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DISTRIBUTION OF THE THRESHOLD FOR THE SYMMETRIC

PERCEPTRON

ASHWIN SAH AND MEHTAAB SAWHNEY

Abstract. We derive an explicit distribution for the threshold sequence of the symmetric binary
perceptron with Gaussian disorder, proving that the critical window is of constant width.

1. Introduction

We fix a real number κ > 0 throughout the rest of this paper.

Definition 1.1. Let Σn = {±1}n. Given an infinite sequence M = (Mj)j≥1 of vectors in R
n, let

Sj(M) := {x ∈ Σn : |〈x,Mj〉| ≤ κ
√
n}, Sm(M) :=

m⋂

j=1

Sj(M).

Furthermore, define the threshold τ = τ(M) as the first index such that

Sτ−1(M) 6= ∅ and Sτ (M) = ∅,
or +∞ if it does not exist. Let G = (Gj)j≥1 be a sequence of independent standard n-dimensional
Gaussian vectors, i.e., Gj ∼ N (0, In). The threshold for the symmetric binary perceptron with

Gaussian disorder is τ = τ(G) (note τ(G) < +∞ almost surely).

We note that the threshold as defined in Definition 1.1 is up to rescaling equivalent to the storage

capacity of the binary perceptron model. We have chosen to work with Gaussian disorder as it
marginally simplifies certain computations. The limiting distribution can immediately be extended
to Rademacher disorder, although various quantitative error terms will differ and the mean and
variance of an associated log-normal distribution Z∗ must be slightly changed.

We will require the following basic special functions.

Definition 1.2. Let Z,Z1, Z2 ∼ N (0, 1) be independent standard Gaussians. Let p = P[|Z| ≤ κ]
and define the critical value

αc := − log 2/ log p.

We also define

µ2 =
E[Z2

1|Z|≤κ]

p
, β = −

√
αc

2
(1− µ2).

Finally we define the pair probability function

q(γ) = P
[
|√γZ1 +

√
1− γZ2| ≤ κ ∧ |√γZ1 −

√
1− γZ2| ≤ κ

]
.

We note that −1/2 < β < 0 follows from [3, (3.8)]. We now state our main theorem.

Theorem 1.3. Let G and τ = τ(G) be as in Definition 1.1. There exists θ > 0 such that the

following holds for all sufficiently large n. Let Z∗ ∼ N (14 log(1− 4β2),−1
2 log(1− 4β2)) and choose

k with k + αcn ∈ Z. We have
∣∣∣∣P[τ ≤ k + αcn]− E

[
exp

(−eZ
∗

pk

2

)]∣∣∣∣ ≤ n−θ.

Sah and Sawhney were supported by NSF Graduate Research Fellowship Program DGE-1745302. Sah was sup-
ported by the PD Soros Fellowship. Sawhney was supported by the Churchill Foundation.
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Remark 1.4. The polynomial rate specified by Theorem 1.3 is essentially the limit of our method.
Combining the statement of Theorem 1.3 with the tails bounds given by Altschuler [3, Theorem 2],
one can prove that there exists C such that for any fixed q ≥ 1 and n large in terms of q:

E|τ − αcn|q ≤ Cq.

We also note that Theorem 1.3 disproves [3, Conjecture 1] since the upper tail P[τ ≥ k + αcn] is of
exponential type in k > 0.

1.1. Previous work. A toy model for neural networks, the (asymmetric) perceptron model has
been a model of substantial interest, in part stemming from conjectures on the asymptotic threshold
due to Krauth and Mezard [13]. Despite progress on a number of related problems, progress on the
perceptron has proved considerably more difficult. In this direction, groundbreaking work of Ding
and Sun [8] establishes the conjectural lower bound for the threshold and recent work of Xu [19]
has established an analog of Friedgut’s sharp threshold theorem [11] for such models (see work of
Nakajima and Sun [15] for an alternate proof). In particular these sharp threshold results establish
that for general perceptron models, τ typically lives within an interval of length o(n).

The symmetric perceptron model, introduced in work of Aubin, Perkins, and Zdeborová [4], has
proven to be considerably more tractable at a mathematical level due the availability of the moment
method applied directly to the number of solutions (while for the asymmetric perceptron model a
substantially more involved conditioning scheme is required). It provides a test-bed for various con-
jectural phenomena since the solution space geometries of symmetric and asymmetric perceptron are
expected to behave similarly. In particular, work of Aubin, Perkins, and Zdeborová [4] established
that w.h.p. τ < (αc + ǫ)n and with positive probability that τ > (αc − ǫ)n. The determination of
the threshold (with scaling window o(n)) at αcn with high probability was proven independently by
Abbe, Li, and Sly [2] and Perkins and Xu [17]1. Both the works of Abbe, Li, and Sly [2] and Perkins
and Xu [17] establish that log |Sm(G)| concentrates around logE[|Sm(G)|]. Furthermore, the work
of Abbe, Li, and Sly [2] establishes that Sm(G) has a log-normal distribution (when m is linearly
bounded away from the threshold) via a modification of “small subgraph conditioning” made suitable
for dense models. Finally, in recent work Altschuler [3] substantially improved the concentration
window by proving that the first and second moment of number of solutions at ⌈αcn⌉ match up
to a constant. Adapting the argument for concentration given by Perkins and Xu [17], Altschuler
derived that the window of concentration is O(log n) w.h.p. We refer the reader to [3, Section 2]
for a more extensive discussion of previous works on the threshold, discussion of threshold for more
general constraint satisfaction problems, and related work.

We also note that there has recently been work on understanding efficient algorithms for the
symmetric perceptron; in particular work of Abbe, Li, and Sly [1] proves that efficient algorithms can
find exponentially rare clusters at sufficiently low density and work of Gamarnik, Kızıldağ, Perkins,
and Xu [12] examines the limits of efficient algorithms for the symmetric perceptron through the
lens of the multi-Overlap Gap Property.

