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THE INTRANSITIVE DICE KERNEL:
1x≥y−1x≤y

4 − 3(x−y)(1+xy)
8

ASHWIN SAH AND MEHTAAB SAWHNEY

Abstract. Answering a pair of questions of Conrey, Gabbard, Grant, Liu, and Morrison, we prove
that a triplet of dice drawn from the multiset model are intransitive with probability 1/4+o(1) and
the probability a random pair of dice tie tends toward αn−1 for an explicitly defined constant α.
This extends and sharpens the recent results of Polymath regarding the balanced sequence model.
We further show the distribution of larger tournaments converges to a universal tournamenton in
both models. This limit naturally arises from the discrete spectrum of a certain skew-symmetric
operator (given by the kernel in the title acting on L2([−1, 1])). The limit exhibits a degree of
symmetry and can be used to prove that, for instance, the limiting probability that Ai beats Ai+1

for 1 ≤ i ≤ 4 and that A5 beats A1 is 1/32 + o(1). Furthermore, the limiting tournamenton has
range contained in the discrete set {0, 1}. This proves that the associated tournamenton is non-
quasirandom in a dramatic fashion, vastly extending work of Cornacchia and Hązła regarding the
continuous analogue of the balanced sequence model.

The proof is based on a reduction to conditional central limit theorems (related to work of
Polymath), the use of a “Poissonization” style method to reduce to computations with independent
random variables, and the systematic use of switching-based arguments to extract cancellation in
Fourier estimates when establishing local limit-type estimates.

1. Introduction

We consider the following pair of models of random dice.

Definition 1.1. A n-sided die is a sequence of numbers (a1, . . . , an) ∈ [n]n such that
∑n

j=1 aj =

n(n+ 1)/2. In the multiset model, the faces of a die (a1, . . . , an) are sampled as a uniform random
nondecreasing sequence in [n] which satisfy

∑n
j=1 aj = n(n+ 1)/2. In the balanced sequence model

the faces of a die (a1, . . . , an) are sampled as a uniform random sequence in [n] such that
∑n

j=1 aj =

n(n+ 1)/2.

We also require a notion of when one die is said to “beat” another die.

Definition 1.2. An n-sided die (a1, . . . , an) beats another die (b1, . . . , bn) if

n∑

j=1

n∑

k=1

(
1aj>bk +

1

2
1aj=bk

)
>
n2

2
.

Furthermore we say that die (a1, . . . , an) ties die (b1, . . . , bn) if

n∑

j=1

n∑

k=1

(
1aj>bk +

1

2
1aj=bk

)
=
n2

2
.

Our goal is to study dice tournaments. Specifically, we sample m independent random n-sided
dice, either all from the multiset model or all from the balanced sequence model, and consider the
outcome of each pair. We will think of m as fixed while n is tending to infinity.

Sah and Sawhney were supported by NSF Graduate Research Fellowship Program DGE-1745302. Sah was sup-
ported by the PD Soros Fellowship. Sawhney was supported by the Churchill Foundation.
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The phenomenon of intransitive dice are exemplified by an example constructed by Efron in the
1960’s [11]: consider the dice1

A = (0, 0, 4, 4, 4, 4), B = (3, 3, 3, 3, 3, 3), C = (2, 2, 2, 6, 6), D = (1, 1, 1, 5, 5, 5).

Efron observed that in this example that A beats B, B beats C, C beats D, and D beats A:
peculiarly, the relation “beats” is not transitive. This phenomenon gathered a substantial amount
of popular interest [12, 23] including appearing in Martin Gardner’s column in Scientific American
[11].

Mathematical work until recently had largely been focused on constructing tournaments with
various properties [1–3, 10, 18, 28]; for instance work of Moon and Moser [18] established that
given any tournament T there exists a set of dice (not necessarily satisfying the sum constraints
of Definition 1.1) which realize this tournament T .2 However, recently there has been significant
interest in understanding random models of intransitive dice due to a set of conjectures raised in
work of Conrey, Gabbard, Grant, Liu, and Morrison [7].

In the work of Conrey, Gabbard, Grant, Liu, and Morrison [7], the authors considered dice drawn
from the multiset model. While a nice model for dice, one may ask why they do not consider the
“most natural” model of dice where there is no additional condition on the sum. In this case it is
straightforward to observe empirically (and can be proven rigorously) that with high probability
whether die A beats die B can be determined simply by looking at the sum of the faces of the dice.
Conrey, Gabbard, Grant, Liu, and Morrison [7] conducted empirical simulations in the multiset
model. Based on these experimental results, they conjectured ([7, Conjectures 1,2,3]) that as n→ ∞
(a) the probability a pair of dice tie is o(1) (b) for a random triplet of dice A, B, and C the probability
that A beats B, B beats C, and C beats A is 1/8+o(1) and (c) the tournament associated to dice is
quasirandom. (Conrey, Gabbard, Grant, Liu, and Morrison [7] equivalently formulate (c) in terms
of the probability of various m-die tournaments.)

The first rigorous progress towards these conjectures was made by Polymath [22], where they
considered n-sided die drawn from not the multiset model but from the balanced-sequence model in
Definition 1.1. In this balanced sequence model, Polymath [22] was able to prove both conjectures
(a) and (b) by showing that for almost all dice A drawn from the balanced sequence model, approx-
imately half of the dice from the balanced sequence model beat it. However, based on numerical
calculations Polymath conjectured that (c) is false (see discussion surrounding [22, Conjecture 1.3]).
This suspicion was later confirmed in a continuous analogue of the balanced sequence model by work
of Cornacchia and Hązła [8] where die faces are sampled from [0, 1] uniformly at random. They
proved this by studying four-cycle counts and proved that there exists a small absolute constant
ε > 0 such that the probability that A beats B, B beats C, C beats D, and D beats A for n large is
at least 1/16 + ε (higher than if the underlying tournament was quasirandom). Finally, in work of
Hązła, Mossel, Ross, and Zheng [14], the phenomenon of transitivity was investigated in the context
of die faces which are drawn independently at random from a fixed distribution ρ which is continu-
ous. Remarkably, the phenomenon of intransitivity is extremely delicate and under mild conditions
on ρ the only distribution exhibiting any form of intransitivity is the uniform distribution. In all
the rigorous work regarding probabilistic models of intransitive dice, the use of local central limit
theorem type techniques has been crucial and this has been aided by the fact that the underlying
faces of the die are independent modulo conditioning on a simple linear relation. We note this is
no longer true in the original multiset model of Conrey, Gabbard, Grant, Liu, and Morrison [7] and
this served as a key obstacle for extending results to the original model.

Our main result is a complete characterization of the tournament associated with intransitive dice.
Our results are sufficiently strong to naturally explain the results of Polymath [22] and Cornacchia

1Notice that as stated these dice do not satisfy the precise sum and face side bounds specified in Definition 1.1.
2As it turns out, our main results on random intransitive dice can be used to reprove a number of these results;

we refer the reader to Proposition 8.3.
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and Hązła [8] and point to a number of surprising phenomena which are not immediately obvious
numerically.

In order to state our main result we will require the definition of a certain operator on L2([−1, 1]).

Definition 1.3. Consider the skew-symmetric kernel f : [−1, 1]2 → R defined by

f(x, y) =
1x≥y − 1x≤y

4
− 3(x− y)(1 + xy)

8
.

Define the operator A : L2([−1, 1]) → L2([−1, 1]) (with the Lebesgue measure) by the map

A(g) =

∫ 1

−1
f(x, y)g(y)dy.

Let σ1 ≥ σ2 ≥ · · · denote real numbers so that {±iσℓ : ℓ ≥ 1} forms the discrete spectrum of A.

Remark. Since A is real skew-symmetric we have that the spectrum is purely imaginary and coming
in pairs. Furthermore, based on numerical computation, a closed form solution for σj appears
unlikely.

Our main result captures the precise probability distribution associated with the dice tournament.

Theorem 1.4. Fix m ≥ 2 and independently sample n-sided dice A1, . . . , Am, either all from the
multiset model or all from the balanced sequence model. Let G(j) for 1 ≤ j ≤ m be infinite vectors
of standard Gaussians and for 1 ≤ j < k ≤ m let

Hjk =
∑

ℓ≥1

σℓ(G
(j)
2ℓ−1G

(k)
2ℓ −G

(j)
2ℓ G

(k)
2ℓ−1).

Then for any digraph D on vertices [m],

lim
n→∞

P[Aj beats Ak for all jk ∈ E(D)] = P[Hjk > 0 for all jk ∈ E(D)].

Remark. Hjk is defined by a convergent sum almost surely due to the bound
∑

ℓ≥t σ
2
ℓ = O(1/t),

which we prove in Lemma 2.6 (M7), and an application of Borel–Cantelli to the random events

Et defined by |∑t≤ℓ<2t σℓ(G
(j)
2ℓ−1G

(k)
2ℓ −G

(j)
2ℓ G

(k)
2ℓ−1)| ≥ t−1/4 for t ranging over powers of 2. Indeed,

P[Et] = O(t−1/2) by the Chebyshev inequality, which has finite sum over powers of 2, so all but
finitely many Et hold and the convergence follows. Alternatively, we can interpret each individual
Hjk as a Gaussian with random variance equal to the inverse of an almost surely convergent weighted
sum of chi-squared distributions.

Remark. The proof of Theorem 1.4 actually shows something stronger, which is that (Hjk)1≤j<k≤m
is the limiting distribution of (c ·marginjk/n)1≤j<k≤m, where c = 1/2 for the multiset model and
c = 1 for the balanced sequence model and where marginjk is by how much die Aj beats Ak (i.e.,

how many more pairs than n2/2, possibly negative, Aj beats Ak for).

We note that the statement of Theorem 1.4 may appear slightly strange and difficult to work
with; however, a number combinatorial consequences follow in a routine manner given Theorem 1.4.

Corollary 1.5. Sample m independent random n-sided dice A1, . . . , Am either all from the multiset
model or all from the balanced sequence model. Then for any digraph D on vertices [m] let Dv

denote the digraph where all edges emanating from the vertex v ∈ [m] are reversed. We have

lim
n→∞

P[Aj beats Ak for all jk ∈ E(D)] = lim
n→∞

P[Aj beats Ak for all jk ∈ E(Dv)]

for all v ∈ [m]. Furthermore let D′ denote the digraph where all the edges of D are reversed. We
have

P[Aj beats Ak for all jk ∈ E(D)] = P[Aj beats Ak for all jk ∈ E(D′)].
3



From Theorem 1.4 we see that the probability a pair of dice tie is o(1). Then, considering D to
be a directed cycle on 3 vertices and comparing to Dv, along with using permutation symmetry, we
immediately see that all labelled 3-vertex tournaments appear asymptotically with the same prob-
ability. Thus a random triplet of dice is intransitive with probability 1/4 + o(1). This immediately
implies the conjectures of Conrey, Gabbard, Grant, Liu, and Morrison [7, Conjectures 1, 2] (and
recovers the results of Polymath which proved these two facts in the balanced sequence model).

We can deduce that a forest with e edges occurs with probability 2−e + o(1) by iteratively
applying Corollary 1.5 to a leaf (and using that ties occur negligibly). We can also deduce that
any orientation of a labeled (2k+1)-cycle occurs with the same limiting probability 2−(2k+1)+ o(1)
by repeatedly applying the two operations specified in Corollary 1.5. These are perhaps surprising
given the results of Cornacchia and Hązła [8] showing a lack of quasirandomness for continuous
dice models. We conjecture, however, that the only equalities between complete tournaments in the
limit can be achieved via these symmetries and permutation symmetry.

For our next corollary, we will require the tournament analogue of a graphon. We refer the reader
to [29, Chapter 4] for a more extensive discussion of graphons.

Definition 1.6. Given two measurable functions U,W : [0, 1]2 → R, define the cut metric as

δ�(U,W ) = inf
φ

sup
S,T∈[0,1]

∣∣∣∣
∫

S×T
U(x, y)−W (φ(x), φ(y))dxdy

∣∣∣∣

where the infimum φ is taken over all invertible measure preserving maps. We define the tourna-
mentons T0 to be the space of all functions T : [0, 1]2 → [0, 1] such that T (x, y) = 1 − T (y, x) and

let T̃0 denote the space of tournamentons modulo identifying tournamentons with cut distance 0.

As is standard one can identify a graph G with an associated graphon, and similar for a tourna-
menton, by embedding the adjacency matrix into [0, 1]2 (for the tournamenton this requires putting
values of 1/2 on the diagonal); we will carry this transformation out without comment.

Corollary 1.7. Consider the graph Tn where the vertex set is either (a) all nondecreasing sequences
(a1, . . . , an) in [n]n such that

∑n
j=1 aj = n(n + 1)/2 or (b) all sequences (a1, . . . , an) in [n]n such

that
∑n

j=1 aj = n(n + 1)/2, and where there is a directed edge from one sequence to another if the
corresponding die beats the other.

Then Tn converges under the cut metric to a tournamenton T (which is the same in cases (a)
and (b)). Furthermore, the preimage of the set {0, 1} under T has measure 1.

Remark. Technically Tn may not be a tournament but a partial tournament due to ties, so a
priori we only have convergence to a partial tournamenton; however, a consequence of Theorem 1.4
discussed above is that ties occur with probability o(1) so we will obtain a genuine tournamenton
in the limit.

Note that the density of digraph D in the tournament Tn is precisely the probability that the
associated digraph of dice beating other dice occurs when sampling from either the multiset model
(case (a)) or the balanced sequence model (case (b)). Thus the density of digraph D in the limit
tournament T is the limiting probability described by Theorem 1.4.

The claim that the preimage of the set {0, 1} has measure 1 is equivalent to the fact that for
every ε > 0 there is a k such that a T -random tournament (defined analogously to a W -random

graph [29, Section 4.4]) on k vertices lies in a set of size 2εk
2

with at probability at least 1 − ε.
This equivalence is detailed in Lemma 8.1; we will prove Corollary 1.7 through this equivalence and
prove that one can take a polynomial relation between k and ε. The fact that T 6= 1/2 corresponds
to a lack of quasirandomness. We also establish that the directed 4-cycle in particular occurs with
limiting probability greater than 1/16 in Proposition 8.2, and show that all digraphs D have positive
density in T in Proposition 8.3.
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Finally, we also precisely quantify the probability that a given pair of dice are tied beyond the
o(1) guaranteed as a consequence of Theorem 1.4.

Theorem 1.8. Let A and B be dice which are jointly drawn independently from the multiset model.
Let α = 2−5/2π−1/2E[(

∑
ℓ≥1 σ

2
ℓ (Z

2
ℓ + Z ′2

ℓ ))
−1/2] where Zℓ, Z

′
ℓ ∼ N (0, 1). We have

P[A ties B] = (α+ o(1))n−1

for some absolute constant c = c1.8 > 0. If instead A and B are jointly drawn independently from
the balanced sequence model then

P[A ties B] = (2α+ o(1))n−1.

Remark. This can be heuristically reconstructed by considering the second remark after Theorem 1.4
with m = 2. H12 is the limiting distribution of c ·margin12/n (where c = 1/2 for the multiset model
and c = 1 for the balanced sequence model). If we imagine that the mass of this distribution was
discretized in the obvious way along all possible values of margin12 in the lattice Z/2, we obtain the
above. In fact, one can use the techniques in Section 9 to show a local limit theorem for margin12:

P[margin12 = x] =
c

2n
fH12

(cx/n) + o(1/n)

uniformly for x ∈ Z/2 where fH12
is the probability density function of H12. We do not prove this

here since the technical details are quite involved, but note that Theorem 1.8 is the x = 0 case.

We interpret the constant α as the (inverse) standard deviation around the best linear approx-
imant (in the sense of Ordinary Least Squares) to a conditioned Brownian motion at the end of
Section 9.

In general, a tournament T with exactly t ties among m dice, and
(m
2

)
− t prescribed outcomes

of the other match-ups, where m and 0 ≤ t ≤
(m
2

)
are fixed, should occur with probability (cT +

o(1))n−t. We do not pursue such a general statement here though similar techniques may apply
and a probabilistic interpretation of the constant cT should arise from Theorem 1.4 similar to the
case (m, t) = (2, 1) above.

