|Γ− z| 6 t).

We require the following anti-concentration inequality due to Lévy–Kolmogorov–Rogozin [10,

14].

Lemma A.1. Let ξ1, . . . , ξn be independent real-valued random variables. For any real numbers

r1, . . . , rn > 0 and any real r > max16i6n ri, we have

L
( n∑

i=1

ξi, r

)
6

Cr√∑n
i=1(1− L(ξi, ri))r2i

for an absolute constant C > 0.

We will also require the following basic observation regarding the distribution of certain

complex random variables.

Lemma A.2. If L(ξ, β) 6 1− β and z ∈ C \ {0}. We have either

L(Re(zξ), β|z|/
√
2) 6 1− β/2 or L(Im(zξ), β|z|/

√
2) 6 1− β/2.

Proof. Suppose not. Then there exist x, y ∈ R such that

|Re(zξ)− x| 6 β|z|/
√
2, | Im(zξ) − y| 6 β|z|/

√
2

with probability greater than 1− β. This implies that

|zξ − x− yi| 6 β|z|
with probability greater than 1− β; dividing by z we obtain a contradiction. �

We now prove Lemma 6.4.

Proof of Lemma 6.4. Without loss of generality, let |v1| > |v2| > · · · > |vn| so that |vk| > ρ and

let ρ′ = βρ/
√
2. By Lemma A.2, at least k/2 coordinates j ∈ [k] one of

L(Re(vjξ), ρ′) 6 1− β/2 or L(Im(vjξ), ρ
′) 6 1− β/2.

By multiplying ξ by
√
−1 if necessary, we may assume the first case holds, and let the set of

such coordinates be S ⊆ [k]. This immediately implies that

L(Re(vjδjξj), ρ′) 6 1− βp/2
19



for all j ∈ S. By Lemma A.1, for appropriately chosen C we have

L
( n∑

j=1

vjδjξj, r

)
6 L

(∑

j∈S
vjδjξj, r

)
6 L

(∑

j∈S
Re(vjδjξj), r

)

6
Cr

(
ρ′2

∑
i∈S(1− L(Re(viδiξi), ρ′)

)1/2 6
Cr

ρ′((kpβ)/2)1/2
=

2Cβ−3/2r

(kp)1/2ρ

where we have used r > βρ/
√
2 = ρ′. �
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