1.2. Stopping time and Poisson sampling heuristic. The key ingredient our in work is an early
stopping time argument, which combined with an understanding of the geometry of the remaining
solutions is sufficient to derive a distribution for the threshold. More precisely, define the (non-
random) cutoff time τpre = ⌊αcn−η log n⌋ for some sufficiently small constant η > 0. By mimicking
the techniques of Abbe, Li, and Sly [2] (for Gaussian disorder), one can prove that the number of
solutions to the perceptron at τpre follows a log-normal distribution; we note here that the fact that
the second and first moments match so close to the threshold is a critical insight found in the work
of Altschuler [3]. Furthermore, the moment computations of Altschuler (in particular the “frozen”

1We note that the work of Aubin, Perkins, and Zdeborová [4] and Perkins and Xu [17] was conditional on a
numerical hypothesis which was verified in the work of Abbe, Li, and Sly [2].
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nature of typical solutions) can be used to prove that all pairs of solutions are essentially orthogonal

(e.g. have dot product bounded in magnitude by n1/2 log n).
The crucial idea at this point is to note that since w.h.p. at τpre there are a small polynomial

number of solutions, the pairwise dot product of solutions being near zero can be translated to
near-independence of the event of whether these solutions will survive the next slices. In particular,
the total variation distance between the true distribution and a natural product distribution is
polynomially small. The desired result then follows noting that there are only logarithmically more
steps and thus the computation of the threshold sequence reduces to a computation with product
distributions: we have some set S of solutions at time τpre and each solution is retained for t− τpre
extra slices with probability pt−τpre , so an independence heuristic suggests that P[Bin(|S|, pt−τpre) =
0] is roughly the chance that we empty the solution set in t steps, where Bin denotes a binomial
random variable. In our regime, this can be approximated via a Poissonian heuristic that gives rise
to the expression in Theorem 1.3 (after incorporating the fact that |S|/E|S| satisfies a log-normal
distribution). We note that the strange factor of 2 arising in the distribution in Theorem 1.3 stems
from the fact that v ∈ S if and only if −v ∈ S.

We note that in implementing the above sketch in order to give polynomial error rates, the
primary difficulty is quantifying the work of Abbe, Li, and Sly [2] (and adjusting it to both handle
when the number of hyperplanes is near the threshold and to allow for Gaussian disorder). In
order to provide a quantitative rate we transform the necessary cycle count distributional claims
under conditional models to distributional questions about unconditioned Gaussian polynomials (via
orthogonal invariance of Gaussians and various expectation and variance computations) and then
provide quantitative rates via Stein’s method (in paricular through the use of exchangeable pairs),
rather than the method of moments used in [2]. We note one curious feature is that the distribution of
solutions at τpre, while still being log-normal, does not have the same mean and variance parameters
as the Rademacher case derived in [2]. The difference ultimately arises from the fact that if M ∼
N (0, 1), then M2 has nontrivial variance whereas M2 is constant if M ∼ Unif({±1}). (This
difference manifests in the need to track the degenerate 2-cycle count corresponding to k = 1 in
Definition 3.2; we note that the k = 1 expression in the Rademacher case would be deterministic,
hence the difference.)

We note that the methods of this paper appear to more generally applicable; in particular, our
approach can likely be adapted give a precise characterization of the threshold for solutions in
constrained k-XORSAT which was shown to have an O(1)-size scaling window by Pittel and Sorkin
[18] (see also [7, 9]). We intend to return to this subject in future work.

Organization. The remainder of the paper is organized as follows. In Section 2, we prove Theorem 1.3
conditional on the “strong freezing” of the solution space and on the log-normality of the number
of solutions (Proposition 2.1). This argument implements the main thrust of the paper outlined
in Section 1.2. We reduce Proposition 2.1 to a concrete moment computation (Lemma 2.7) in
Section 2.1. In Section 3, we state preliminaries used to verify the moment computation including
a suitable quantification of cycle count convergence as defined in the work of Abbe, Li, and Sly [2].
Finally, in Section 4, we prove the necessary moment estimates to imply Proposition 2.1, which in
turn closely follows the work of Altschuler [3] and Abbe, Li, and Sly [2].

Acknowledgements. We thank Will Perkins for bringing this problem to our attention and point-
ing out the work of Pittel and Sorkin [18], and for various useful comments on the draft. We also
thank Mark Sellke for finding a number of typos and Michael Ren for useful conversations.

Notation. All dependences of notation or asymptotics on κ have been suppressed, and we treat it
as a fixed absolute constant throughout the paper. We write f = O(g) to mean that f ≤ Cg for
some absolute constant C, and g = Ω(f) and f . g to mean the same. We write f = o(g) if for all
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c > 0 we have f ≤ cg once the implicit growing parameter (typically n) grows large enough, and
g = ω(f) means the same. Furthermore throughout this paper all logarithms are base e.

For positive semidefinite Σ ∈ R
d×d we let N (0,Σ) be the Gaussian vector with covariance matrix

Σ. A common choice is Σ = Id, the standard Gaussian vector with identity covariance. For a
discrete random variable X with nonzero probabilities p1, . . . , pm for its atoms, its entropy is

H(X) = −
m∑

i=1

pi log pi.

The Kullback–Leibler divergence between X,Y defined on the same atom set with probabilities
qi, ri respectively is

KL(X ‖ Y ) =

m∑

i=1

qi log
qi
ri

and we define the real function H(x) = H(Ber(x)) = −x log x − (1 − x) log(1 − x). If X,Y are
supported on R

d with probability densities q, r their KL divergence is

KL(q ‖ r) =

∫

Rd

q(x) log
q(x)

r(x)
dx.