1.1. First steps, proof outline, and organization. Our techniques at a high level involve Fourier
analysis in the style of local limit theorems. In particular, we study various “conditional Fourier
coefficients” in detail to show that the normalized joint distribution of “victory margins” (see the
second remark following Theorem 1.4) converges to (Hjk)1≤j<k≤m. We also use a more detailed
analysis involving additional control on the “coarseness” of certain modified statistics of random
dice to get very good local control of the event that there is a precise tie. We defer a more detailed
proof outline to Section 3 after developing the basic tools to attack the problem in Section 2.

The first step in proving Theorem 1.4 (in the multiset model) relies on observing that while the
dice face in the multiset model are nonindependent, the frequency statistics can be given a natural
“near-independent” model. This ultimately relies on a well-known bijection between the multiset
model and the simple random walk; the details appear in Lemma 2.2. We note that in the context
of the balanced sequence model, Lemma 2.2 reduces to the “Poissonization” trick. Given this we
interpret the “beats” relation through frequency counts (Lemmas 2.3 and 2.5) and the operator in
Definition 1.3 arises naturally. These initial steps are carried out in Section 2, and provide the key
starting point to understand the necessary distributions from a Fourier perspective.

Given the setup in Section 2, we provide a heuristic outline of the argument for Theorems 1.4
and 1.8 and an overview of the various consequences in Section 3. We then collect a list of technical
preliminaries which will be used throughout the paper in Section 4. We prove various Fourier
coefficient bounds used in the proofs of Theorems 1.4 and 1.8 in Section 5. We prove Theorem 1.4 in
Section 6, modulo a technical ingredient proven in Section 7, and then collect various consequences
following from Theorem 1.4 in Section 8. Finally we prove Theorem 1.8 in Section 9.
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Notation. We write f = O(g) to mean that f ≤ Cg for some absolute constant C, and g = Ω(f)
and f . g to mean the same. We write f = o(g) if for all c > 0 we have f ≤ cg once the implicit
growing parameter (typically n) grows large enough, and g = ω(f) means the same. Subscripts

imply a dependence of these implicit constants on those parameters. We use
d.
=,

d.→ for distributional
equality and limits, respectively.

For µ ∈ Rd and positive semidefinite Σ ∈ Rd×d we let N (µ,Σ) be the Gaussian vector with mean
µ and covariance matrix Σ. For finite matrices M we will use Mij to denote the entry in the (i, j)
position. Throughout this paper all logarithms are base e.

Acknowledgments. We thank Timothy Gowers, Michael Ren, and Mark Sellke for useful com-
ments and discussions.

2. Count statistics of balanced sequence model and multiset model

The idea to get a handle on the multiset model is to create a procedure for sampling which derives
from a sequence of independent random variables. We will require the notion of a frequency statistic
which will be crucial for our purposes.

Definition 2.1. Given an n-sided die A = (a1, . . . , an) define the frequency counts of A to be

ãi = |{j : aj = i}|
for 1 ≤ i ≤ n.

The key point is the following distributional claim regarding the frequency counts of a die drawn
from either multiset or balanced sequence model, which relates these models to a sequence of either
geometric (in the multiset case) or a sequence of Poisson random variables (in the balanced sequence
case). In the balanced sequence case this is essentially equivalent to the “Poissonization” trick.

Lemma 2.2. We have the following:

• If B is drawn from the multiset model we have

(̃b1, . . . , b̃n)
d.
= (G1, . . . , Gn)

where Gj are sampled as follows: draw independent Geom(1/2)3 random variables Gi and
then condition on

∑n
j=1Gj = n and

∑n
j=1 jGj = n(n+ 1)/2.

• If B is drawn from the balanced sequence model we have

(̃b1, . . . , b̃n)
d.
= (P1, . . . , Pn)

where Pj are sampled as follows: draw independent Pois(1) random variables Pj and then
condition on

∑n
j=1 Pj = n and

∑n
j=1 jPj = n(n+ 1)/2.

Proof. We consider the first case. Notice that the multiset model of a die can equivalently be
sampled by sampling a uniformly random right-up walk between (1, 1) and (n+1, n) and looking at
the height of each rightward step, conditional on the area under the walk being n(n+1)/2. Indeed,
there is a standard bijection between nondecreasing integer sequences (b1, . . . , bn) with 1 ≤ bj ≤ n
and such walks: each aj corresponds to a rightward step from (j, bj) to (j +1, bj); furthermore, the
area under the walk ends up being b1 + · · · + bn. Notice that drawing such a walk is equivalent
to looking at an infinite random walk which takes steps in the directions (1, 0) or (0, 1) each with
probability 1/2 and then conditioning on starting at (1, 1) and passing through both (n+1, n) and
(n+ 1, n + 1), then truncating appropriately.

Now define Gj as precisely the length of the horizontal segment on the line y = j in this condi-
tioned infinite random walk. In the unconditioned infinite walk, we have that the lengths (which

3Here X
d.
= Geom(1/2) means P[X = k] = (1/2)k+1 for k ∈ {0, 1, . . .}. Note this is 0-indexed, corresponding to

the number of “failures” before a repeatedly flipped fair coin shows heads, instead of the number of “trials”.
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might be 0) of these horizontal segments in order have an independent distribution where the law
is by definition a sequence of independent geometric random variables with parameter 1/2. Notice
that conditioning on the walk passing through the line segment (n+1, n) and (n+1, n+1) guaran-
tees that

∑n
j=1Gj = n and the conditioning on area corresponds exactly to

∑n
j=1 jGj = n(n+1)/2.

Considering the bijection defined above, these conditioned Gj then correspond directly to the b̃j .
The second case is rather simpler. Notice that if one draws n faces from [n] uniformly at random

then we have the proportionality

P[(̃b1, . . . , b̃n) = (b1, . . . , bn)] ∝
n∏

j=1

1

bj!

for tuples (̃bj)1≤j≤n ∈ {0, . . . , n}n with sum n. The result then follows since P[Pois(1) = k] = e−1

k!
for k ∈ Z, and since conditioning on the sum of the dice being n(n+1)/2 corresponds to conditioning
on

∑n
j=1 jPj = n(n+ 1)/2. �

The precise reason this description is useful is that given a die B one can define a linear function
of the frequency count statistics of another die A which captures precisely whether A beats B or
not. An equivalent computation appears in the work of Polymath [22, Section 4]; the formulation
presented there however is more naturally a linear function of the “die faces” instead of the “frequency
count statistics”.

Lemma 2.3. We have that a die A with sides (a1, . . . , an) beats a die B with sides (b1, . . . , bn) if
and only if

n∑

j=1

( ∑

1≤k<j
b̃k +

b̃j
2

− (j − 1/2)

)
ãj > 0

and ties if and only if the sum on the left is 0.

Proof. Notice that
n∑

i=1

n∑

j=1

(
1ai>bj +

1

2
1ai=bj

)
=

n∑

j=1

ãj
∑

1≤k<j
b̃j +

n∑

j=1

ãj b̃j
2

=
n∑

j=1

ãj

( ∑

1≤k<j
b̃j +

b̃j
2

)
.

Since A is an n-sided die with sum of faces n(n+ 1)/2 we have
n∑

j=1

ãj(j − 1/2) =

n∑

j=1

aj −
n

2
=
n2

2

and therefore the event that A beats B is precisely equivalent to
n∑

j=1

ãj

( ∑

1≤k<j
b̃j +

b̃j
2

− (j − 1/2)

)
> 0

whereas A and B being tied corresponds to the left side being equal to 0. �

We cast this condition in an equivalent form which will be useful for computations involving
Gaussians.

Definition 2.4. Let In be the n× n identity matrix. Let ~v1, ~v2 ∈ Rn be defined by v1i = 1/
√
n for

1 ≤ i ≤ n and v2i = (i − (n + 1)/2)/
√
n(n2 − 1)/12 for 1 ≤ i ≤ n. Note these are orthogonal unit

vectors. Let Mn ∈ Rn×n be defined via (Mn)ij = 1i<j + (1i=j/2) and M∗
n ∈ Rn×n via

M∗
n = (In−~v2~vT2 )(In−~v1~vT1 )Mn(In−~v1~vT1 )(In−~v2~vT2 ) = (In−~v1~vT1 −~v2~vT2 )Mn(In−~v1~vT1 −~v2~vT2 ).

7



Equivalently, we re-express the (asymmetric) bilinear form Mn in a basis including ~v1, ~v2 on both
sides, zero out the rows and columns corresponding to ~v1, ~v2, and then convert back. Finally, define
σn,1 ≥ · · · ≥ σn,⌊n/2⌋ be such that {±iσn,ℓ : ℓ ∈ [⌊n/2⌋]} is the spectrum (or the spectrum minus a
copy of 0 if n is odd).

The following lemma introduces this discrete variant of the kernel which appears in the title of
the paper.

Lemma 2.5. Given dice A,B with frequency vectors ~a,~b ∈ {0, . . . , n}n, we have that A beats B if
and only if

b̃TM∗
n ã > 0.

Proof. This is immediate since a simple manipulation of Lemma 2.3 shows the condition that A

beats B is equivalent to (~b−√
n~v1)

TMn(~a−
√
n~v1) > 0, and since ~vT1 (ã−

√
n~v1) = ~vT2 (ã−

√
n~v1) =

~vT1 (̃b−
√
n~v1) = ~vT2 (̃b−

√
n~v1) = 0. �

Finally, we record some properties of M∗
n as well as A (Definition 1.3). We are brief with the

details as it mostly amounts calculation with explicit functions and operators.

Lemma 2.6. There exists C = C2.6 > 0 such that the following holds. Let M∗
n be as in Definition 2.4,

x = (n+ 1− 2i)/(n − 1) and y = (n+ 1− 2j)/(n − 1). Then we have the following:

M1

(M∗
n)ij =

1x≥y − 1x≤y
2

− 3(x− y)(1− 1/n)

4
− 3xy(x− y)(n − 1)2

4n(n+ 1)
.

M2 M∗
n is skew-symmetric.

M3 ‖M∗
n‖1→∞ ≤ C2.6 (i.e., the entries are of bounded size).

M4 ‖M∗
n‖1→2 = ‖M∗T

n ‖1→2 ≤ C2.6
√
n (i.e., the row and column L2-norms are O(

√
n) in size).

M5 ‖M∗
n‖F /n ∈ [C−1

2.6, C2.6]
4.

M6 For fixed t ≥ 1 and n sufficiently large,
∑

ℓ≥t
σ2n,ℓ ≤ C2.6n

2/t.

M7 For 1 ≤ i, j, k ≤ n we have |(M∗
n)ji − (M∗

n)ki| ≤ C2.6|j − k|/n for all i /∈ [j, k] ∪ [k, j].

We also have the following properties of A.

M8 For all t ≥ 1 we have that tσt ∈ [C−1
2.6, C2.6] (i.e., tσt is bounded above and below by an

absolute constant).
M9 (σn,ℓ/n)1≤ℓ≤t → (σℓ)1≤ℓ≤t as n→ ∞.

Proof. Via a direct, albeit tedious computation, one has that if x = (n + 1 − 2i)/(n − 1) and
y = (n+ 1− 2j)/(n − 1) then

(M∗
n)ij =

1x≥y − 1x≤y
2

− 3(x− y)(1− 1/n)

4
− 3xy(x− y)(n − 1)2

4n(n+ 1)
.

The properties M2 to M5 and M7 all follow immediately via direct inspection.
To prove M6, i.e. that

∑
ℓ≥t σ

2
n,ℓ, it suffices to show that there is a rank t+4 (say) approximation

ofM∗
n, call it Rt, such that ‖M∗

n−Rt‖2F . n2/t. This follows from considering a rank t approximation
for Mn and then plugging it into Definition 2.4. An appropriate rank t approximation for Mn with
square-error O(n2/t) can be formed by removing square matrices of 1s from the right isosceles
triangle above the main diagonal of Mn in a dyadic fashion.

4Here the Frobenius norm of matrix M ∈ R
n×n is ‖M‖F :=

√

∑

1≤j,k≤n M2
jk

8



To prove the convergence given in implied in M8, we proceed by an argument identifying matrices
with operators in L2([−1, 1]) via step functions. In particular, consider the matrices M∗

n and identify
them with the kernels

M (∗)
n (x, y) =

nM∗
n(⌈n(1 − x)/2⌉, ⌈n(1 − y)/2⌉)

2

and note that the action of M∗
n on Rn corresponds exactly to the action of kernel M

(∗)
n (x, y) on step

functions where the index i ∈ [n] has been mapped to the interval [1− 2i/n, 1− 2(i− 1)/n). These
have the same spectrum: the multiplicative factor of n/2 corresponds to fact that the step function

which is 1 on a single length 2/n interval has norm (2/n)1/2 in the continuous formulation while it
has norm 1 when viewed as a vector in Rn.

In general, given a kernel K : [−1, 1]2 → R one can define the integral operator

K̃ : g(x) →
∫ 1

−1
K(x, y)g(y)dy

and we have ‖K̃‖L2([−1,1])→L2([−1,1]) ≤ ‖K‖L2([−1,1]2) by Cauchy–Schwarz (see e.g. [13, Exam-

ple 9.23]). Via this identification, we have the strong convergence M
(∗)
n (x, y)/n → M̃ (∗) := A

where the corresponding kernel is

f(x, y) =
1x≥y − 1x≤y

4
− 3(x− y)(1 + xy)

8
.

Given this, since A,M (∗)
n ,M∗

n are skew-symmetric (hence normal) operators, it is easy to see that the
normalized eigenvalues of M∗

n converge to those specified by Definition 1.3 (as strong convergence
implies convergence of the spectrum). This proves M8.

Finally we prove M7. In order to prove M7, we first note that A is an O(1)-rank skew-symmetric

perturbation of the integral operator associated to the function g(x, y) =
1x≥y−1x≤y

4 . We claim that
it suffices to prove that the tth singular value of g̃ scales as Θ(1/t). Indeed, apply the generalized
Weyl’s inequality to the Hermitian operator g̃†g̃ using that A†A is a bounded rank perturbation.

To compute the spectrum of g̃ (and thus that of g̃†g̃), note that the matrix given by (Tn)ij =

1i≥j−1i≤j has characteristic polynomial (−1)n((λ+1)n+(λ−1)n)
2 ; this is easily proven via row operations

and induction. It follows that the eigenvalues of Tn are (1+exp(πi(2j−1)/n))/(1−exp(πi(2j−1)/n))
for 1 ≤ j ≤ n. Thus the jth largest eigenvalue in magnitude scales as Θ(n/j). The desired result
then follows by rescaling and taking n→ ∞. �

3. Outline of the remainder of the proof

We now outline the remainder of the proofs of Theorems 1.4 and 1.8 in the multiset model; the
balanced sequence model is very similar modulo adjusting various constant factors arising due to
Var[Geom(1/2)] = 2Var[Pois(1)] = 2. We also discuss the various deductions which follow from
Theorem 1.4. Consider a set of m dice A1, . . . , Am and let ãk = (ãkj)1≤j≤n be the n-dimensional
vector corresponding to the frequency counts of Ak for 1 ≤ k ≤ m.

3.1. Theorem 1.4 and its consequences. By Lemma 2.5 we have that Aj beats Ak if an only
if x̃TkM

∗
nx̃j > 0. Note that the constraints that x̃j satisfy are precisely (1, . . . , 1)T x̃j = n and

(1, 2, . . . , n)T x̃j = n(n+1)/2 (equivalently, x̃j − 1 is orthogonal to ~v1, ~v2). By construction we have

that M∗
n
~1 = ~0 and M∗

n(1, 2 . . . , n) = ~0. Therefore for the sake of reasoning heuristically, we can
pretend that the conditioning in Lemma 2.2 does not affect the probability distribution of x̃TkM

∗
nx̃j

and instead suppose that x̃ℓ are replaced by Xℓ, n-dimensional vectors where every entry is taken
independently at random to be Geom(1/2). Now XT

kM
∗
nXj is a bilinear polynomial of independent

random variables. Tools such as the invariance principle of Mossel, O’Donnell, and Oleszkiewicz [19]
imply that the associated distribution is close to the distribution in the case where Xℓ are replaced
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by Zℓ where each entry of Zℓ is an independent normal of variance Var[Geom(1/2)] = 2. Given this,
we can convert to a Gaussian quadratic form. This is invariant under orthogonal transformation,
so a singular value decomposition for the skew-symmetric matrix M∗

n and an appropriate variant of
the spectral theorem quickly leads to the distribution in Theorem 1.4. In particular, the coefficients
associated in Theorem 1.4 arise precisely from an application of Lemma 2.6.