For real matrices A and B, let

〈A,B〉 = tr(ATB), ‖A‖HS =
√

tr(ATA) =
√

〈A,A〉.
Furthermore for an order k tensor define

‖A‖op = sup
|vi|=1

|A(v1, v2, . . . , vk)|.

Finally for f ∈ Ck(Rn) define the kth derivative (tensor) operators evaluated at u1, . . . , uk ∈ R
n as

〈Dkf(x), (u1, . . . , uk)〉 =
∑

i1,i2,...,ik∈[n]

∂kf

∂xi1 . . . ∂xik
(u1)i1 . . . (uk)ik

and define
Mr(g) = sup

x∈Rn
‖Drg(x)‖op.

For a matrix A define ‖A‖2HS =
∑

i,j |aij |2.

2. Proof of Theorem 1.3

In order to derive our main result we will assume the following pair of structural properties of the
solution space and its size. Here and beyond, we fix some η > 0 that will be chosen small in terms
of only κ at the end of the argument. For now, we leave it unspecified in the various statements
that appear, merely using that it is sufficiently small in the proofs.

Proposition 2.1. There exists γ > 0 such that the following holds. Let τpre = ⌊αcn − η log n⌋.
For n sufficiently large, we have the following pair of estimates on the size of the solution space

X(G) := |Sτpre(G)| for n sufficiently large.

1. With probability at least 1 − n−1 there do not exist x1, x2 ∈ Sτpre(G) such that |〈x1, x2〉| ∈
[n1/2 log n, n− 1].

2. Let Z∗ = N (14 log(1− 4β2),−1
2 log(1− 4β2)). Then for all t ∈ R,

P

[
X(G)

EX(G)
≥ et

]
= P[Z∗ ≥ t]± n−γ.

We will also require the following tail bounds on the number of solutions. The second appears
explicitly as [3, Theorem 3] which in turns builds closely on work of Perkins and Xu [17].
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Proposition 2.2 ([3, Theorem 3]). We have the following.

1. For all t ≥ 0 we have

P[|St(G)| ≥ 1] ≤ 2npt.

2. There exists a constant c = c2.2 > 0 such that following holds. Fix H ≥ c−1. Suppose that

n is sufficiently large in terms of H. Then

P[S⌊αcn−H logn⌋(G) = ∅] ≤ exp(−cH log n).

We require the following basic bound on the total variation distance between a pair of normal
distributions.

Lemma 2.3. For positive definite symmetric matrices Σ1,Σ2 ∈ R
d×d, we have

2TV(N (0,Σ1),N (0,Σ2))
2 ≤ KL(N (0,Σ1) ‖ N (0,Σ2)) =

1

2

(
log(det(Σ2Σ

−1
1 ))− d+ tr(Σ−1

2 Σ1)
)
.

Proof. The first inequality is by Pinsker’s inequality (see e.g. [6, Lemma 2]), holding for general
distributions. The equality is a straightforward Gaussian integral (see e.g. [10, Page 13]). �

Now we prove Theorem 1.3 given these inputs.

Proof of Theorem 1.3. Let τpre, η and X(G) be as in Proposition 2.1. Let

E1 = {X(G) ≥ E[X(G)] · exp((log n)3/4)} ∪ {X(G) ≤ E[X(G)] · exp(−(log n)3/4)}
and

E2 = {|〈x1, x2〉| ∈ [n1/2 log n, n− 1] : x1, x2 ∈ Sτpre}.
We now reveal set S = Sτpre(G)∩{x : x1 = 1} and note that E1, E2, and X(G) are deterministic given

Sτpre(G). We note that Proposition 2.1 implies that P[E1 ∪ E2] ≤ n−Ω(1) (since |Z∗| ≤ (log n)3/4

occurs with super-polynomially good probability). We condition on a revelation of S such that
Ec
1 ∩ Ec

2 holds.
We now consider Gt for t ∈ (τpre, τpre + 2η log n] and consider the distribution induced by

{〈Gt, xi〉/
√
n : xi ∈ S, t ∈ (τpre, τpre + 2η log n]}.

Note that Gt are independent for t ∈ (τpre, τpre + 2η log n]. Let M denote a X(G)/2 by n matrix
where each row corresponds to an entry of S. Notice that for each t ∈ (τpre, τpre + ⌈2η log n⌉] we
have that

{〈Gt, xi〉/
√
n : xi ∈ S} ∼ N (0,MMT /n).

The crucial point is that since MMT /n is sufficiently diagonally dominant we will be able to prove
that the distribution is close in total variation distance to N (0, I|S|). To prove this, note that

‖MMT /n− I|S|‖2op ≤ ‖MMT /n− I|S|‖2F ≤ |S|2 max
x1,x2∈S
x1 6=x2

|〈x1, x2〉|2/n2

≤ |S|2 · n−3/4 ≤ n−1/2

due to Ec
2 holding and the fact that S does not simultaneously contain any pair {x,−x}.

This immediately implies that all the eigenvalues of MMT /n are of the form 1 ± n−1/4 and
therefore by Lemma 2.3 we have that

TV(N (0, I|S|),N (0,MMT /n)) ≤ (Tr(MMT /n)− |S|+ log(det(MMT /n)))/2

≤ |S|n−1/4 + |S| log(1 + n−1/4) ≤ n−1/5.

The last inequality comes from |S| = X(G)/2 ≤ EX(G) · exp((log n)3/4) ≤ nO(η) by the choice of
τpre, and assuming η is small enough.
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As we are restricting attention to t ∈ (τpre, τpre + ⌈2η log n⌉] we have that

TV(({〈Gt, xi〉/
√
n : xi ∈ S})t∈(τpre,τpre+⌈2η logn⌉],N (0, I|S|)

⊗⌈2η logn⌉)) ≤ n−1/6.

Since S satisfies Ec
1 ∪ Ec

2, this implies that for t ∈ (τpre, τpre + ⌈2η log n⌉] we have

P[St = ∅|Sτpre ] = (1− pt−τpre)X(G)/2 ± n−1/6.

We now choose a constant ρ > 0 which is sufficiently small with respect to η. We first isolate the
case where t ∈ [⌈αcn− ρ log n⌉, ⌈αcn+ ρ log n⌉]. Notice that we therefore have that

P[St = ∅] = P[St = ∅ ∩ (Ec
1 ∩ Ec

2)]± P[E1 ∪ E2]
= P[St = ∅ ∩ (Ec

1 ∩ Ec
2)]± n−Ω(1)

= E[(1− pt−τpre)X(G)/2
1Ec

1∩Ec
2
]± n−Ω(1)

= E

[
exp

(−pt−τpre ·X(G)

2

)
1Ec

1
∩Ec

2

]
± n−Ω(1).

The final equality requires justification: note that (1− p)t−τpre)X(G) ≤ 1, 1− x = e−x+O(x2) for all
|x| ≤ 1/2, and

exp(p2(t−τpre) ·X(G)) ≤ 1 + n−Ω(1)

by using that Ec
1 holds and some basic computation.

Let Z∗ be as in Proposition 2.1. This implies that

E

[
exp

(−pt−τpre ·X(G)

2

)
1Ec

1
∩Ec

2

]
=

∫ 1

0
P

[
exp

(−pt−τpre ·X(G)

2

)
1Ec

1
∩Ec

2
≥ u

]
du

=

∫ 1

0
P

[
exp

(−eZ
∗

E[X(G)]pt−τpre

2

)
≥ u

]
du± n−Ω(1)

= E

[
exp

(−eZ
∗

E[X(G)]pt−τpre

2

)]
± n−Ω(1)

= E[exp(−eZ
∗

2n−1pt)]± n−Ω(1).

This implies the desired result for t in the specified interval.
For t ≤ αcn− γ log n, we have that

P[|St| = ∅] ≤ P[|S⌊αcn−γ logn⌋| = ∅] ≤ n−Ω(1),

using what we have established for t = ⌊αcn−γ log n⌋ and explicitly computing E exp(e−Z∗

2n−1pt),
which implies the desired result in this range. Finally for t ≥ αcn+ γ log n, we have that

P[|St| 6= ∅] ≤ E[|St|] ≤ p(γ logn)/2 ≤ n−Ω(1)

from Proposition 2.2(1) which immediately implies the desired result in this range. This finishes
the proof. �

We also prove the remark following Theorem 1.3.

Proof of Remark 1.4. Fix q ≥ 1. Let τ∗ be the random variable such that P[τ∗ ≤ k + αcn] =

E
[
exp

(
− eZ

∗

pk

2

)]
for all choices of k+αcn ∈ Z. Taking H = 2qc−1 and applying Proposition 2.2(1,2),

we have that

E|τ − αcn|q ≤ E[|τ − αcn|q1|τ−αcn|≤H logn] + E[|τ − αcn|q1|τ−αcn|≥H logn]

≤ E[|τ − αcn|q1|τ−αcn|≤H logn] + (2αcn)
q exp(−2q log n) + E[τ q1τ≥2αcn]

≤ E[|τ − αcn|q1|τ−αcn|≤H logn] + n−q/2

≤ E[|τ∗ − αcn|q1|τ−αcn|≤H logn] + n−Ω(1)
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≤ E|τ∗ − αcn|q + n−Ω(1)

≤ Cq

Note that bounds derived on the upper tail for τ are an immediate consequence of Proposition 2.2(1)
and the final inequality follows from noting that τ∗ has subexponential tails by direct calculation. �

2.1. Reduction to normalized second moment computation. We now formally state the
second moment computation that we perform in the remainder of the paper and use these results to
prove Proposition 2.1. We first define the key random variables used for small graph conditioning
used in the definition of the moments.

Definition 2.4. The 2k-cycle count of a sequence of vectors M = (Mj)j≥1 is

Ck(m,M) =

(
1√
n

)k( 1√
m

)k ∑

i1,...,ik∈[n] distinct

j1,...,jk∈[m] distinct

k∏

i=1

Mjℓ,iℓMjℓ,iℓ+1
− 1k=1

√
mn,

where we let ik+1 = i1. Then the K-weighted cycle count is

YK(m,M) =

K∑

k=1

2(2β)kCk(m,M)− (2β)2k

4k
.

Remark 2.5. Notice that for k = 1, this is a shifted sum of squares of Gaussians. Such an expression
is trivial in the Rademacher setting and hence is not required in the work of Abbe, Li, and Sly [2].

We also define certain planted conditional distributions that are key in computing the moments.

Definition 2.6. For t ∈ [−n, n] with t ≡ n (mod 2) define vt = (1, . . . , 1,−1, . . . ,−1) ∈ R
n where

there are (n + t)/2 many 1s. Let ∆0 ∼ N (0, 1)⊗n. Let ∆1 be x ∼ ∆0 conditional on the event
{|〈x, vn〉| ≤ κ

√
n}. Let ∆2(t) be x ∼ ∆1 conditional on the further event {|〈x, vt〉| ≤ κ

√
n}. Then

let G(0) = G, which has its vectors drawn from ∆0, and let G(1) = (G
(1)
j )j≥1 have vectors drawn

independently from ∆1 and G(2)(t) = (G
(2)
j (t))j≥1 have vectors drawn independently from ∆2(t).

We have the following weighted moment estimate.