In order to prove this heuristic, we need to be precisely understand the joint distribution of
(1, . . . , 1)TXj , (1, 2, . . . , n)

TXj , and the desired quadratic forms. We proceed using Fourier trans-
form (characteristic function) and computing the multidimensional Fourier coefficients of the joint
distribution of the quadratic forms conditional on these linear equalities. This conditional expecta-
tion can be recast using Bayes’ theorem and converted to an expression involving joint coefficients
involving both quadratic and linear forms, which we can provide control for using the techniques
in Section 5. Our proof here is closely related to that of that in the work of Polymath [22] which
similarly used local central limit theorem techniques to decouple various linear conditions; however
the implementation is performed in a rather different manner.

We write this more explicitly. For the sake of this discussion, let E denote the event that all that
the m samples Xℓ for 1 ≤ ℓ ≤ m satisfy (1, . . . , 1)TXj = n, (1, 2, . . . , n)TXj = n(n+1)/2. We then
must compute

E

[
exp

(
i

∑

1≤j<k≤m
θjkX

T
kM

∗
nXj

)∣∣∣∣E
]

for all choices of θ = (θjk)1≤j<k≤m where ‖θ‖∞ is roughly Õ(1/n).
Via applying Bayes’ rule, this amounts to computing

E

[
exp

(
i

∑

1≤j<k≤m
θjkX

T
kM

∗
nXj

)
1E

]
,

since then considering θ = 0 gives an estimate for E[1E ] = P[E ] and we can divide to obtain the
conditional expectation. At this juncture, much as in the work of Polymath [22], we rely on the
Fourier inversion formula to convert the indicator 1E into a explicit integral formula in terms of
additional Fourier terms involving the above linear forms. (Note that this conversion is only available
to us in the multiset model due to the key lemma Lemma 2.2, and even in the balanced sequence
model we utilize the setup of Lemma 2.2 to prove Theorem 1.4.)

In particular, by applying Fourier inversion on the lattices we will find

E

[
exp

(
i

∑

1≤j<k≤m
θjkX

T
kM

∗
nXj

)
1E

]

= (2π)−2m

∫

[−π,π]2m
E

[
exp

(
i

∑

1≤j<k≤m
Θk,jX

T
kM

∗
nXj

)

· exp
(
i

( m∑

r=1

ξ1r

( n∑

j=1

(Xrj − 1)

)
+ ξ2r

( n∑

j=1

j(xrj − 1)

)))]
d~ξ.

In order to prove the desired result, we split the integral into several regions. If any |ξ1r| ≥
n−1/2(log n)7 or |ξ2r| ≥ n−3/2(log n)6, we prove that the corresponding term in the integral is super-
polynomially small using Lemmas 5.6 to 5.8. Specifically, we conditions on everything outside of
the index r, and then the corresponding Fourier integral is simply a product of independent terms
handled by these lemmas. To prove these lemmas, we extract cancellation in a systematic and clean
manner by considering pairs and triplets of indices and performing “switches” between then in order
to extract Boolean randomness. These switches allow for one to provide sufficient conditions on
various coefficient sequences to be good enough to perform these arguments, and said conditions
exist purely in “physical space” (whereas the approach taken in the work of Polymath [22] naturally
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leads one to consider how various coefficients are distributed with respect to angles on the torus).

Finally, in the region where |ξ1r| ≤ n−1/2(log n)7 and |ξ2r| ≤ n−3/2(log n)6 we apply a Lindeberg
exchange argument (see [16], and also the related proof of the invariance principle [19]) to replace the
geometric random variables with Gaussians of the same variance. Using the rapid decay of Fourier
coefficients the Gaussian and Gaussian rotational symmetry one can verify the Fourier coefficient
matches that of the associated Gaussian prediction and thus the desired result follows via Lévy
continuity and similar techniques which convert Fourier control back to physical space control.

In order to prove Corollary 1.5, we directly cite Theorem 1.4 and uses symmetries of the Gaussian
distribution under negation to derive the necessary result. For Corollary 1.7, note that convergence
to a tournamenton follows from general machinery since we have the convergence of each digraph. To
deduce that the associated tournamenton is {0, 1}-valued we reduce to proving a random tournament

on M dice takes on outcomes within a specific set of complete tournaments of size 2εM
2

with
probability at least 1− ε. This is shown using Theorem 1.4: note that we can simulate the limiting

tournament on M vertices by sampling the Gaussians G
(j)
ℓ for 1 ≤ j ≤M and ℓ ≥ 1 and computing

the various Hjk and checking their signs. By revealing for each j the first 2M1/2 Gaussians Z
(j)
ℓ

within a rounding error of M−10, this provides at most exp(O(M3/2 logM)) buckets where almost
all the probability mass lies and also allows us with good probability to determine the outcome of
almost all match-ups in the tournament (this deduction requires Gaussian anticoncentration results
such as Theorem 4.3 in order to see that it is unlikely that many match-ups are “too close to call”
due to the rounding error). Then revealing the outcomes of the remaining match-ups introduces
exp(o(M2)) total buckets that contain almost all the probability mass, and which uniquely determine
the outcome of the M -die tournament.

Given the non-quasirandomness of the associated tournament from Corollary 1.7 and the under-
lying symmetries in Corollary 1.5 it also follows from a simple Cauchy–Schwarz argument that the
limiting probability A beats B, B beats C, C beats D, and D beats A is strictly larger than 1/16

(see Proposition 8.2). Finally, we note that via carefully choosing various Gaussians Z
(j)
ℓ to lie in

certain ranges one can prove that the limiting probability of any fixed M -die tournament occurring
is strictly positive (see Proposition 8.3). This allows one to quickly deduce a number of prior results
as discussed in the introduction.

3.2. Proof of Theorem 1.8. To compute the probability two dice tie, proceed via a more delicate
route. As discussed in the remark following Theorem 1.8, one can see this as a (special case of a)
local limit theorem version of Theorem 1.4 with two dice.

We use ideas closely related to those in the proof of Theorem 1.4, as well as additional Fourier
coefficient estimates (Lemmas 5.4 and 5.5) which use the extra condition that certain associated
coefficient sequences “resemble a simple random walk at all scales” in a coarse sense. It follows that
for almost all outcomes of die A1, the probability a random die A2 with frequency counts x̃2 ties
A1 is proportional to ‖M∗

n~x2‖−1
2 . (We note that such a result for the balanced sequence model is

essentially implicit in the work of Polymath [22] although not stated in such a manner; however,
again, our work proceeds through frequency counts instead of using independent die faces which are
not available for the multiset model.)

Therefore the natural approach at this point would be to prove a limit theorem for ‖M∗
nX‖22,

where X is a sequence of geometric random variables conditional on the two linear constraints
(1, . . . , 1)TX = n, (1, 2, . . . , n)TX = n(n + 1)/2. While this appears to be possible note that
‖M∗

n~x‖22 is a genuinely quadratic polynomial in the underlying random variables (instead of being
multilinear in the case of Theorem 1.4) and hence for a direct approach various tools developed by
Berkowitz [4], developed in the context of local central limit theorems for clique counts in dense
random graphs, would appear to be necessary, which would greatly complicate the situation.
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To circumvent this, we proceed indirectly so as to only require linear Fourier estimates. The
basic idea is that given a sufficiently good upper bound on ‖M∗

nX‖3 (conditional on our two linear
constraints), by sampling a fixed number of random coordinates j1, . . . , jT for some large constant
T we have

‖M∗
nX‖22 ≈ n

T

T∑

ℓ=1

〈ejℓ ,M∗
nX〉2

holds with high probability as T → ∞. Therefore the question can be reduced to a question of
understanding the linear statistics (〈ejℓ ,M∗

nX〉)1≤ℓ≤T jointly conditional on our two linear con-
straints. This can be handled by precisely the techniques developed we discussed in Section 3.1 for
Theorem 1.4. The estimates are necessarily a bit delicate since the function y 7→ 1/y is not bounded
near 0 and thus care must be taken to rule out the pathology that ‖M∗

nX‖2 is small with unusually
large probability.

4. Preliminaries

We briefly collect a series of preliminaries which will be used throughout the proof. First we will
require a version of the classical Bernstein inequality, which generalizes Chernoff.

Theorem 4.1 ([26, Theorem 2.8.1]). For a random variable X define the ψ1-norm

‖X‖ψ1
= inf{t > 0: E[exp(|X|/t)] ≤ 2}.

There is an absolute constant c = c4.1 > 0 such that the following holds. If X1, . . . ,XN are
independent random variables then

P

[∣∣∣∣
N∑

i=1

Xi

∣∣∣∣ ≥ t

]
≤ 2 exp

(
− cmin

(
t2

∑N
i=1‖Xi‖2ψ1

,
t

maxi‖Xi‖ψ1

))

for all t ≥ 0.

Next we will require the Azuma–Hoeffding inequality (see [15, Theorem 2.25]).

Lemma 4.2 (Azuma–Hoeffding inequality). Let X0, . . . ,Xn form a martingale sequence such that
|Xk −Xk−1| ≤ ck almost surely. Then

P[|X0 −Xn| ≥ t] ≤ 2 exp

(
− t2

2
∑n

k=1 c
2
k

)

Remark. We will refer to
∑n

k=1 c
2
k as the variance proxy in such a situation.

Furthermore we will require the Carbery–Wright theorem [5] for which prove that low-degree
functions of Gaussians are anticoncentrated; we will only require the quadratic case.

Theorem 4.3 (see e.g. [17, Theorem 1.4]). Fix an integer d ≥ 1. There exists a constant Cd such
that the following holds. For any ε > 0, if (Gi)1≤i≤n are independent Gaussian random variables,
and P is a polynomial of degree at most d then

sup
t∈R

P
[
|P (G1, . . . , Gn)− t| ≤ ε

√
Var(P (G1, . . . , Gn))

]
≤ Cdε

1/d.

We will also require the invariance principle of Mossel, O’Donnell, and Oleszkiewicz [19]. The ver-
sion stated in Theorem 4.5 below is a stated as [20, (11.66)] (with the necessary hypercontractivity
following from [19, Proposition 3.16]).

Definition 4.4. Given a multilinear polynomial g(x1, . . . , xn) =
∑

S⊆[n] aS
∏
i∈S xi, for t = 1, . . . , n

the influence of the variable xt is defined as

Inft[g] =
∑

S⊆[n]
S∋t

a2S .
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Theorem 4.5. Fix M ≥ 1; there exists M ′ > 0 such that the following holds. Let g be an n-variable
multilinear polynomial of degree at most k. Let ~y be uniformly random vector such that E[yi] = 0,
E[y2i ] = 1 and E[|yi|3] ≤ M . Let ~z ∼ N (0, 1)⊗n be a vector of independent standard Gaussian
random variables. Then for any three-times-differentiable function ψ : R → R, we have

∣∣∣E[ψ(g(~y))− ψ(g(~z))]
∣∣∣ ≤ (M ′)k · ‖ψ(3)‖∞

n∑

t=1

Inft[g]
3/2.

Next, we will require the following concentration inequality for low-degree polynomials of Gauss-
ian; the Rademacher case is stated as [20, Theorem 9.23] and the Gaussian case follows by taking
limits via and applying the central limit theorem.

Theorem 4.6. Let f be a polynomial in n variables of degree at most d. Let ~x = (x1, . . . , xn) either

be a vector of independent standard Gaussian random variables. Then for any t ≥ (2e)d/2,

Pr
[
|f(~x)| ≥ t(E[f(~x)2])1/2

]
≤ exp

(
− d

2e
t2/d

)
.

We also require a statement allowing one to quantify the convergence in distribution of a random
variable given convergence of the associated Fourier transform. The following result is immediate
from [21, p. 104, Theorem 1]; this is an essentially standard inequality used in the proof of the
Berry–Esseen theorem.

Theorem 4.7. There exists an absolute constant C = C4.7 > 0 such that the following statement
holds. Consider a pair of random variables X and Y and a parameter T > 0. We have that

sup
τ∈R

|P[X ≤ τ ]− P[Y ≤ τ ]| ≤ C4.7

(∫ T

−T

|E[exp(itX) − exp(itY )]|
|t| dt+ sup

τ∈R
P[|Y − τ | ≤ 1/T ]

)
.

Next we will require a multidimensional version of Esséen’s concentration inequality.

Theorem 4.8 ([24, Lemma 7.17]). There exists an absolute constant C = C4.8 > 0 such that the

following statement holds. Given a random variable X in Rd, we have that

sup
τ∈Rd

P[‖X − τ‖2 ≤ ε] ≤
(
C4.8ε√

d

)d ∫
~ξ∈Rd

‖~ξ‖2≤d/ε

|E[exp(2πi~ξ ·X)]|d~ξ.

Finally we will require the following consequence of Fourier inversion on lattices.

Theorem 4.9. Given a bounded random variables T ∈ Zd and X ∈ R, possibly dependent, we have

E[1T=~tX] = (2π)−d
∫

[−π,π]d
exp(−i~t · ~ξ)E[X exp(i~ξ · T )]d~ξ.

5. Fourier coefficient bounds

5.1. Coefficient sequence. For the purposes of proving various central limit theorem and local
central limit theorems, we will consider sums

n∑

j=1

cj ãj

with coefficient sequences (cj)1≤j≤n which are more general than those arising from
(∑

1≤k<j b̃j +
b̃j
2 − (j − 1/2)

)
, which comes out of Lemma 2.3. The following definitions for such sequences arises

from the proof; roughly, a sequence is well-bounded if it does not deviate much more than a simple
random walk would, and it is coarse if it further resembles such a simple random walk at some finer
scales.
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Definition 5.1. We say a coefficient sequence (cj)1≤j≤n is well-bounded if the following conditions
hold:

S1 |cj | ≤
√
n log n;

S2
∑n

j=1 cj = 0;

S3 |cj − ck| ≤
√
|j − k|(log n)2 for all 1 ≤ j, k ≤ n;

and we say it is coarse if it is well-bounded and additionally the following hold:

S4 mina,b∈R
∑n

j=1(cj − aj − b)2 ≥ n2/(log n)2;

S5 There are at least n/ log n indices j such that cj = cj+1 = cj+2 − 1/2;

S6 For each integer y ∈ [n1/4, n/(log n)2] there are at least n/ log n indices 1 ≤ j ≤ n− 2y such
that |cj − 2cj+y + cj+2y| ≥ √

y.

5.2. Fourier estimates. We now bound various Fourier expressions that will serve as a key input
to our argument. We first define the basic setup.

Definition 5.2. Let ∆ be a distribution which is either Geom(1/2) or Pois(1). Sample Xj ∼ ∆
independently for 1 ≤ j ≤ n and fix a sequence (cj)1≤j≤n. Define the random variables

T1 =

n∑

j=1

Xj − n, T2 =

n∑

j=1

jXj −
n(n+ 1)

2
, T3 = 2

n∑

j=1

cjXj .

We will be interested in Fourier coefficients of the form E exp(i~Θ · (T1, T2, T3)). Our approach
in general will be to reduce to essentially expressions involving Rademacher random variables and
then to apply various basic bounds to conclude. (Note that we are not conditioning on the sum
variable T1 or “area” variable T2 at this stage.)

Fact 5.3. Given R ∼ Ber(1/2), R ∼ Geom(1/2), or R ∼ Pois(1) and |Θ| ≤ 3π/2 we have

|E exp(iRΘ)| ≤ exp(−c5.3Θ2)

for some appropriate absolute constant c5.3 > 0.

Proof. This follows immediately from the explicit computation that

|E exp(iΘR)| =





| cos(Θ/2)|, if R ∼ Ber(1/2),

|2− exp(iΘ)|−1, if R ∼ Geom(1/2),

exp(cos(Θ)− 1), if R ∼ Pois(1)

and some simple bounds based on Taylor series. �

We first handle ~Θ where |Θ3| is large, since it is the most involved and serves as a basis for the
other proofs. The key idea, which will be used to handle all the estimates present, is to extract
independent random variables which isolate the effect of exactly one of the Θj.

Lemma 5.4. Suppose that ~Θ = (Θ1,Θ2,Θ3) is such that n−1/2(log n)2 ≤ |Θ3| ≤ π. Then given
Definition 5.2 and that (cj)1≤j≤n is coarse, we have

|E exp(i~Θ · (T1, T2, T3))| ≤ n−ω(1).

Remark. This estimate, as well as Lemma 5.5, is only needed to establish Theorem 1.8.