Lemma 2.7. There exists γ > 0 such that the following holds. Let m = τpre = ⌊αcn− η log n⌋ and

suppose n is large. With L = η log n, K = ⌈η log n⌉, and δ = n−γ we have

E

[
X(G)

exp(YK(m,G)1[YK(m,G) ≥ −L])

]
≥ (1− δ)EX(G) (2.1)

E

[
X(G)2

exp(2YK(m,G)1[YK(m,G) ≥ −L])

]
≤ (1 + δ)EX(G)2. (2.2)

Additionally, we have

∑

t∈[−(n−1),−n1/2 logn]∪[n1/2 logn,n−1]

2n
(

n

(n+ t)/2

)
P[vn, vt ∈ Sτpre(G)] ≤ exp(−(log n)3/2). (2.3)

To prove this moment estimate we will use Bayes’ theorem, requiring an understanding of the
L-weighted cycle count when the vectors of M are drawn from the planted conditional distributions.

Lemma 2.8. Let m = τpre = ⌊αcn− η log n⌋, K = ⌈η log n⌉, and |t| ≤ √
n log n. We define

V (M) :=

(
C1(m,M)√

2 · 1
, . . . ,

CK(m,M)√
2K

)
, µ :=

(
(2β)1√
2 · 1

, . . . ,
(2β)K√

2K

)
.
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For g ∈ C3(RK) and n sufficiently large we have

|E[g(V (G(0)))]− EZ∼N (0,IK))[g(Z)]| ≤ (M1(g) +M2(g) +M3(g))n
−1/5, (2.4)

|E[g(V (G(1))− µ)]− EZ∼N (0,IK))[g(Z)]| ≤ (M1(g) +M2(g) +M3(g))n
−1/5, (2.5)

|E[g(V (G(2)(t))− 2µ)]− EZ∼N (0,IK))[g(Z)]| ≤ (M1(g) +M2(g) +M3(g))n
−1/5, (2.6)

Now we prove Proposition 2.1.

Proof of Proposition 2.1. We prove each of the items of Proposition 2.1 in turn. For the first item
notice by linearity of expectation that

E[|{x1, x2 ∈ Sτpre(G) : |〈x1, x2〉| ∈ [−(n− 1),−n2/3] ∪ [n2/3, n− 1]}|]

=
∑

t∈[−(n−1),−n1/2 logn]∪[n1/2 logn,n−1]

2n
(

n

(n+ t)/2

)
P[vn, vt ∈ Sτpre(G)]

≤ exp(−(log n)3/2)

by using (2.3). The first item then follows immediately by Markov’s inequality.

For the second item, let X̃(G) = X(G)
exp(YK(m,G)1[YK(m,G)≥−L]) . By (2.1) and (2.2) we have that

E

[(
X̃(G)

E[X(G)]
− 1

)2]
≤ 3n−γ .

Therefore with probability 1−n−Ω(1) we have that X̃(G) = (1±n−Ω(1))E[X(G)]. Equivalently this

implies that with probability 1− n−Ω(1),

X(G)/E[X(G)] = (1± n−Ω(1)) exp(YK(m,G)1[YK(m,G) ≥ −L]).

The result then follows from Lemma 2.8: Yk(m,G) is a function of the coordinates of V (G), which
is close in test function distance to N (0, IK). Therefore, the distribution of X(G)/EX(G) ought to

look like an exponential of an appropriate Gaussian with mean
∑K

k=1
−(2β)2k

4k ≈ (1/4) log(1 − 4β2)

and variance
∑K

k=1

(
(2β)k√

2k

)2

≈ −(1/2) log(1 − 4β2) (these terms come from the linear expression

of YK(m,G) in terms of V (G)).
To make this quantitative, we choose appropriate bump functions g in (2.4) and use the fact that

Gaussian distributions are appropriately anticoncentrated; we omit the routine justification (see
e.g. [5, Lemma 7.1]; see also Section 4.1 for a similar computation). �

3. Preliminaries for moment computations

3.1. Estimates on Gaussian pair probabilities. We will require the following special function
estimates on the pair point probabilities derived in the work of Abbe, Li, and Sly [2] and in work
of Altschuler [3]. The first bullet is equivalent to the first bullet of [3, Lemma 3.1], the next three
bullets appear exactly as in [3, Lemma 3.1] (these were originally established in [2, Section 4.7]),
the fifth appears as [3, (4.6)], and the sixth appears as [3, (4.3)].

Lemma 3.1 (From [3, Lemma 3.1], [3, (4.6)], [3, (4.3)]). There exists ε = ε3.1 > 0 such that the

following hold. Let F (γ) := H(γ) + αc log q(γ).

S1 q′′(1/2) = 8κ2e−κ2

π
S2 F ′′(1/2) ≤ −ε.
S3 F (γ) is decreasing for γ ∈ [0, ε].
S4 For any 0 ≤ a ≤ b ≤ 1/2,

max
β∈[a,b]

F (γ) = max{F (a), F (b), F (1/2) − ε}.
8



S5

F (1/n) ≤ F (0) − ε/
√
n.

S6

(1− µ2)p =

√
2

π
κe−κ2/2

3.2. Quantification of Gaussian convergence. In order to prove the required Gaussian conver-
gence of the random variables YK , we will prove Lemma 2.8 in this section, essentially following the
approach of Abbe, Li, and Sly [2, Lemma 3.2]. We note their argument is written for Rademacher
disorder, and additionally in order to prove Remark 1.4, we will need to adapt various arguments in
order to prove a stronger convergence result. To do so, we proceed indirectly via a linear algebraic
change using the Gaussian structure. Specifically, we will first show that in a sense, sampling the
vectors of M from the conditional distributions ∆1 or ∆2(t) for |t| small (i.e., setting M = G(1) or

M = G(2)(t)) is very similar to sampling from ∆0 = N (0, In) (i.e., M = G(0) = G) up to a mean
shift. Then we will show the necessary multivariate central limit theorem for ∆0 using multidimen-
sional Stein’s method machinery adapted from Meckes [14]. As our argument essentially serves as a
more effective version of the bounds given in [2, Lemma 3.2] in the Gaussian case, we will be brief
with certain basic calculations.

To reduce to ∆0, we introduce a slightly more general cycle count which allows us to plug in
different conditional distributions.

Definition 3.2. Given M and −n < t < n with t ≡ n (mod 2), we define

σj,i(t,M) =
1

(n+ t)/2

(n+t)/2∑

i′=1

Mj,i′ , M̃j,i(t) = Mj,i − σj,i(t,M), for 1 ≤ i ≤ n+ t

2
,

σj,i(t,M) =
1

(n− t)/2

n∑

i′=(n+t)/2+1

Mj,i′, M̃j,i(t) = Mj,i − σj,i(t,M), for
n+ t

2
< i ≤ n.

If we are further given a sequence of Rn vectors σ = (σj)j≥1, we define

C̃k(m, t,M, σ) =
1

(mn)k/2

∑

i1,...,ik∈[n] distinct

j1,...,jk∈[m] distinct

k∏

ℓ=1

(
M̃jℓ,iℓ(t)+σjℓ,iℓ

)(
M̃jℓ,iℓ+1

(t)+σjℓ,iℓ+1

)
−1k=1

√
mn.

The key point of this definition is that

Ck(m,M) = C̃k(m, t,M, σ(t,M))

and the distributions of M̃(t) and σ(t,M) are independent in all relevant cases (namely M =

G(0), G(1), G(2)(t)). Furthermore, across all relevant cases we have that the distribution of M̃(t) is

identical, so the distributions of Ck(m,M) and C̃k(m, t,G, σ(t,M)) are identical. Thus it suffices
to understand the differences in the models via the parameters σ, which merely encode the average
of the first (n+ t)/2 and last (n− t)/2 elements of each vector. Therefore, we prove the following,
which essentially shows the resulting statistics V (M) are the same up to shifting of means.

Lemma 3.3. Let m = τpre = ⌊αcn − η log n⌋ and K = ⌈η log n⌉. Given 1 ≤ k ≤ K and |t| ≤√
n log n, we have

E
[
C̃k(m, t,G, σ(t,G(1)))− Ck(m,G)

]
= (1 + Õ(n−1))(2β)k , (3.1)

E
[
C̃k(m, t,G, σ(t,G(2)(t)))− Ck(m,G)

]
= (1 + Õ(n−1/4))2 · (2β)k, (3.2)

Var
[
C̃k(m, t,G, σ(t,G(1)))− Ck(m,G)

]
= O(n−5/6 Var[Ck(m,G)]), (3.3)

Var
[
C̃k(m, t,G, σ(t,G(2)(t)))− Ck(m,G)

]
= O(n−5/6 Var[Ck(m,G)]). (3.4)
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Proof. We define

ρ
(0)
1 = σ1,1(t,G

(0)), ρ
(0)
2 = σ1,n(t,G

(0))

and similar for G(1), G(2)(t). Note that σ1,i for all i ∈ {1, . . . , (n + t)/2} will give exactly ρ1
and σ1,i for all i ∈ {(n + t)/2 + 1, . . . , n} will give exactly ρ2. Furthermore, as we vary j in
σj,i, we do not have the exact same value but we have an independent value that is drawn from

the same distribution. For instance, note that ρ
(0)
1 = (G1,1 + · · · + G1,(n+t)/2)/((n + t)/2) and

ρ
(0)
2 some Gaussians, while (ρ

(1)
1 , ρ

(1)
2 ) have the distribution of (x, y) = (ρ

(0)
1 , ρ

(0)
2 ) conditioned on

|(n+ t)x/2 + (n− t)y/2| ≤ κ
√
n, and (ρ

(2)
1 , ρ

(2)
2 ) have the distribution of (x, y) = (ρ

(1)
1 , ρ

(1)
2 ) further

conditioned on |(n+ t)x/2− (n− t)y/2| ≤ κ
√
n.

We first note that

Eρ
(b)
1 = Eρ

(b)
2 = 0 (3.5)

for all b ∈ {0, 1, 2}, and

Eρ
(b)
1 ρ

(b)
2 = 0 (3.6)

for b ∈ {0, 2}. This can be seen from symmetry. Note that b = 1 does have some covariance.
Additionally, we have

E(ρ
(0)
1 )2 =

1

(n+ t)/2
, E(ρ

(0)
2 )2 =

1

(n− t)/2
.

Finally, we can compute

E(ρ
(2)
1 )2 = (1 + Õ(n−1/4))

2µ2

n+ t
, E(ρ

(2)
2 )2 = (1 + Õ(n−1/4))

2µ2

n− t
,

using that the distribution of (ρ
(2)
1 , ρ

(2)
2 ) is that of (ρ

(0)
1 , ρ

(0)
2 ), which are independent Gaussians,

conditional on two explicit linear inequalities. (The error term comes from the possible deviation
in t; if t = 0 these are easily seen to be precise equalities.)

We first consider (3.2) and (3.4). For the expectation, note that G,G(2)(t) are independent and

G,G(2)(t) are mean 0 (the latter since we are in the symmetric perceptron), so for k > 1

E[C̃k(m, t,G, σ(t,G(2)(t)))− Ck(m,G)] = E[C̃k(m, t,G, σ(t,G(2)(t)))]

=
1

(mn)k/2

∑

i1,...,ik∈[n] distinct

j1,...,jk∈[m] distinct

E

[ k∏

ℓ=1

(
G̃jℓ,iℓ + σjℓ,iℓ(t,G

(2)(t))
)(
G̃jℓ,iℓ+1

+ σjℓ,iℓ+1
(t,G(2)(t))

)]

=
1

(mn)k/2

∑

i1,...,ik∈[n] distinct

j1,...,jk∈[m] distinct

( k∏

ℓ=1

E[G̃jℓ,iℓG̃jℓ,iℓ+1
+ σjℓ,iℓ(t,G

(2)(t))σjℓ,iℓ+1
(t,G(2)(t))]

)

=
(m) · · · (m− k + 1)

(mn)k/2

∑

i1,...,ik∈[n] distinct

( k∏

ℓ=1

E[G̃jℓ,iℓG̃jℓ,iℓ+1
+ σjℓ,iℓ(t,G

(2)(t))σjℓ,iℓ+1
(t,G(2)(t))]

)
.