Proof. Since the coefficient sequence (cj)1≤j≤n is coarse, using S5 there exists a 4-separated set of
indices J (i.e., the difference of distinct elements is at least 4) such that |J | = Ω(n/ log n) and such
that for j ∈ J we have cj = cj+1 = cj+2 − 1/2. We now claim that

(X1,X2,X3)
d.
= (1−W )Z +W ((1−R)(0, 2, 0) +R(1, 0, 1)) (5.1)
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where R, W , and Z are independent random variables defined via R = Ber(1/2),

W = Ber
(
min{P[(X1,X2,X3) = (0, 2, 0)],P[(X1 ,X2,X3) = (1, 0, 1)]}

)
,

P[Z = (k1, k2, k3)] =
1

E[1−W ]
·
(
P[(X1,X2,X3) = (k1, k2, k3)]− 1(k1,k2,k3)∈{(0,2,0),(1,0,1)}EW

)

for (k1, k2, k3) ∈ Z3
≥0. Indeed, to see this let 2q = min{P[(X1,X2,X3) = (0, 2, 0)],P[(X1 ,X2,X3) =

(1, 0, 1)]} and consider the following procedure: sample (X1,X2,X3), but if either of the tuples
(x1, x2, x3) ∈ {(0, 2, 0), (1, 0, 1)} is drawn then with probability q/P[(X1,X2,X3) = (x1, x2, x3)] en-
ter a “resampling phase” where we with probability 1/2 decide whether to output (0, 2, 0) or (1, 0, 1),
overwriting the old value to produce a tuple (X ′

1,X
′
2,X

′
3). (So, the “resampling phase” occurs with

chance 2q by the law of total probability.) We see the distributional equality (X ′
1,X

′
2,X

′
3)

d.
=

(X1,X2,X3) by construction, but (X ′
1,X

′
2,X

′
3) is easily seen to be captured by the formula (5.1).

Note (5.1) holds even if we shift indices, so for each j ∈ J we can write (Xj ,Xj+1,Xj+2) =
(1−Wj)Zj +Wj((0, 2, 0) +Rj(1,−2, 1)). Notice by the triangle inequality and independence that

|E exp(i~Θ · (T1, T2, T3))| ≤
∣∣∣E

[
exp

(
i

∑

j∈J+{0,1,2}

(
Θ1 +Θ2j + 2Θ3cj

)
Xj

)]∣∣∣

≤ EW

[∣∣∣E
[
exp

(
i

∑

j∈J+{0,1,2}

(
Θ1 +Θ2j + 2Θ3cj

)
Xj

)∣∣∣(Wj)j∈J
]∣∣∣
]

= EW

[∣∣∣E
[
exp

(
i
∑

j∈J
1Wj=1Θ3Rj

)∣∣∣(Wj)j∈J
]∣∣∣
]

≤ E[exp(−Ω(Θ2
3)
∑

j∈J
1Wj=1)]

≤ n−ω(1).

The first and second lines follow from independence and the triangle inequality, the third follows
from

(1, 1, 1) · (1,−2, 1) = 0, (j, j + 1, j + 2) · (1,−2, 1)) = 0, (cj , cj+1, cj+2) · (1,−2, 1) = −1/2,

and the fourth follows from Fact 5.3. In the final line we have used independence and Bernstein’s
inequality, which implies that #{j ∈ J : Wj = 1} =

∑
j∈J 1Wj=1 ≥ cn/ log n occurs with super-

polynomially small probability for some small absolute constant c > 0. �

We next handle the case of intermediate |Θ3|. The remaining unhandled range will be in some
sense controllable by an appropriate central limit theorem.

Lemma 5.5. Suppose that ~Θ = (Θ1,Θ2,Θ3) is such that n−1(log n)3 ≤ |Θ3| ≤ n−1/2(log n)2. Then
given Definition 5.2 and that (cj)1≤j≤n is coarse, we have

|E exp(i~Θ · (T1, T2, T3))| ≤ n−ω(1).

Proof. Let y ∈ [n1/4, n/(log n)2] be an integer to be chosen later based on n, |Θ3|. Since (cj)1≤j≤n
is a coarse sequence, by S6 there exists a set of indices J of size Ω(n/ log n) such that the sets
J, J + y, J + 2y are disjoint and for each j ∈ J we have

√
y ≤ |cj − 2cj+y + cj+2y| ≤ 2

√
y(log n)2

(the second inequality follows from two applications of S3). Therefore proceeding in an essentially
identical manner to Lemma 5.4 (in particular writing (Xj ,Xj+y,Xj+2y) = (1−Wj)Zj+Wj((0, 2, 0)+
Rj(1,−2, 1)) for j ∈ J similar to the proof of the previous lemma), we have that

|E[exp(i~Θ · (T1, T2, T3))]| ≤
∣∣∣E

[
exp

(
i

∑

j∈J+{0,y,2y}

(
Θ1 +Θ2j + 2Θ3cj

)
Xj

)]∣∣∣
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≤ E

[∣∣∣E
[
exp

(
i

∑

j∈J+{0,1,2}

(
Θ1 +Θ2j + 2Θ3cj

)
Xj

)∣∣∣(Wj)j∈J
]∣∣∣
]

= E

[∣∣∣E
[
exp

(
i
∑

j∈J
1Wj=1Θ3Rj(cj − 2cj+y + cj+2y)

)∣∣∣(Wj)j∈J
]∣∣∣
]

≤ E[exp(−Ω(Θ2
3y)

∑

j∈J
1Wj=1)]

≤ n−ω(1).

The reasoning is essentially identical to that in the proof of Lemma 5.4. We need that |Θ3(cj −
2cj+y + cj+2y)| ≤ √

y(log n)2|Θ3| ≤ 1 in order to apply Fact 5.3. If we additionally have that

Θ2
3y · n/(log n) ≥ (log n)2, then using |J | = Ω(n/ log n) we can conclude the final estimate in a

similar manner to the proof of Lemma 5.4. Thus it suffices to choose an integer y satisfying

(log n)3/(nΘ2
3) ≤ y ≤ 1/((log n)2Θ2

3)

and y ∈ [n1/4, n/(log n)2]. This clearly exists by the given bounds for |Θ3|. �

We now prove a similar estimate for the case where |Θ2| is near the maximum size. The proof
is once again rather similar, but in this case we only need to consider consecutive pairs of indices
(j, j + 1) in order to extract the necessary effect.

Lemma 5.6. Suppose that ~Θ = (Θ1,Θ2,Θ3) is such that n−1/2 log n ≤ |Θ2| ≤ π, |Θ3| ≤ n−1(log n)3

and (cj)1≤j≤n satisfies S1 and S3. Then given Definition 5.2, we have

|E exp(i~Θ · (T1, T2, T3))| ≤ n−ω(1).

Remark. Lemmas 5.6 to 5.8 are needed for both Theorems 1.4 and 1.8. Note that these lemmas do
not need an assumption on coarseness of (cj)1≤j≤n.

Proof. Since the coefficient sequence (cj)1≤j≤n satisfies S3 we have |cj − cj+1| ≤ (log n)2. Let

J ⊆ [n] be a 2-separated set of indices of size Ω(n). Furthermore note that (X1,X2)
d.
= (1 −

W )Z +W ((1, 0) +R(−1, 1)) where R,W,Z are independent random variables with R = Ber(1/2),
W = Ber(P[(X1,X2) = (1, 0)]), and

P[Z = (k1, k2)] =
1

E[1−W ]
·
(
P[(X1,X2,X3) = (k1, k2)]− 1(k1,k2)∈{(0,1),(1,0)}EW

)

for (k1, k2) ∈ Z2
≥0, similar to as in the proof of Lemma 5.4.

Now for each index in J , we write (Xj ,Xj+1) = (1−Wj)Zj +Wj((1, 0) +Rj(1,−1)). Notice by
the triangle inequality and independence that

|E exp(i~Θ · (T1, T2, T3))| ≤
∣∣∣E

[
exp

(
i

∑

j∈J+{0,1}

(
Θ1 +Θ2j + 2Θ3cj

)
Xj

)]∣∣∣

≤ E

[∣∣∣E
[
exp

(
i

∑

j∈J+{0,1}

(
Θ1 +Θ2j + 2Θ3cj

)
Xj

)∣∣∣(Wj)j∈J
]∣∣∣
]

= E

[∣∣∣E
[
exp

(
i
∑

j∈J
1Wj=1(Θ2 + 2(cj+1 − cj)Θ3)Rj

)∣∣∣(Wj)j∈J
]∣∣∣
]

≤ E[exp(−Ω(Θ2
2)
∑

j∈J
1Wj=1)]

≤ n−ω(1).

The first and second line follows from triangle inequality, the third follows from (1, 1) · (1,−1) = 0,
(j, j +1) · (1,−1)) = −1, and (cj , cj+1) · (1,−1) = cj+1 − cj for j ∈ J , and the fourth from Fact 5.3
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as well as 2|cj+1 − cj ||Θ3| ≤ 2n−1(log n)5 ≤ |Θ2|/2. In the final line we have once again used
Bernstein’s inequality. �

We next handle intermediate |Θ2|. In the remaining range central limit theorem type estimates
become effective.

Lemma 5.7. Suppose that ~Θ = (Θ1,Θ2,Θ3) is such that n−3/2(log n)6 ≤ |Θ2| ≤ n−1/2 log n,
|Θ3| ≤ n−1(log n)3 and (cj)1≤j≤n satisfies S1 and S3. Then given Definition 5.2, we have

|E exp(i~Θ · (T1, T2, T3))| ≤ n−ω(1).

Proof. Let 1 ≤ y ≤ n/8 be an integer to be chosen later based on n, |Θ2|. Consider J = {⌊n/2⌋ −
2y, ⌊n/2⌋ − 2y + 1, . . . , ⌊n/2⌋ − y}. We have

|Θ3||cj − cn−j | .
√
y(log n)5/n, |Θ2||n − 2j| ≍ y|Θ2|

for all j ∈ J . We ensure that y is chosen so that
√
y(log n)5/n ≤ cy|Θ2| for an appropriately small

absolute constant c > 0 and so that y|Θ2| ≤ c as well. We also guarantee y ≥ (log n)2.
We now write (Xj ,Xn−j) = (1 −Wj)Zj +Wj((1, 0) + Rj(−1, 1)) for j ∈ J in a similar manner

to the proof of Lemma 5.6, and find

|E exp(i~Θ · (T1, T2, T3))| ≤
∣∣∣E

[
exp

(
i

∑

j∈J∪(n−J)

(
Θ1 +Θ2j + 2Θ3cj

)
Xj

)]∣∣∣

≤ E

[∣∣∣E
[
exp

(
i

∑

j∈J∪(n−J)

(
Θ1 +Θ2j + 2Θ3cj

)
Xj

)∣∣∣(Wj)j∈J
]∣∣∣
]

= E

[∣∣∣E
[
exp

(
i
∑

j∈J
1Wj=1((n − 2j)Θ2 + 2(cn−j − cj)Θ3)Rj

)∣∣∣(Wj)j∈J
]∣∣∣
]

≤ E[exp(−Ω(y2Θ2
2)
∑

j∈J
1Wj=1)]

≤ n−ω(1).

We used that (n−2j)Θ2 dominates 2(cn−j−cj)Θ3 in the second last line, as well as 2|(n−2j)Θ2| ≤ 1
to apply Fact 5.3. For the last line, we note that

∑
j∈J 1Wj=1 & y occurs with super-polynomially

good probability (since y ≥ (log n)2) and we are using the estimate y3Θ2
2 ≥ (log n)2.

To finish the proof, we check that it is possible to choose integer 1 ≤ y ≤ n/8 with y ≥
(log n)2/3Θ

−2/3
2 and y ≥ (log n)2 as well as y ≤ c|Θ2|−1 and y ≥ c−2(log n)10/(n2Θ2

2). The bounds
on |Θ2| easily imply this is possible. �

We now are finally in position to handle the cases where |Θ1| is large. The remaining region will
be handled by central limit theorem style techniques.

Lemma 5.8. Suppose that ~Θ = (Θ1,Θ2,Θ3) is such that n−1/2(log n)7 ≤ |Θ1| ≤ 5π/4, |Θ2| ≤
n−3/2(log n)6, and |Θ3| ≤ n−1(log n)3 and (cj)1≤j≤n satisfies S1 and S3. Then given Definition 5.2,
we have

|E exp(i~Θ · (T1, T2, T3))| ≤ n−ω(1).

Proof. Note that |Θ2|n+ |Θ3|max1≤j≤n |cj | ≤ 2(log n)6n−1/2. Therefore we have

|E[exp(~Θ · (T1, T2, T3))]| =
∣∣∣E

[
exp

(
i

n∑

j=1

(
Θ1 +Θ2j + 2Θ3cj

)
Xj

)]∣∣∣

≤ E[exp(−Ω(nΘ2
3))] ≤ n−ω(1).

where we have simply noted that Θ1 dominates Θ2j + 2Θ3cj and applied Fact 5.3. �
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We now prove the desired estimate for the region which is approximately within the region which is
controlled via a central limit theorem. For completeness we provide a short proof via an argument
closely related to the Lindeberg exchange method [16] and the proof of the Gaussian invariance
principle [19] (see Theorem 4.5). This will help us reduce computing the necessary integrals to a
purely Gaussian integration problem.

Lemma 5.9. Suppose that ~Θ = (Θ1,Θ2,Θ3) is such that |Θ1| ≤ n−1/2(log n)7, |Θ2| ≤ n−3/2(log n)6,
|Θ3| ≤ n−1(log n)3, and (cj)1≤j≤n satisfies S1 and S2. Given Definition 5.2, we further define

T ′
1 =

n∑

j=1

X ′
j , T ′

2 =
n∑

j=1

jX ′
j , T ′

3 = 2
n∑

j=1

cjX
′
j

where we independently sample X ′
j ∼ N (0,Var[∆]). Then we have

|E[exp(i~Θ · (T1, T2, T3))]− E[exp(i~Θ · (T ′
1, T

′
2, T

′
3))]| . n−1/2(log n)21.

Remark. If ∆ = Geom(1/2) then (E[∆],Var[∆]) = (1, 2), and if ∆ = Pois(1) then (E[∆],Var[∆]) =
(1, 1).

Proof. Notice that by iteratively replacing Xi by X ′
i and applying the triangle inequality we have

|E exp(i~Θ · (T1, T2, T3))− E exp(i~Θ · (T ′
1, T

′
2, T

′
3))|

≤
n∑

j=1

∣∣∣∣
(
E exp(i~Θ · (1, j, 2cj )(Xj − 1)) − E exp(i~Θ · (1, j, 2cj )X ′

j)

)

× E exp

(
i~Θ ·

( ∑

1≤j′<j
(1, j′, 2cj′)X

′
j′ +

∑

j<j′≤n
(1, j′, 2cj′)(Xj′ − 1)

))∣∣∣∣

≤
n∑

j=1

|E exp(i~Θ · (1, j, 2cj )(Xj − 1)) − E exp(i~Θ · (1, j, 2cj )X ′
j)|

.

n∑

j=1

(|Θ1|+ n|Θ2|+ n1/2 log n|Θ3|)3E[|Xj |3 + |X ′
j |3] . n−1/2(log n)21.

To justify the second-to-last inequality, we use that | exp(ix)− 1− ix+ x2/2| ≤ |x|3 for x ∈ R from
Taylor’s theorem and that the first and second moments of Xj − 1 and X ′

j match. �

6. Translating Fourier information

We now translate Fourier information into probabilistic information in order to prove Theorem 1.4.
We defer the proof of the following lemma, which shows that certain coefficient sequences that will
arise in our computation are well-bounded with very good probability, until the next section.

Lemma 6.1. Fix m and let 1 ≤ k∗ ≤ m. Consider Θ 6= 0 and θ = (θjk)1≤j<k≤m with ‖θ‖∞ ≤ Θ.

Consider independent random variables X
(k)
j ∼ ∆ for 1 ≤ k ≤ m and 1 ≤ j ≤ n, where ∆ ∈

{Geom(1/2),Pois(1)}. Finally, let

c
(k∗)
j =

1

2Θ

( ∑

k<k∗

θkk∗

( n∑

j′=1

(M∗
n)jj′(X

(k)
j′ − 1)

)
+

∑

k>k∗

θk∗k

( n∑

j′=1

(M∗
n)j′j(X

(k)
j′ − 1)

))
.

Then for each with probability 1−n−ω(1) we have that (c
(k∗)
j )1≤j≤n is well-bounded (Definition 5.1).

Now we prove Theorem 1.4.
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Proof of Theorem 1.4 given Lemma 6.1. Sample k dice either all from the multiset model or all from
the balanced sequence model, A1, . . . , Am with Aj = (aj1, . . . , ajn) ∈ [n]n. Let the frequency counts
of die Ak be ãki = |{j : akj = i}|. We are given the tournament D on [k] and wish to understand
the chance that Ai beats Aj precisely when ij is a directed edge. (Note that we may assume D is
a full tournament since partial tournaments clearly follow by summing appropriately.)

If we are in the multiset model let ∆ = Geom(1/2) and if we are in the balanced sequence model
let ∆ = Pois(1). Consider m independent copies of the setup in Definition 5.2 (ignoring the sequence

cj and random variable T3), denoted by (X
(k)
j )1≤j≤n and (T

(k)
j )1≤j≤2 for 1 ≤ k ≤ m, corresponding

to the k dice. Note that (ãki)1≤i≤n is distributed as (X
(k)
j )1≤j≤n conditional on T

(k)
1 = T

(k)
2 = 0 by

Lemma 2.2.
Let

Yk1k2 := X(k2)TM∗
nX

(k1) = (X(k2) −√
n~v1)

TM∗
n(X

(k1) −√
n~v1)

for 1 ≤ k1 < k2 ≤ m (recall ~v1 from Definition 2.4), and for θ = (θk1k2)1≤k1<k2≤m let

Y (θ) := exp

(
i

∑

1≤k1<k2≤m
θk1k2Yk1k2

)
.

By Theorem 4.9 with T := (T
(k)
b )k∈[m],b∈[2] and indexing the coordinates of ~ξ by (ξkb)k∈[m],b∈[2], we

have

E[1T=~0Y (θ)] = (2π)−2m

∫

[−π,π]2m
E[Y (θ) exp(i~ξ · T )]d~ξ

= (2π)−2m

∫

[−π,π]2m
E

[
exp

(
i

∑

1≤k1<k2≤m
θk1k2Yk1k2 + i~ξ · T

)]
d~ξ. (6.1)

We fix some θ satisfying ‖θ‖∞ ≤ n−1(log n)3. Given this condition, we will now estimate the

integrand and show that it is very small unless ‖~ξ·1‖∞ = Õ(n−1/2) and ‖~ξ·2‖∞ = Õ(n−3/2).
We now collect terms so as to express the argument in the exponential as a linear function of

X(k∗) with coefficients depending on X(k) for k 6= k∗. We see
∑

1≤k1<k2≤m
θk1k2Yk1k2 +

~ξ · T

=
n∑

j=1

( ∑

k<k∗

θkk∗

( n∑

j′=1

(M∗
n)jj′(X

(k)
j′ − 1)

)
+

∑

k>k∗

θk∗k

( n∑

j′=1

(M∗
n)j′j(X

(k)
j′ − 1)

))
X

(k∗)
j + Ỹk∗

(6.2)

for some Ỹk∗ that depends only on (X(k))k 6=k∗. Consider Θ = (log n)3/n, and define

c
(k∗)
j :=

1

2Θ

( ∑

k<k∗

θkk∗

( n∑

j′=1

(M∗
n)jj′(X

(k)
j′ − 1)

)
+

∑

k>k∗

θk∗k

( n∑

j′=1

(M∗
n)j′j(X

(k)
j′ − 1)

))

for k∗ ∈ [m] and j ∈ [n]. We have

∣∣∣∣E exp

(
i

∑

1≤k1<k2≤m
θk1k2Yk1k2 + i~ξ · T

)∣∣∣∣ =
∣∣∣∣E exp

(
i

(
Θ

n∑

j=1

2c
(k∗)
j X

(k∗)
j + ξk∗,1

n∑

j=1

(X
(k∗)
j − 1)

+ ξk∗,2

n∑

j=1

j(X
(k∗)
j − 1) + Ỹk∗

))∣∣∣∣. (6.3)
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Now we apply Lemmas 5.6 to 5.8 to gain control over ξ. In order to use these, we need each

(c
(k∗)
j )1≤j≤n for k∗ ∈ [m] to be a well-bounded coefficient sequence. By Lemma 6.1, this occurs with

super-polynomially good probability over (X(k))k 6=k∗.
So if n−1/2 log n ≤ |ξk∗2| ≤ π then by Lemma 5.6 we have that (6.3) is of magnitude n−ω(1):

condition on an outcome of (X(k))k 6=k∗ for which c
(k∗)
j is well-bounded using Lemma 6.1, and then

apply Lemma 5.6. We are using that Θ = n−1(log n)3. Similarly, if n−3/2(log n)6 ≤ |ξk∗2| ≤
n−1/2 log n then by Lemmas 5.7 and 6.1 we see that (6.3) is of magnitude n−ω(1). Finally, if |ξk∗2| ≤
n−3/2(log n)6 and n−1/2(log n)7 ≤ |ξk∗1| ≤ π then Lemmas 5.8 and 6.1 show (6.3) is of magnitude

n−ω(1).
Combining these observations with (6.1) and (6.2) we see

E[1T=~0Y (θ)] = (2π)−2m

∫

[−τ1,τ1]m×[−τ2,τ2]m
E

[
exp

(
i

∑

1≤k1<k2≤m
θk1k2Yk1k2 + i~ξ · T

)]
d~ξ ± n−ω(1),

(6.4)

where τ1 = n−1/2(log n)7 and τ2 = n−3/2(log n)6. Additionally, the product in the region of in-
tegration is interpreted as corresponding to the choice of b ∈ {1, 2}, i.e., the region is defined by
|ξk1| ≤ τ1 and |ξk2| ≤ τ2.

Recall also that we assumed ‖θ‖∞ ≤ n−1(log n)3. We can now use an approach similar to the

proof of Lemma 5.9 (or [16, 19]) to exchange the variables X
(k)
j with shifted Gaussians Z

(k)
j + 1

where Z
(k)
j ∼ N (0,Var[∆]). Note that

∑

1≤k1<k2≤m
θk1k2Yk1k2 +

~ξ · T =
∑

1≤k1<k2≤m
θk1k2(X

(k2) −√
n~v1)

TM∗
n(X

(k1) −√
n~v1)

+

m∑

k=1

ξk1

n∑

j=1

(X
(k)
j − 1) +

m∑

k=1

ξk2

n∑

j=1

j(X
(k)
j − 1). (6.5)

Now since X
(k)
j − 1 are independent and mean 0, and have variance Var[∆], we are in position to

apply Theorem 4.5. We first compute that the influences for the degree 2 multilinear polynomial
corresponding to (6.5) are bounded by

O((‖M∗
n‖21→2 + ‖M∗T

n ‖21→2) · ‖θ‖2∞ + ‖ξ·1‖2∞ + n2‖ξ·2‖2∞) = O(n−1(log n)14)

using Lemma 2.6 (specifically, M4).

Let Z
(k)
j ∼ N (0,Var[∆]) be independent Gaussians and let

Z̃(~ξ) :=
∑

1≤k1<k2≤m
θk1k2Z

(k2)TM∗
nZ

(k1) +

m∑

k=1

ξk1

n∑

j=1

Z
(k)
j +

m∑

k=1

ξk2

n∑

j=1

jZ
(k)
j .

By Theorem 4.5 and (6.4) we have

E[1T=~0Y (θ)] = (2π)−2m

∫

[−τ1,τ1]m×[−τ2,τ2]m
E[exp(iZ̃(~ξ))]d~ξ ±O((τ1τ2)

mn−1/2(log n)21). (6.6)

Note that the latter two sums in Z̃, which involve ~ξ, only depend on Z(k) ·~v1 and Z(k) ·~v2 whereas the
bilinear forms only depend on the projection of Z(k) to the orthogonal complement of spanR{~v1, ~v2}
(by Definition 2.4). Therefore we see that the first sum is independent from the latter two. This
means that the integrand in (6.6) is the product of some constant and some multivariate Gaussian
characteristic function.

20



Now, if ‖ξ·1‖∞ ≥ τ1 or ‖ξ·2‖∞ ≥ τ2, then easily we find there is some k∗ ∈ [m] with
n∑

j=1

(ξk1 + jξk2)
2 & (log n)12.

We therefore deduce that for such ~ξ,

|E[exp(iZ̃(~ξ))]| =
∣∣∣∣E exp

(
i

∑

1≤k1<k2≤m
θk1k2Z

(k2)TM∗
nZ

(k1)

)∣∣∣∣ · exp(−Ω((log n)12)) ≤ n−ω(1).

Furthermore, since the integrand is proportional to the characteristic function of some multivariate

Gaussian, it is easy to see that the integral to infinity over such ~ξ is still n−ω(1) in size. So, from
(6.6) we deduce

E[1T=~0Y (θ)] = (2π)−2m

∫

R2k

E[exp(iZ̃(~ξ))]d~ξ ±O((τ1τ2)
mn−1/2(log n)21)

= E exp

(
i

∑

1≤k1<k2≤m
θk1k2Z

(k2)TM∗
nZ

(k1)

)

· (2π)−2m

∫

R2k

E exp

(
i

( m∑

k=1

ξk1

n∑

j=1

Z
(k)
j +

m∑

k=1

ξk2

n∑

j=1

jZ
(k)
j

))
d~ξ ±O((τ1τ2)

mn−1/2(log n)21).

Plugging in θ = ~0 and dividing, and noting that the integral in the last line is order Θ((n−1/2 ·
n−3/2)m) (treating m as fixed), we deduce

E[Y (θ)|T = ~0] = E exp

(
i

∑

1≤k1<k2≤m
θk1k2Z

(k2)TM∗
nZ

(k1)

)
±O(n−1/2(log n)21+13m) (6.7)

for ‖θ‖∞ ≤ n−1(log n)3.
We wish to show (

Yjk
nVar[∆]

)

1≤j<k≤m

d.→ (Hjk)1≤j<k≤m

since Lemma 2.5 (and the facts ~vT1M
∗
n = 0 and M∗

n~v1 = 0) shows Aj beats Ak precisely when

Yjk > 0. Now let G(j) and Hjk be as in Theorem 1.4. From (6.7) and Lévy continuity, we see it is
enough to show (

Z(k)TM∗
nZ

(j)

nVar[∆]

)

1≤j<k≤m

d.→ (Hjk)1≤j<k≤m

as n → ∞. (Simple inspection of the proof shows that this would also imply the second remark

following Theorem 1.4.) Note that we may assume Var[∆] = 1 since Z
(j)
ℓ ∼ N (0,Var[∆]) and we

are now in a scale-invariant situation with respect to ∆.
We are now purely in a setting of joint convergence of certain bilinear forms of standard Gaussian

vectors. Thus, the problem will ultimately reduce to limiting spectral properties of the operators
M∗
n. By a variant of the spectral theorem, since M∗

n is skew-symmetric by Lemma 2.6 (M2), we
can write M∗

n = QnΣnQ
T
n where Qn is orthogonal and Σn consists of diagonal 2 × 2 blocks of the

form [
0 −σn,ℓ
σn,ℓ 0

]

for ℓ ∈ [⌊n/2⌋], and possibly a single 0 in the final diagonal entry if n is odd. By orthogonal
invariance of Gaussian vectors, applying the orthogonal matrix Q, our distribution is the same as

(
G(k)TΣnG

(j)

n

)

1≤j<k≤m
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where G(j) are independent standard Gaussian vectors. We have

G(k)TΣnG
(j)

n
=

⌊n/2⌋∑

ℓ=1

σn,ℓ
n

(G
(j)
2ℓ−1G

(k)
2ℓ −G

(j)
2ℓ G

(k)
2ℓ−1). (6.8)

We have that for any constant t ≥ 1, (σn,ℓ/n)1≤ℓ≤t → (σℓ)1≤ℓ≤t as n→ ∞ by Lemma 2.6 (M9).
Now consider some fixed t ≥ 1 (which we will take to be growing slowly at the end of this

argument). Using
∑

ℓ≥t(σn,t/n)
2 = O(1/t) and Chebyshev’s inequality we easily see that with

probability 1−O(t−1/2), the sum in (6.8) over indices ℓ ≥ t contributes at most O(t−1/4). Further-
more, (σn,ℓ/n)1≤ℓ≤t → (σℓ)1≤ℓ≤t as n → ∞ by the above argument. Hence, we deduce that with

probability at least 1−O(t−1/2),
(
G(k)TΣnG

(j)

n

)

1≤j<k≤m

is within ℓ∞ distance O(t−1/4) of a random vector which converges to
( t∑

ℓ=1

σℓ(G
(j)
2ℓ−1G

(k)
2ℓ −G

(j)
2ℓ G

(k)
2ℓ−1)

)

1≤j<k≤m

in distribution. Finally, taking t → ∞ slowly gives the desired result, recalling from the remark
following Theorem 1.4 that almost surely the appropriate sums converge as t→ ∞. �

7. Properties of coefficient sequences

We next prove Lemma 6.1.

Proof of Lemma 6.1. By definition we have
n∑

j=1

(M∗
n)jj′ =

n∑

j=1

(M∗
n)j′j = 0

hence
∑n

j=1 c
(k∗)
j = 0 immediately follows, establishing S2. Note also that c

(k∗)
j is a weighted

sum of independent random variables X − 1 where X ∼ ∆. Since E[∆] = 0 and ∆ is either
Poisson or geometric we easily see that it is a sum of independent mean 0 random variables with

bounded ‖X − 1‖ψ1
. Additionally, the coefficients of c

(k∗)
j are of the form θkk∗(M

∗
n)jj′/(2Θ) and

θk∗k(M
∗
n)j′j)/(2Θ), which by definition and Lemma 2.6 (M3) are bounded in magnitude.

Hence we can apply Bernstein’s inequality (Theorem 4.1) to obtain

P[|c(k
∗)

j | ≥ t] ≤ 2 exp
(
− c4.1 min

( t2

O(n)
,

t

O(1)

))
.

Choose t =
√
n log n, which implies that the event |c(k

∗)
j | ≥ √

n log n occurs with probability at

most exp(−Ω((log n)2)). Taking a union bound over n events for 1 ≤ j ≤ n, we obtain S1 with

probability 1− n−ω(1).
Finally, S3 is similar. We wish to show |cj1 − cj2 | ≤

√
|j1 − j2|(log n)2 for all 1 ≤ j1 < j2 ≤ n

occurs with probability 1 − n−ω(1), as then a union bound will finish. To do this, we will exploit
cancellation in (M∗

n)j1j′ − (M∗
n)j2j′ . In particular, we have

c
(k∗)
j1

− c
(k∗)
j2

=
1

2Θ

( ∑

k<k∗

θkk∗

( n∑

j′=1

(
(M∗

n)j1j′ − (M∗
n)j2j′

)
(X

(k)
j′ − 1)

)

+
∑

k>k∗

θk∗k

( n∑

j′=1

(
(M∗

n)j′j1 − (M∗
n)j′j2

)
(X

(k)
j′ − 1)

))
.
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By Lemma 2.6 (M7) we have that |(M∗
n)j1j′ − (M∗

n)j2j′ | = O(|j1 − j2|/n) for all but O(|j1 − j2|)
values of j′, for which the value is O(1). Since M∗

n is skew-symmetric (M2), the same occurs when
we transpose the matrix. Therefore we can use Bernstein’s inequality (Theorem 4.1) again, this
time deducing

P[|c(k
∗)

j1
− c

(k∗)
j2

| ≥ t] ≤ 2 exp
(
− c4.1 min

( t2

O(|j1 − j2|)
,

t

O(1)

))
.

Taking t =
√

|j1 − j2|(log n)2 ≥ (log n)2 and taking a union bound, we deduce the desired. �

We now prove that the coefficient sequence coming from Lemma 2.3 is typically coarse. This will
be used to prove Theorem 1.8 later. We note that the idea of breaking into various intervals and
extracting tuples of coefficients with the desired properties also appears in the work of Polymath,
in particular in [22, Lemma 5.10]; however the proofs here are simpler as we require only a “physical
space” condition on the coefficients.

Lemma 7.1. Let ∆ ∈ {Geom(1/2),Pois(1)}. Let X̃j ∼ ∆ for all 1 ≤ j ≤ n and then condition on∑n
j=1 X̃j = n and

∑n
j=1 jX̃j = n(n+ 1)/2. If

cj =
∑

1≤k<j
X̃j +

X̃j

2
− (j − 1/2)

then with probability 1− n−ω(1) the sequence (cj)1≤j≤n is coarse (Definition 5.1).