Now if any iℓ, iℓ+1 are not in the same group {1, . . . , (n + t)/2}, {(n + t)/2 + 1, . . . , n} then the
corresponding terms are 0 by (3.6). Thus we must either choose all iℓ to be in one group or the
other to have nonzero contribution. Additionally, the choice of j1, . . . , jk does not impact the inner
term, which implies

E[C̃k(m, t,G, σ(t,G(2)(t))) −Ck(m,G)] = E[C̃k(m, t,G, σ(t,G(2)(t)))]

=
(m) · · · (m− k + 1)

(mn)k/2

((
n+ t

2

)
· · ·

(
n+ t

2
− k + 1

)(
− 2

n+ t
+ E(ρ

(2)
1 )2

)k
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+

(
n− t

2

)
· · ·

(
n− t

2
− k + 1

)(
− 2

n− t
+ E(ρ

(2)
2 )2

)k)

= (1 + Õ(n−1/4))αk/2
c (2(µ2 − 1)k) = (1 + Õ(n−1/4))2(2β)k

We used that EG̃j,1G̃j,2 = −2/(n + t) and similar for the other index group. This establishes (3.2)
for k > 1. For k = 1, we again see EC1(m,G) = 0 so we obtain

m√
mn

( n∑

i=1

EG̃2
1,i + Eσ1,1(t,G

(2)(t))2 + Eσ1,n(t,G
(2)(t))2

)
−√

mn

=
m√
mn

(
n+ t

2
− 1 +

n− t

2
− 1 + (1 + Õ(n−1/4))(µ2 + µ2)

)
−√

mn = (1 + Õ(n−1/4))2(2β).

For (3.4), we easily compute Var[Ck(m,G)] = (1 + Õ(n−1))2k (using that cycle terms have
covariance 0 unless they represent the exact same cycle, and using that there are 2k ways to
represent each particular cycle). Thus it suffices to bound the desired variance by a smaller than
constant order. We expand and compute the order of magnitude of each covariance term that

appears. Writing X
(0)
j,i = Y

(0)
j,i = G̃j,i and X

(1)
j,i = σj,i(t,G

(2)(t)) and Y
(1)
j,i = σj,i(t,G), we have

Var[C̃k(m, t,G, σ(t,G(2)(t)))− Ck(m,G)]

≤ 22k

(mn)k

∑

b∈{0,1}2k
Var

[ ∑

i1,...,ik∈[n]
j1,...,jk∈[m]

( k∏

ℓ=1

X
(b2ℓ−1)
jℓ,iℓ

X
(b2ℓ)
jℓ,iℓ+1

−
k∏

ℓ=1

Y
(b2ℓ−1)
jℓ,iℓ

Y
(b2ℓ)
jℓ,iℓ+1

)]

by the Cauchy–Schwarz inequality. Now we compute the order of magnitude of a single contribution
corresponding to a fixed b ∈ {0, 1}2k . We obtain

∑

i,j,i′,j′

E

[( k∏

ℓ=1

X
(b2ℓ−1)
jℓ,iℓ

X
(b2ℓ)
jℓ,iℓ+1

−
k∏

ℓ=1

Y
(b2ℓ−1)
jℓ,iℓ

Y
(b2ℓ)
jℓ,iℓ+1

−E[·]
)( k∏

ℓ=1

X
(b2ℓ−1)
j′ℓ,i

′

ℓ
X

(b2ℓ)
j′ℓ,i

′

ℓ+1

−
k∏

ℓ=1

Y
(b2ℓ−1)
j′ℓ,i

′

ℓ
Y

(b2ℓ)
j′ℓ,i

′

ℓ+1

−E[·]
)]

(3.7)
where each · is replaced with the preceding difference of products and where i, j, i′, j′ are summing
over sequences of distinct values over the appropriate ranges.

To estimate this, we first consider the order of magnitude of an individual term. Any such term

is composed of values G̃j,i, σj,i. Furthermore, to avoid the expectation being 0, we must have an

even number of σj,i terms for each possible index j, and an even number of G̃j,i for each j. Note

that Eσ2a
j,i = Oa(n

−a) for either version of σ (coming from G(0), G(2)(t)). Additionally,

EG̃1,1G̃1,2 = O(1/n), EG̃1,1G̃1,2G̃1,3G̃1,4 = O(1/n2), EG̃2
1,1G̃1,3G̃1,4 = O(1/n)

follows from explicit computation.
Therefore, we easily find that (using independence of the random variables associated to different

j and using that every j can only appear once in (jℓ)ℓ∈[k], (j′ℓ)ℓ∈[k]):

E

[( k∏

ℓ=1

X
(b2ℓ−1)
jℓ,iℓ

X
(b2ℓ)
jℓ,iℓ+1

−
k∏

ℓ=1

Y
(b2ℓ−1)
jℓ,iℓ

Y
(b2ℓ)
jℓ,iℓ+1

− E[·]
)( k∏

ℓ=1

X
(b2ℓ−1)

j′ℓ,i
′

ℓ
X

(b2ℓ)
j′ℓ,i

′

ℓ+1

−
k∏

ℓ=1

Y
(b2ℓ−1)

j′ℓ,i
′

ℓ
Y

(b2ℓ)
j′ℓ,i

′

ℓ+1

− E[·]
)]

= (O(1/n))2k−t,

where r is the number of G̃2 terms that occur in the expanded product. We used that there
are 4k total terms X,Y in any resulting product (the inner expectation terms can be handled
similarly). This means that the 2k-cycle formed by (iℓ)ℓ∈[k], (jℓ)ℓ∈[k] and the 2k-cycle formed by