Proof. We will prove that everything but S2 occurs in the unconditioned independent model with
probability 1− n−ω(1). Then note that

P

[ n∑

j=1

X̃j = n ∧
n∑

j=1

jX̃j =
n(n+ 1)

2

]
& n−2

from Lemma 9.1 (which is proved only using results up to Section 5) or from the line before (6.7)
in the proof of Theorem 1.4.

Thus the failure probability of any property in the conditional model will be at most equal to
(n−ω(1))/(Ω(n−2)) = n−ω(1) by Bayes’ rule. So it suffices to consider the independent model, noting

that S2 follows from the conditions
∑n

j=1 X̃j = n and
∑n

j=1 jX̃j = n(n+ 1)/2.
S1 and S3 are simple Bernstein inequality calculations, similar to the proof of Lemma 6.1, and

we omit the details. For S5, note that cj = cj+1 = cj+2 − 1/2 follows if X̃j = X̃j+1 = 0 and

X̃j+2 = 1. Let J be a 3-separated sequence of size Ω(n) and note that j ∈ J satisfies the condition
required by S5 with probability Ω(1). Thus Bernstein’s inequality or Chernoff easily implies S5.

For S6, consider J which is all multiples of 4y in {1, . . . , n− 4y}, of size Ω(n/y). For each j ∈ J ,
the probability that |cj − 2cj+y + cj+2y| ≥

√
y is seen to be Ω(1) by the central limit theorem,

and this is independent over all j ∈ J . Thus by Bernstein or Chernoff, with probability at least
1−exp(−Ω(n/y)) there are at least Ω(n/y) many j ∈ J satisfying the condition required by S6. We
can repeat the argument for the translations of J by {1, 2, . . . , y} and take a union bound, which
yields Ω(n) many indices j with probability 1− n−ω(1) as desired.

Finally, we consider S4. We can mimic the proof of S6 above except with y = ⌊n/(log n)3/2⌋
and still deduce that with probability 1 − n−ω(1), there are at least Ω(n) indices 1 ≤ j ≤ n − 2y
with |cj − 2cj+y + cj+2y| ≥

√
y. We can pass to a subset J of size Ω(n) with the property that

j − j′ /∈ {±y,±2y} for all j, j′ ∈ J . For each j ∈ J we have

(cj − aj − b)2 + (cj+y − a(j + y)− b)2 + (cj+2y − a(j + 2y)− b)2 ≥ 1

4
(cj − 2cj+y + cj+2y)

2
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using the inequality x21 + x22 + x23 ≥ (x1 − 2x2 + x3)
2/4. Hence we deduce

n∑

j=1

(cj − aj − b)2 & |J | · (√y)2/4 & ny ≥ n2/(log n)2

for all a, b ∈ R. The result follows. �

8. Consequences of Theorem 1.4

We now derive the claimed symmetry facts from the statement of Theorem 1.4.

Proof of Corollary 1.5. For the first consequence, note that the Gaussian distribution is negation
invariant and therefore the result for reversing the edges at vertex u follows by negating the Gaussian
G(u) in Theorem 1.4. For the second consequence, simple replace every die with its “complement”,
i.e., we map (a1, . . . , an) to (n+1− an, . . . , n+1− ai). (In the limiting expression of Theorem 1.4,

this corresponds to switching G
(j)
2ℓ−1 and G

(j)
2ℓ for all 1 ≤ j ≤ m and ℓ ≥ 1.) �

Now we turn to Corollary 1.7. We require the following lemma relating a tournamenton having
image in the set {0, 1} to the distribution of its k-vertex subtournaments.

Lemma 8.1. Fix a tournamenton T . Suppose that for every ε > 0, for all M sufficiently large

there is a set FM of M -vertex tournaments with |FM | ≤ 2εM
2

such that a T -random tournament
on M vertices lies in FM with probability at least 1 − ε. Then µ({(x, y) : T (x, y) /∈ {0, 1}}) = 0
where µ is the Lebesgue measure on [0, 1]2.

Proof. Suppose that µ({(x, y) : T (x, y) /∈ {0, 1}}) > 0. Then there exists δ > 0 such that

µ({(x, y) : T (x, y) ∈ [δ, 1 − δ]}) ≥ δ. (8.1)

Consider sampling M random points x1, . . . , xM from 0 to 1 uniformly at random. The T -random
tournament is obtained by sampling a directed edge from xi to xj with probability T (xi, xj) (and
otherwise putting one from xj to xi) for all 1 ≤ i < j ≤M . Let

XM = {(i, j) ∈ [M ]2 : i < j and T (xi, xj) ∈ [δ, 1 − δ]}.
We have that E|XM | ≥ δ

(M
2

)
from (8.1) and thus by applying the Azuma–Hoeffding inequality

(Lemma 4.2) on the Doob martingale formed by revealing x1, . . . , xM in order, we see that P[XM ≥
δM2/4] ≥ 1− δ for M sufficiently large as a function of δ.

This means there is an event E occurring with probability at least 1 − δ over the randomness
of x1, . . . , xM such that conditional on F , the entropy of our T -random tournament is at least
H(Ber(δ)) · |XM | & δ3M2.

But by initial assumption there is an event F holding with probability 1 − ε such that the
original M -vertex tournament conditional on E is in FM . We see that the entropy of the T -random

tournament must be at most H(ε) + log2 |FM | + ε log2(2
m2

) . εM2. Taking ε much smaller than
δ3 and M sufficiently large, we obtain a contradiction. �

We now are in position to prove Corollary 1.7.

Proof of Corollary 1.7. We first note that Tn converges to a limit tournamenton T since Theorem 1.4
implies that for a fixed digraph D the associated densities converge. Thus the result follows via
convergence of subgraph densities implying convergence in cut metric (see [9] where this theory
is worked out in the case of directed graphs; the theory for tournamentons follows as a direct
consequence via say applying [25, Theorem 4.1] which characterizes a directed graph limit being a
tournamenton in terms of certain subgraph counts vanishing).

The more difficult part of Corollary 1.7 is verifying the conditions of Lemma 8.1. Fix m dice,
where we will consider m large, and consider the random series Hjk from Theorem 1.4. For these m
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dice, reveal G
(j)
ℓ for ℓ ≤ 2⌊m1/2⌋ and round the value to the nearest 1/m25, and label each vertex

with the corresponding tuple of values. Call the collection of these labels L(G), which depends only

on G
(j)
ℓ for ℓ ≤ 2⌊m1/2⌋. Note that with probability 1−exp(−Ω(m)) all these sampled Gaussians are

bounded by m and hence there is a set L of at most exp(O(m3/2 logm)) different possible labelings
such that L(G) ∈ L under this event. Furthermore given these labels L(G), the value

H∗
jk =

⌊m1/2⌋∑

ℓ=1

σℓ(G
(j)
2ℓ−1G

(k)
2ℓ −G

(j)
2ℓ G

(k)
2ℓ−1)

is pinned down to within an interval Ijk(G) (defined whenever L(G) ∈ L) of length at most m−20,
say, for all 1 ≤ j < k ≤ m.

Note that Hj,k −H∗
j,k has variance O(m−1/2) and hence with probability 1 − exp(−m−Ω(1)) all

these infinite tails are of magnitude at most say m−1/5 by Theorem 4.6.
Let L′ be the set of labelings L(G) ∈ L such that the interval Ijk(G) intersects [−m−1/5,m1/5]

for at most m2−1/20 many choices of 1 ≤ j < k ≤ m. Let B(G) be the set of (j, k) where there is an
intersection. Note B(G) depends only on L(G) whenever L(G) ∈ L. Combining the observations
above, there is an event E which occurs with probability 1 − exp(−mΩ(1)) such that the following
holds if we assume E :

• L(G) ∈ L where L is a deterministic set of size exp(O(m3/2 logm));
• If L(G) ∈ L′ then the digraph D(G) := {(j, k) : Hjk > 0} depends only on the identity of
L(G) and on whether (j, k) or (k, j) is in D for all (j, k) ∈ B(G). Here L′ is the deterministic
subset of L defined above.

If we can show that L(G) ∈ L′ with probability 1 − O(m−1/20), say, then by Theorem 1.4 this
will establish the hypotheses of Lemma 8.1 and hence this will finish the proof. Indeed, then we
know that with good probability the digraph D(G) can be determined by revealing L(G) ∈ L (with

exp(O(m3/2 logm)) choices), which determines B(G), and then revealing whether (j, k) ∈ D(G)

for all (j, k) ∈ B(G), which has at most 2m
2−1/20

choices. This will establish the hypothesis of
Lemma 8.1 for M = Ω(ε−20), say.

Finally, by Theorem 4.3 for fixed 1 ≤ j < k ≤ m the probability that H∗
jk = O(m−1/5) is at

most O(m−1/10). Therefore by Markov’s inequality, there are at most m2−1/20 pairs in B(G) with

probability 1−O(m−1/20). The result follows. �

We end by providing a short proof given Corollary 1.7 that the four-cycle (A beats B, B beats C,
C beats D, and D beats A) occurs with a greater than 1/16 limiting probability. This consequence
was the method used by Cornacchia and Hązła to disprove quasirandomness of dice tournaments (in
the simpler model where die faces are drawn independently at random from the uniform distribution
on [0, 1]). The surprising fact that this limiting probability is larger than 1/16 falls out naturally of
a Corollaries 1.5 and 1.7. Note that this means that if A beats B, B beats C, and C beats D then
D is more likely to beat A in the limit, since a path with 3 edges is a tree so has limiting probability
1/8. (An analogous result holds for larger even cycles which we leave as an exercise to the reader.)

Proposition 8.2. Let T be as in Corollary 1.7. We have that
∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0
T (x1, x2)T (x2, x3)T (x3, x4)T (x4, x1)dx1dx2dx3dx4 >

1

16
.

Proof. Note that
∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0
T (x1, x2)T (x2, x3)T (x3, x4)T (x4, x1)dx1dx2dx3dx4
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=

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0
T (x1, x2)T (x2, x3)T (x4, x3)T (x1, x4)dx1dx2dx3dx4

=

∫ 1

0

∫ 1

0

(∫ 1

0
T (x1, x2)T (x2, x3)dx2

)2

dx1dx3

≥
(∫ 1

0

∫ 1

0

∫ 1

0
T (x1, x2)T (x2, x3)dx1dx3dx2

)2

=

(∫ 1

0

∫ 1

0

∫ 1

0
T (x2, x1)T (x2, x3)dx1dx3dx2

)2

=

(∫ 1

0

(∫ 1

0
T (x2, x1)dx1

)2

dx2

)2

≥
(∫ 1

0

∫ 1

0
T (x2, x1)dx1dx2

)4

=
1

16

where we have applied Corollary 1.5 on vertex 4, factoring the square, Cauchy–Schwarz, Corollary 1.5
on vertex 1, factoring the square, Cauchy–Schwarz, and then used that T has average 1/2 (from
Theorem 1.4 and symmetry). For equality to occur we must have that for almost all x, y,

1/4 =

∫ 1

0
T (x, z)T (z, y)dz.

By the equivalence of codegree counts with quasirandomness for tournaments; see [6, P4, Theorem 1]
in work of Chung and Graham, in order for equality to occur we must have T (x, y) = 1/2 almost
everywhere in Lebesgue measure. This contradicts the statement of Corollary 1.7, so the inequality
is strict. �

We also briefly derive that any tournament T on m vertices occurs in the limit with positive
probability. This recovers a recent result of Akin [1] (which was proven by dynamical methods and
which in turn reproves results of Moon and Moser [18] which allows for dice to not have the same
means and a result of Finkelstein and Thorp [10] which constructs cycles of arbitrary length via a
more explicit construction).

Proposition 8.3. Recall the setup of Theorem 1.4 and fix any digraph D. We have that

P[Hjk > 0 for all jk ∈ E(D)] > 0.

Equivalently, the D-density in T is positive. In particular, given any D there exists a set of dice
which produce the digraph D.

Proof. Let C be a sufficiently large constant to be chosen later. Let |E(D)| = u and label the edges
of the digraph D by e1, . . . , eu and the vertices by 1, . . . ,m. We may assume D is connected so
m ≤ u + 1. We correspond the indices {2ℓ − 1, 2ℓ} to directed edge eℓ. For each ℓ ∈ [u] and each
i ∈ [m] which is not an endpoint of the edge eℓ we define the event Eℓ,i:

max{|G(i)
2ℓ−1|, |G

(i)
2ℓ |} ≤ 1.

For each ℓ ∈ [|E(D)|], if eℓ is an edge directed from j to k then we define the event Eℓ:

G
(j)
2ℓ−1, G

(k)
2ℓ ≥ Cu1/2, |G(j)

2ℓ |, |G
(k)
2ℓ−1| ≤ 1.

Recall that

Hjk =
∑

ℓ≥1

σℓ(G
(j)
2ℓ−1G

(k)
2ℓ −G

(j)
2ℓ G

(k)
2ℓ−1).
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Let us further define the event Etail:
∣∣∣∣

∑

ℓ>|E(D)|
σℓ(G

(j)
2ℓ−1G

(k)
2ℓ −G

(j)
2ℓ G

(k)
2ℓ−1)

∣∣∣∣ ≤ C

for all jk ∈ E(D). By Chebyshev’s inequality, for any given j, k ∈ [m] this occurs with probability
1−O(1/(C2u)) Taking a union bound over jk ∈ E(D) we see P[Etail] ≥ 1/2 if C is large enough.

Note that Eℓ,i, Eℓ, Etail are jointly independent, so they jointly occur with positive probability (at
least exp(−Ω(u2))).

If jk is directed edge eℓ∗ , then by construction the first |E(D)| terms of Hjk contribute & C2σℓ∗u,
so Ω(C2) by Lemma 2.6 (M8). On the other hand, the tail ℓ > |E(D)| contributes at most C. Thus
Hjk > 0 if C was chosen large enough. The result follows. �

9. Proof of Theorem 1.8

Finally we compute the probability of having a tie. We proceed in a slightly indirect manner via
first considering the probability that a given coarse die (i.e., an appropriate associated sequence is
coarse in the sense of Definition 5.1) ties with a randomly sampled die. This amounts to computing
the chance that T1 = T2 = 0 and T1 = T2 = T3 = 0 given the setup of Definition 5.2, which will be
the first step in understanding the necessary probability.

Lemma 9.1. Assume the setup of Definition 5.2 and that (cj)1≤j≤n is coarse. We have

P[T1 = 0 ∧ T2 = 0] =

√
3

πVar[∆]n2
+O(n−5/2(log n)34),

P[T1 = 0 ∧ T2 = 0 ∧ T3 = 0] =

√
3

(2πVar[∆])3/2n2(mina,b∈R
∑n

j=1(cj − aj − b)2)1/2
+O(n−7/2(log n)37).

Proof. Let

T̃1 =

n∑

j=1

X̃j , T̃2 =

n∑

j=1

jX̃j , T̃3 = 2

n∑

j=1

cjX̃j ,

where X̃j ∼ N (0,Var[∆]) are independent Gaussians. Let ~X ∈ Rn be the vector with these
coordinates. Define the sets

R2 = {(ξ1, ξ2) : |ξ1| ≤ n−1/2(log n)7, |ξ2| ≤ n−3/2(log n)6},
R3 = {(ξ1, ξ2, ξ3) : |ξ1| ≤ n−1/2(log n)7, |ξ2| ≤ n−3/2(log n)6, |ξ3| ≤ n−1(log n)3}.

By Theorem 4.9 and Lemmas 5.4 to 5.8 we easily see

P[T1 = 0 ∧ T2 = 0] = (2π)−2

∫

R2

E[exp(i~ξ · (T1, T2))]d~ξ ± n−ω(1),

P[T1 = 0 ∧ T2 = 0 ∧ T3 = 0] = (2π)−3

∫

R3

E[exp(i~ξ · (T1, T2, T3))]d~ξ ± n−ω(1).

Then, using Lemma 5.9 to transfer to Gaussians we find

P[T1 = 0 ∧ T2 = 0] = (2π)−2

∫

R2

E[exp(i~ξ · (T̃1, T̃2))]d~ξ +O(n−5/2(log n)34), (9.1)

P[T1 = 0 ∧ T2 = 0 ∧ T3 = 0] = (2π)−3

∫

R3

E[exp(i~ξ · (T̃1, T̃2, T̃3))]d~ξ +O(n−7/2(log n)37). (9.2)
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We define the matrix 3× n matrix M3 via

M3 :=




1 1 . . . 1
1 2 . . . n
2c1 2c2 . . . 2cn




and we letM2 be the first two rows ofM3. We have ~ξ·(T̃1, T̃2, T̃3) = ~ξTM3
~X and E[~ξ·(T̃1, T̃2, T̃3)] = 0.

Furthermore note that E[(~ξTM3
~X)2] = Var[∆] · (~ξTM3M

T
3
~ξ). We deduce

P[T1 = 0 ∧ T2 = 0 ∧ T3 = 0] = (2π)−3

∫

R3

exp(−Var[∆] · ξTM3M
T
3
~ξ/2))d~ξ +O(n−7/2(log n)37),

P[T1 = 0 ∧ T2 = 0] = (2π)−2

∫

R2

exp(−Var[∆] · ~ξTM2M
T
2
~ξ/2)d~ξ +O(n−5/2(log n)34).

We compute

M3M
T
3 =




n n(n+ 1)/2 0
n(n+ 1)/2 n(n+ 1)(2n + 1)/6 2

∑n
j=1 jcj

0 2
∑n

j=1 jcj 4
∑n

j=1 c
2
j


,

recalling S2 which implies (1, . . . , 1) · (c1, . . . , cn) = 0. Also, since MT
3 ~e1,M

T
3 ~e3 are orthogonal

(denoting ~ej ∈ R3 as the jth elementary vector), we deduce

dist(MT~e2,spanR{MT~ej}j∈{1,3})2

= dist((−(n − 1)/2,−(n − 3)/2, . . . , (n− 1)/2), spanR{(c1, . . . , cn)})2

& n3
(
1− 〈(−(n− 1)/2,−(n − 3)/2, . . . , (n − 1)/2), (c1, . . . , cn)〉2

‖(−(n − 1)/2,−(n − 3)/2, . . . , (n − 1)/2)‖22‖(c1, . . . , cn)‖22

)

& n3 ·
mina,b∈R

∑n
j=1(cj − aj − b)2

∑n
j=1 c

2
j

& n3/(log n)4.

The second-to-last line comes from noting that the desired minimum corresponds to the distance
from (c1, . . . , cn) to the plane spanned by MT~e1,M

T~e2. The last line uses S1 and S4. Similarly,
we find

dist(MT~e3, spanR({MT~ej}j∈{1,2})2 = min
a,b∈R

n∑

j=1

(cj − aj − b)2 ≥ n2/(log n)2.

Therefore we have

ξTM3M
T
3 ξ = ‖MT

3 ξ‖22 ≥ max
j∗∈[3]

ξ2j∗dist(M
T~ej∗ , spanR({M~ej}j∈[3]\{j∗})2

& nξ21 + n3ξ22/(log n)
4 + n2ξ23/(log n)

2.

This inequality immediately allows us to extend the regions of integration in (9.1) and (9.2) to R2

and R3, respectively, since the integrand within the remaining region is super-polynomially small
and decaying rapidly. Applying the formula for a Gaussian integral, we have

P[T1 = 0 ∧ T2 = 0] = (2π)−2

∫

R2

exp(−Var[∆] · ~ξTM2M
T
2
~ξ/2)d~ξ +O(n−5/2(log n)34)

= (2π)−1(detM2M
T
2 )

−1/2 +O(n−5/2(log n)34)

=

√
3

πVar[∆]n2
+O(n−5/2(log n)34).
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We computed the determinant explicitly as n2(n2−1)/12 using the expression for M3M
T
3 . Similarly,

we have

P[T1 = 0 ∧ T2 = 0 ∧ T3 = 0] = (2π)−3

∫

R3

exp(−Var[∆] · ~ξTM3M
T
3
~ξ/2)d~x +O(n−7/2(log n)37)

= (2πVar[∆])−3/2 det(M3M
T
3 )−1/2 +O(n−7/2(log n)37)

=

√
3

(2πVar[∆])3/2n2(mina,b∈R
∑n

j=1(cj − aj − b)2)1/2
+O(n−7/2(log n)37).

In the last line we used the base times height formula row-by-row to compute (detM3M
T
3 )1/2,

which can be interpreted as the 3-dimensional volume of the corresponding parallelepiped spanned
by MT

3 ~e1,M
T
3 ~e2,M

T
3 ~e3 within Rn. �

Given Lemma 9.1, and recalling Lemma 2.2, the approach will now be to take an average of
P[T3 = 0|T1 = T2 = 0] over the distribution of coarse sequences (cj)1≤j≤n that come from the fre-
quency count statistics of a typical die sampled from either model. This requires us to understand
the quadratic expressions mina,b∈R

∑n
j=1(cj−aj−b)2 (where cj will linearly depend on the frequency

count statistics) conditional on stuff such as T1 = T2 = 0. At a high level, we will reduce under-
standing a quadratic form to understanding finitely many linear forms jointly (via sampling random
rows to take a dot product against; heuristically, one could study the large singular vectors). Thus
we will reduce to a situation where we only need the sort of Fourier control guaranteed by Section 5.
Specifically, we can prove Lemma 9.4 given the tools in Section 5, which is the key estimate. Beyond
this, we need various tools to control certain tail estimates and related notions that occur in the
course of the proof, which is very much related to the fact that evaluating E(

∑
ℓ≥1 σ

2
ℓ (Z

2
ℓ +Z

′2
ℓ ))

−1/2

involves a (convergent) improper integral.
We will require the following estimate regarding sampling independent points for a given dis-

tribution on [n]. We use the following estimate on sums of independent random variables from
[27].

Theorem 9.2 ([27, Theorem 4]). Fix β ∈ [1, 2]. There exists C9.2(β) > 0 such that the following

holds. Let Xi be independent mean zero random variables with E[|Xi|β ] <∞. We have that

E[|
n∑

i=1

Xi|β] ≤ C9.2(β)
n∑

i=1

E[|Xi|β]

Lemma 9.3. There exists a constant C9.3 > 0 such that the following holds. Given a sequence
x1, . . . , xn, let i1, . . . , iM be indices chosen uniformly at random from [n]. Then

∣∣∣∣
1

M

M∑

j=1

xij −
1

n

n∑

j=1

xj

∣∣∣∣ ≤ C9.3M
−1/4

(∑n
j=1 |xj |3/2

n

)2/3

occurs with probability at least 1−M−1/8.

Proof. We have that

E

∣∣∣∣
1

M

M∑

j=1

xij −
1

n

n∑

j=1

xj

∣∣∣∣
3/2

=M−3/2E

∣∣∣∣
M∑

j=1

(
xij −

1

n

n∑

j=1

xj

)∣∣∣∣
3/2

.M−1/2 · E
∣∣∣∣xi1 −

1

n

n∑

j=1

xj

∣∣∣∣
3/2

.M−1/2 · E|xi1 − xi2 |3/2 .M−1/2 · E|xi1 |3/2
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= n−1M−1/2
n∑

i=1

|xi|3/2

where we have used Theorem 9.2, Jensen’s inequality, and that |x − y|3/2 ≤ 21/2(|x|3/2 + |y|3/2).
The desired follows immediately by Markov’s inequality. �

We next verify the following key distributional identity. We will use it after applying the identity
mina,b∈R

∑
j(cj − a− bj)2 = ‖M∗

n~c‖22 where ~c = (c1, . . . , cn).

Lemma 9.4. Let Xj, T1, T2 be as in Definition 5.2, sample X̃j ∼ N (0,Var[∆]) for 1 ≤ j ≤ n, let

X = (X1, . . . ,Xn), and let X̃ = (X̃1, . . . , X̃n). If M ≤ log log n and jk ∈ [n] and |Θk| ≤ (log n)7/4

for 1 ≤ k ≤M then

∣∣∣∣E
[
exp

(
i
M∑

k=1

Θk〈X,M∗
n~ejk〉√

n

)∣∣∣∣T1 = T2 = 0

]
− E

[
exp

(
i
M∑

k=1

Θk〈X̃,M∗
n~ejk〉√

n

)]∣∣∣∣ ≤ n−1/2(log n)39.

Proof. The proof is very similar to the first part of the proof of Theorem 1.4 as well as the proof of
Lemma 9.1, so we will be brief and focus only on the necessary modifications from the basic proof
strategy.

We apply Theorem 4.9 to deduce

E

[
1T1=T2=0 exp

(
i
M∑

k=1

Θk〈X,M∗
n~ejk〉√

n

)]
=

1

2π

∫

[−π,π]2
E exp

(
i
M∑

k=1

Θk〈X,M∗
n~ejk〉√

n
+ i~ξ · (T1, T2)

)
d~ξ

and then apply Lemmas 5.6 to 5.8. In order to apply these, we define

c∗j := n
M∑

k=1

Θk(M
∗
n~ejk)j

2
√
n

so that
M∑

k=1

Θk〈X,M∗
n~ejk〉√

n
=

2
∑n

j=1 c
∗
jXj

n
.

However, (c∗j )1≤j≤n does not quite satisfy S3 so we cannot apply the lemmas directly; the only

obstruction is that c∗j will have slight “local jumps” near j ∈ {j1, . . . , jM} due to the fact that M∗
n

has slightly “discontinuous” entries along the diagonal. Indeed, one can check

|c∗j − c∗j′ | .
|j − j′|√

n
(log n)7/4 log log n+

M∑

k=1

1jk∈[j,j′]

for all 1 ≤ j < j′ ≤ n due to M7. This is at most
√

|j − j′|(log n)2 if {j1, . . . , jM} ∩ [j, j′] = ∅.
To fix this obstruction, we simply apply Lemmas 5.6 to 5.8 to a consecutive sequence of entries.

Note that there is some {n1+1, n1+2, . . . , n2} ⊆ [n] with |n2−n1| ≥ n/(2M) with no jk contained in
this consecutive range. Let n′ = |n2−n1|. Therefore, we may condition on values of X[n]\{n1+1,...,n2}
and then deduce the necessary estimate from the randomness of X{n1+1,...,n2}. We deduce

∣∣∣∣E exp

(
i

M∑

k=1

Θk〈X,M∗
n~ejk〉√

n
+ i~ξ · (T1, T2)

)∣∣∣∣ ≤ n−ω(1)

as long as |ξ2| ∈ [(n′)−3/2(log n′)6, π] or |ξ2| ≤ (n′)−3/2(log n′)6 and |ξ1+n1ξ2| ∈ [(n′)−1/2(log n′)7, 5π/4]
(where one applies Lemmas 5.6 to 5.8). This trivially covers all (ξ1, ξ2) except for say |ξ1| ≤
n−1/2(log n)8 and |ξ2| ≤ n−3/2(log n)7.
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Then we can apply Lemma 5.9 (technically, since ξ1, ξ2 could be slightly larger than the range
considered in Lemma 5.9, it is slightly different but the exact same technique applies). Overall, we
deduce

E

[
1T1=T2=0 exp

(
i
M∑

k=1

Θk〈X,M∗
n~ejk〉√

n

)]

=
1

2π

∫ τ1

−τ1

∫ τ2

−τ2
E exp

(
i

M∑

k=1

Θk〈X̃,M∗
n~ejk〉√

n
+ i~ξ · (T̃1, T̃2)

)
dξ2dξ1 +O(n−5/2(log n)39)

where τ1 = n−1/2(log n)8 and τ2 = n−3/2(log n)7 and T̃1 =
∑n

j=1 X̃j and T̃2 =
∑n

j=1 jX̃j .

Next, use that
∑n

j=1 c
∗
j =

∑n
j=1 jc

∗
j = 0, which follows from Definition 2.4. This implies that

(T̃1, T̃2) is independent of the first part of the sum in the exponential. So, we can factor and integrate
over ξ1, ξ2 to deduce

E

[
1T1=T2=0 exp

(
i

M∑

k=1

Θk〈X,M∗
n~ejk〉√

n

)]
= qE exp

(
i

M∑

k=1

Θk〈X̃,M∗
n~ejk〉√

n

)
+O(n−5/2(log n)39)

where q = (2π)−1
∫
R2 E exp(i~ξ · (T̃1, T̃2))d~ξ (note completing the integral to ∞ does not change

the error term). Comparing with the proof of Lemma 9.1, we easily deduce that q = (1 +

O(n−1/2(log n)34))P[T1 = 0 ∧ T2 = 0] and thus also q = Ω(n−2). Dividing by P[T1 = 0 ∧ T2 = 0]
and subtracting, we deduce the desired result. �

We deduce an appropriate bound on a moment of n−1/2|〈~x,M∗
n~ej〉|.

Lemma 9.5. Let Xj , T1, T2 be as in Definition 5.2 and let X = (X1, . . . ,Xn). We have

E

[ n∑

j=1

( |〈X,M∗
n~ej〉|√
n

)3∣∣∣∣T1 = T2 = 0

]
≤ C9.5n.

Similarly if X ′
j is as in Lemma 5.9, we have

E

[ n∑

j=1

( |〈X ′,M∗
n~ej〉|√
n

)3]
≤ C9.5n.

Proof. The second estimate is trivial by linearity of expectation and Lemma 2.6 (M3). For the first

estimate, using linearity of expectation it suffices to show E|〈X,M∗
n~ej〉|3 = O(n3/2) uniformly for

all 1 ≤ j ≤ n.
Note that |〈X,M∗

n~ej〉| ≥ √
n log n log log n occurs with probability n−ω(1) in the independent

model by Bernstein’s inequality (Theorem 4.1), hence since P[T1 = T2 = 0] = Ω(n−2) from
Lemma 9.1 we have the same in the conditional model. The tail bound from Theorem 4.1 is good
enough that we can in fact obtain

E|〈X,M∗
n~ej〉|31|〈X,M∗

n~ej〉|≥
√
n logn log logn = n−ω(1).

Now it suffices to consider “reasonable” scales for |〈X,M∗
n~ej〉|.

We apply Theorem 4.8 with 〈X,M∗
n~ej〉/

√
n conditional on T1 = T2 = 0 and with 〈X ′,M∗

n~ej〉/
√
n.

Note that Lemma 9.4 shows an error of O(n−1/2(log n)39) between the two resulting Fourier coeffi-
cients, and we deduce

sup
τ∈R

|P[〈X,M∗
n~ej〉 ≤ τ

√
n]− P[〈X ′,M∗

n~ej〉 ≤ τ
√
n]|

.

∫ L

−L

min{n−1/2(log n)39,E[|t||〈X,M∗
n~ej〉 − 〈X ′,M∗

n~ej〉|]}
|t| dt+ 1/L
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.

∫ L

−L

min{n−1/2(log n)39, |t|n2}
|t| dt+ 1/L . n−1/2(log n)40 + 1/L . 1/L

for L = (log n)7/4. We thus have

E|〈X,M∗
n~ej〉|31|〈X,M∗

n~ej〉|<
√
n logn log logn = E|〈X ′,M∗

n~ej〉|31|〈X′,M∗
n~ej〉|<

√
n logn log logn

+O((
√
n log n log log n)3/L) = O(n3/2)

by integration by parts. �

We will also require the following variant of Lemma 9.5 which bounds the difference between
nearby coordinates.

Lemma 9.6. Let Xj , T1, T2 be as in Definition 5.2 and let X = (X1, . . . ,Xn). If ε ≥ 1/ log log n,
and |j − j′| ≤ εn then we have

E

[ ||〈X,M∗
n~ej〉|2 − |〈X,M∗

n~ej′〉|2|
n

∣∣∣∣T1 = T2 = 0

]
≤ C9.5ε

1/2.

Similarly if X ′
j is as in Lemma 5.9, we have

E

[ ||〈X ′,M∗
n~ej〉|2 − |〈X ′,M∗

n~ej′〉|2|
n

]
≤ C9.5n.

Proof. As |y2 − z2| = |y − z| · |y + z| ≤ |y − z| · (|y| + |z|), by Cauchy–Schwarz it suffices to prove
that

E

[ |〈X,M∗
n~ej〉|2
n

∣∣∣∣T1 = T2 = 0

]
≤ C9.5, E

[ |〈X,M∗
n~ej〉 − 〈X,M∗

n~ej′〉|2
n

∣∣∣∣T1 = T2 = 0

]
≤ C9.5ε

and analogous estimates for X ′. The two estimates follow immediately for X ′ by Lemma 2.6 (in
particular M7 for the second estimate). For X, note that by Hölder’s inequality a strictly stronger
estimate than the first is proven in Lemma 9.5. For the second estimate, note that if |j − j′| ≤
n/((log n)(log log n)3), we have from Bernstein’s inequality (Theorem 4.1):

E[|〈X,M∗
n~ej − ~ej′〉|21|〈X,M∗

n~ej−~ej′ 〉|≥εn] ≤ n−ω(1).

Since P[T1 = T2 = 0] = Ω(n−2) from Lemma 9.1 we have the same in the conditional model. For
the remaining values of j and j′, from the proof technique in Lemma 9.5 we have

sup
τ∈R

|P[〈X,M∗
n(~ej − ~ej′)〉 ≤ τ

√
n]− P[〈X ′,M∗

n(~ej − ~ej′)〉 ≤ τ
√
n]| .

√
n

T
√
j − j′

for T = (log n)7/4, using ‖M∗
n(~ej − ~ej′)‖2 ≍ √

j − j′. By Bernstein’s inequality (Theorem 4.1) we

have E[|〈X,M∗
n(~ej − ~ej′)〉|21|〈X,M∗

n(~ej−~ej′)〉|≥
√

(j−j′) logn(log logn)] = n−ω(1) and therefore the same

holds in the conditional model. Thus, similar to the proof of Lemma 9.5, we can use this to cut
off the values, transfer to the Gaussian model using integration by parts, and bound the resulting
expressions. The desired follows. �

We next deduce that mina,b∈R
∑

j(cj − a− bj)2 satisfies an appropriate anticoncentration bound
near 0 with high probability, so as to control singularity behavior.

Lemma 9.7. Let Xj , T1, T2 be as in Definition 5.2 and let ε ≥ 1/ log n. Let X = (X1, . . . ,Xn).
We have

P

[ n∑

j=1

〈X,M∗
n~ej〉2 ≤ εn2

∣∣∣∣T1 = T2 = 0

]
. ε4.
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Proof. Let k be a sufficiently large absolute integer constant. For 1 ≤ t ≤ k define St = [tn/(k +
1), tn/(k + 1) + δ2n], S′

t = [tn/(k + 1) + 2δ2n, tn/(k + 1) + 3δ2n] where δ ∈ (0, 1/2) will be a
sufficiently small constant (with respect to k) to be chosen later. Let

I = {(j1, j′1, j2, j′2, . . . , jk, j′k)| : jt ∈ St, j′t ∈ S′
t, |〈X,M∗

n(~ej′t − ~ejt)〉| ≤ δ−2ε1/2n1/2}.
If

∑n
j=1〈X,M∗

n~ej〉2 ≤ εn2, by Markov’s inequality there are fewer than δ4n indices j such that

|〈~x,M∗
n~ej〉| ≥ δ−2ε1/2n1/2. Therefore it follows that |I| ≥ (δ2n/2)2k under this event.

We now compute

E[|I||T1 = T2 = 0] ≤
∑

jt∈St,j′t∈S′
t

∀t∈[k]

P

[ k⋂

t=1

|〈X,M∗
n(~ej′t − ~ejt)〉| ≤ δ−2ε1/2n1/2

]

.k,δ ε
k/2n2k (9.3)

if one can prove for any choices of jt ∈ St, j
′
t ∈ S′

t for 1 ≤ t ≤ k that

P

[ k⋂

t=1

|〈X,M∗
n(~ej′t − ~ejt)〉| ≤ δ−2ε1/2n1/2

]
.k,δ ε

k/2. (9.4)

Note (9.3) immediately implies the desired result taking k = 8 and applying Markov’s inequality:
we find that |I| ≥ (δ2n/2)2k occurs with probability O(ε4), which implies the same for the original
event by the earlier analysis.

To prove (9.4) the idea is to use Theorem 4.8 and Lemma 9.4. Writing B for the radius kδ2/ε1/2

unit ball in Rk, we have

P

[ k⋂

t=1

|〈X,M∗
n(~ej′t − ~ejt)〉|√

n
≤ δ−2ε1/2

]

.δ,k ε
k/2

∫

B

∣∣∣∣E exp

(
2πi

k∑

t=1

ξt〈X,M∗
n(~ej′t − ~ejt)〉√
n

)∣∣∣∣d~ξ

.δ,k ε
k/2

∫

B

∣∣∣∣E exp

(
2πi

k∑

t=1

ξt〈X̃,M∗
n(~ej′t − ~ejt)〉√
n

)∣∣∣∣d~ξ +O(n−1/2(log n)39)

.δ,k ε
k/2q +O(n−1/2(log n)39)

where q is the probability density function of the Gaussian vector (n−1/2〈X̃,M∗
n(~ej′t − ~ejt)〉)1≤t≤k

evaluated at 0. For the last line, we used the nonnegativity of Gaussian characteristic functions and
Fourier inversion. Now we show q = Oδ,k(1) to finish.

Note that by M1 and explicit computation we have

M∗
n(~ej′t − ~ejt) =

1

2

∑

jt<k<j′t

~ek + ~vjt,j′t

where ‖~vjt,j′t‖2 . δ2n1/2 and note that ‖∑jt<k<j′t
~ek‖2 & δn1/2. Therefore we find that

dist(M∗
n(~ej′t − ~ejt), spanR{M∗

n(~ej′s − ~ejs) : s ∈ [k] \ {t}}) ≥ ‖M∗
n(~ej′t − ~ejt)‖2/2

if δ is sufficiently small as a function of k. This implies that the covariance matrix of the above
Gaussian vector is diagonally dominated with constant order diagonal entries, and the result follows.

�

We now conclude with the proof of Theorem 1.8.
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Proof of Theorem 1.8. Given a die B with the frequency counts (̃bj)1≤j≤n, let yj =
∑

1≤k<j b̃k +

b̃j/2− (j−1/2). We say B is suitable if (yj)1≤j≤n is coarse (Definition 5.1). By Lemma 7.1 we have

that B is coarse with probability 1− n−ω(1). Furthermore, write b̃ = (̃b1, . . . , b̃n) and note

min
a,b∈R

n∑

j=1

(yj − aj − b)2 = ‖M∗
n b̃‖22, (9.5)

which can be seen by looking at projections of vectors in Rn, and also noting that
∑n

j=1(̃bj − 1) =
∑n

j=1 j(̃bj − 1) = 0.

Recall that by Lemma 2.2, (̃b1, . . . , b̃n) has the distribution of (X1, . . . ,Xn) conditional on T1 =
T2 = 0, borrowing the setup of Definition 5.2 (where ∆ = Geom(1/2) for the multiset model and
∆ = Pois(1) for the balanced sequence model).

Therefore, applying Lemma 9.1 we find

P[A ties B] = P[A ties B ∧B is suitable]± n−ω(1)

= EB
[
P[A ties B|suitable B]

]
± n−ω(1)

= E

[
1B is suitable

(8πVar[∆])1/2‖M∗
n b̃‖2

]
± n−3/2(log n)40.

The final line follows from using Lemma 2.2 to interpret the probability of a tie as the ratio of the
two expressions in Lemma 9.1, and using S4 to control the resulting error terms.

Fix a constant ε > 0. We will take ε→ 0+ sufficiently slowly at the end of the proof. We have

E

[
1B is suitable

‖M∗
n b̃‖2

− 1B is suitable

max(‖M∗
n b̃‖2, εn)

]
. n−ω(1) +

∑

(logn)−2≤2−j≤ε

2j

n
· P[‖M∗

n b̃‖2 ≤ 2−jn]

. n−ω(1) +
∑

(logn)−2≤2−j≤ε

2j

n
· 4−j

.
ε

n

where we have dyadically decomposed the small values of ‖M∗
n b̃‖2 and applied Lemma 9.7 (we

apply the lemma for max(2−j , (log n)−1)). Note that 〈X,M∗
n~ej〉 = −〈M∗

nX,~ej〉 is the negative of
the jth coordinate of M∗

nX by M2, and we again used Lemma 2.2. Additionally, we are using that

‖M∗
n
~b‖2 ≥ n(log n)−2 for coarse ~b by (9.5) and S4.

Therefore

(8πVar[∆])1/2P[A ties B] = E

[
1B is suitable

max(‖M∗
n b̃‖2, εn)

]
±O(εn−1)

= E

[
1

max(‖M∗
n b̃‖2, εn)

]
±O(εn−1)

proved that n is sufficiently large with respect to ε.

The next idea is to approximate ‖M∗
n b̃‖2 via sampling random coordinates j1, . . . , jT for a suf-

ficiently large value of T and then estimating the L2-norm of the vector M∗
n b̃ via examining only

these coordinates. This converts understanding a quadratic form into a question of purely linear

forms. Let E1 denote the event that ‖M∗
n b̃‖3/n1/3 ≤ ε−1n1/2. Lemma 9.5 and Markov’s inequality

implies that E1 holds with probability at least 1− ε3, hence

E

[
1

max(‖M∗
n b̃‖2, εn)

]
= E

[
1E1

max(‖M∗
n b̃‖2, εn)

]
±O(ε2n−1). (9.6)
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Let ψ : R → R≥0 be smooth with ψ(y) = 0 for y ≤ ε/2 and ψ(y) = y for y ≥ ε, 0 ≤ ψ(y) ≤ y
for y ∈ [ε/2, ε], and such that ψ is O(1/ε)-lipschitz (a construction can be derived in a standard
manner using bump functions). Let g(x) := ψ(1/max(x, ε)). Then

(8πVar[∆])1/2nP[A ties B] = E[1E1g(‖M∗
n b̃‖2/n)]±O(ε2) (9.7)

since E1 implies ‖M∗
n b̃‖2/n1/2 ≤ ε−1n1/2.

Now, by Lemma 9.3, given the event E1 a uniformly random sample of T = ⌊ε−100⌋ independent
coordinates j1, . . . , jT satisfies∣∣∣∣‖M∗

n b̃‖22 −
n

T

∑

1≤k≤T
〈~ejk ,M∗

n b̃〉2
∣∣∣∣ ≤ ε20n

with probability at least 1− ε10. It follows immediately that
∣∣∣∣E[1E1g(‖M∗

n b̃‖2/n)]− E

[
E

[
g

((
1

nT

T∑

k=1

〈M∗
n b̃, ~ejk〉2

)1/2)∣∣∣∣j1, . . . , jT
]]∣∣∣∣ . ε10 + (1− ε10)ε19 + ε2,

(9.8)

using that g(y) ∈ [0, ε−1]. Let L = ⌊ε−1000⌋ and n′ = ⌊ε1000n⌋. For each k let j̃k denote the nearest
index to jk in the set {n′, 2n′, . . . , Ln′}. Since g is appropriately Lipschitz and applying Lemma 9.6,
we have
∣∣∣∣E

[
E

[
g

((
1

nT

T∑

k=1

〈M∗
n b̃, ~ejk〉2

)1/2)∣∣∣∣j1, . . . , jT
]]

− E

[
E

[
g

((
1

nT

T∑

k=1

〈M∗
n b̃, ~ej̃k〉

2

)1/2)∣∣∣∣j1, . . . , jT
]]∣∣∣∣

. ε100.

Now by Lévy continuity, Lemmas 2.2 and 9.4, and M1 we see that the distributions of
(〈M∗

n b̃, ~ekn′〉√
n

)

1≤k≤L
,

(〈M∗
nX̃, ~ekn′〉√

n

)

1≤k≤L

converge jointly to a fixed distribution independent of n (but depending on ε). As g is a bounded
and continuous function, for n sufficiently large by the Portmanteau theorem we deduce that
∣∣∣∣E

[
E

[
g

((
1

nT

T∑

k=1

〈M∗
n b̃, ~ej̃k〉

2

)1/2)∣∣∣∣j1, . . . , jT
]]

− E

[
E

[
g

((
1

nT

T∑

k=1

〈M∗
nX̃, ~ej̃k〉

2

)1/2)∣∣∣∣j1, . . . , jT
]]∣∣∣∣

≤ ε2, (9.9)

say. Finally, using Lemmas 9.3, 9.5, and 9.6 in the Gaussian model instead and mimicking the
above argument (for (9.8)) in reverse demonstrates

∣∣∣∣E[1E2g(‖M∗
nX̃‖2/n)]− E

[
E

[
g

((
1

nT

T∑

k=1

〈M∗
nX̃, ~ej̃k〉

2

)1/2)∣∣∣∣j1, . . . , jT
]]∣∣∣∣ . ε2 (9.10)

where E2 is the event that ‖M∗
nX̃‖3/n1/3 ≤ ε−1n1/2. Combining (9.7) to (9.10), we deduce

(8πVar[∆])1/2nP[A ties B] = E[1E2g(‖M∗
nX̃‖2/n)]±O(ε2).

Using Lemma 9.5 for the Gaussian model and Markov’s inequality, we easily find

(8πVar[∆])1/2nP[A ties B] = E[g(‖M∗
nX̃‖2/n)]±O(ε2). (9.11)

Finally, letting Wℓ,W
′
ℓ ∼ N (0,Var[∆]) for ℓ ≥ 1 we see

‖M∗
nX̃‖2
n

d.
=

( ⌊n/2⌋∑

ℓ=1

σ2n,ℓ
n2

(W 2
ℓ +W ′2

ℓ )

)1/2
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by a variant of the spectral theorem applied to M∗
n and Definition 2.4. By M6 and M9 and

Theorem 4.6 we deduce

E[g(‖M∗
nX̃‖2/n)] = Eg

(( ⌊n/2⌋∑

ℓ=1

σ2n,ℓ
n2

(W 2
ℓ +W ′2

ℓ )

)1/2)

= Eg

(( ⌊ε−8⌋∑

ℓ=1

σ2n,ℓ
n2

(W 2
ℓ +W ′2

ℓ )

)1/2)
±O(ε2)

= Eg

(( ⌊ε−8⌋∑

ℓ=1

σ2ℓ (W
2
ℓ +W ′2

ℓ )

)1/2)
±O(ε2)

as long as n is large in terms of ε. We claim that taking the limit ε→ 0+ gives the result. To check
this, we note that for all ρ ≥ 0 we have

P
[∑

ℓ≥1

σ2ℓ (W
2
ℓ +W ′2

ℓ ) ≤ ρ
]
≤ P

[ ⋂

1≤ℓ≤5

σ2ℓ (W
2
ℓ +W ′2

ℓ ) ≤ ρ

]
≤

5∏

ℓ=1

(P[W 2
ℓ ≤ Kρ]P[W ′2

ℓ ≤ Kρ]) . ρ5

for an appropriate absolute constant K. Additionally,

P
[∑

ℓ≥1

σ2ℓ (W
2
ℓ +W ′2

ℓ ) ≥ ε−1
]
≤ exp(−ε−Ω(1))

by Theorem 4.6. Therefore, we can absorb the difference between g(y) and 1/y without any issue,
uniformly in the limit. That is,

lim
ε→0+

Eg

(( ⌊ε−8⌋∑

ℓ=1

σ2ℓ (W
2
ℓ +W ′2

ℓ )

)1/2)
= E

[(∑

ℓ≥1

σ2ℓ (W
2
ℓ +W ′2

ℓ )

)−1/2]

(note that g depends on ε here). Combining these final equalities with (9.11) and taking ε to go

slowly to 0, and letting (Wℓ,W
′
ℓ) =

√
Var[∆](Zℓ, Z

′
ℓ) for standard Gaussians Zℓ, Z

′
ℓ, we ultimately

deduce

(8πVar[∆])1/2nP[A ties B] = (Var[∆])−1/2E

[(∑

ℓ≥1

σ2ℓ (Z
2
ℓ + Z ′2

ℓ )

)−1/2]
+ o(1).

Rearranging, this agrees with the desired Theorem 1.8. �

We end by briefly discussing an (amusing) interpretation of the constant α corresponding to
ordinary least squares regression in the context of Brownian motion. The above proof implicitly
shows that given a fixed set of indices j1, . . . , jk, (~ejtM

∗
nX)1≤t≤k in distribution limits toward a

snapshot of a Brownian motion at the times jt/n where the Brownian motion is conditioned to end
at 0 at time 1 and conditioned to have total signed area under the Brownian motion equal to 0.
Note that then mina,b∈R(cj − a − bj)2 corresponds to approximating such a Brownian motion by
the best linear-function fit coming from Ordinary Least Squares regression. We leave making this
precise an exercise for the reader.
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