(i′ℓ)ℓ∈[k], (j
′
ℓ)ℓ∈[k] must overlap in at least r edges that form a G̃2. In the case r = 2k, note that we
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must have bℓ = 0 for all ℓ ∈ [2k] and then the fact that we subtract X,Y means that the term is in
fact precisely 0. Thus we may assume r < 2k. Therefore we may suppose these r ≥ 0 edges form
s ≥ 0 connected components which are all paths. The number of choices for i, j, i′, j′ is then easily
seen to be (O(k))O(s) · (O(n))4k−r−s. When s = 0, we have r = 0, and we can save an extra factor
of n compared to the bound (O(n))4k for the counting given above: if (jℓ)ℓ∈[k] and (j′ℓ)ℓ∈[k] share
no values, then the two parts of the covariance are independence and we obtain a 0 contribution,
so we can ignore the bulk of those terms. The number of ways to choose i, j, i′, j′ to have such an
overlap is at most k2m2k−1n2k = (O(n))4k−1.

Therefore, we deduce

Var[C̃k(m, t,G, σ(t,G(2)(t))) − Ck(m,G)]

≤
∑

r,s

22k

(mn)k
· 22k · (O(1/n))2k−r ·min{(O(k))O(s)(O(n))4k−r−s, (O(n))4k−1}

≤ (O(1))k ·min{(kO(1)/n)s, 1/n} ≤ n−5/6 Var[Ck(m,G)].

We used k = η log n where recall η > 0 will be chosen sufficiently small. This completes the
justification of (3.4) for k > 1; k = 1 is easily checked by hand.

For (3.1) and (3.3) the argument is similar, but the expectation computation is complicated by the

fact that Eρ
(1)
1 ρ

(1)
2 6= 0. In fact, instead of conditioning on the values M1+· · ·+M(n+t)/2,M(n+t)/2+1+

· · · +Mn that appear, it is easier to only condition on the total sum M1 + · · · +Mn (since we are
only conditioning on information related to it for this computation), and to modify Definition 3.2
appropriately. Additionally, since the value t plays no role if we compute the expectation this way,
we actually have the better error term listed in (3.1). However, we do omit these details here (note
that [2, Lemma 3.2] implies that our claimed mean shift is in fact what comes out of doing the
necessary computations). �

Finally, in order to prove the Gaussian convergence of Ck when the matrix is sampled from ∆0,
we rely on an argument based on exchangeable pairs and Stein’s method. Let us first define the
notion of a pair of exchangeable random variables.

Definition 3.4. X ′ and X are exchangeable random variables if (X ′,X) and (X,X ′) have the same
distribution.

The key probability theoretic statement we will use is a multivariate version of the method of
exchangeable random variables for proving convergence to a Gaussian. This form is due to Meckes
[14].

Theorem 3.5 (Specialization of [14, Theorem 3]). Let (X,X ′) be an exchangeable pair of random

vectors in R
d. Suppose that there is an invertible matrix Λ and a random matrix E′ such that

• E
[
X ′ −X

∣∣X
]
= −ΛX

• E
[
(X ′ −X)(X ′ −X)T

∣∣X
]
= 2Λ + E

[
E′∣∣X

]
.

Then for g ∈ C3(Rd),

∣∣Eg(X) − Eg(Z)
∣∣ ≤ ‖Λ−1‖op

[√
d

4
M2(g)E‖E′‖HS +

1

9
M3(g)E‖X ′ −X‖32

]
(3.8)

where Z is a standard Gaussian random vector in R
d.

We will need the following bound on moments of standard Gaussian random variables (which is
a special case of a phenomenon called hypercontractivity).
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Theorem 3.6 ([16, Theorem 9.21]). Let f be a polynomial in n variables of degree at most d. Let

~x = (x1, . . . , xn) either be a vector of independent Rademacher random variables or a vector of

independent standard Gaussian random variables. Then for any real number q ≥ 2, we have

E
[
|f(~x)|q

]1/q ≤
(√

q − 1
)d
E
[
f(~x)2

]1/2
.

Proposition 3.7. Let m = τpre = ⌊αcn − η log n⌋ and K = ⌈η log n⌉. We define V (M) as in

Lemma 2.8 and consider n sufficiently large. For g ∈ C3(RK), we have
∣∣Eg(V (G(0)))− EZ∼N (0,IK)g(Z)

∣∣ ≤ (M2(g) +M3(g))n
−1/4.

Proof. We now define the setup for our exchangeable pairs. Let

G = G(0) = (gj,i)(j,i)∈[m]×[n]

and
G′ = (gi,j)(j,i)∈([m]×[n])\I ∪ (gI)

where I is an index sampled from [m] × [n] uniformly at random and the gI is an independent
standard Gaussian. The exchangeable pair of random variables we will consider is:

V =

(
C1(m,G)√

2 · 1
, . . . ,

CK(m,G)√
2K

)
, V ′ =

(
C1(m,G′)√

2 · 1
, . . . ,

CK(m,G′)√
2K

)
.

Since I is a uniformly random element from [m]× [n] notice that

E[V ′ − V |V ] = −diag

(
2k − 1k=1

mn

)

k∈[K]

V

so define

Λ = diag

(
2k − 1k=1

mn

)

k∈[K]

.

In order to apply Theorem 3.5, we take

E′ = E[(V ′ − V )(V ′ − V )T − 2Λ|G]

and note that this satisfies the required condition for E′ as V is a measurable function of G.
We bound each of the terms appearing in (3.8). First, ‖Λ−1‖op = mn. Second, note that

E‖X ′ −X‖32 ≤ E

[( K∑

k=1

(Ck(m,G)− Ck(m,G′))2
)3/2]

≤ K1/2 · E
[ K∑

k=1

|Ck(m,G) − Ck(m,G′)|3
]

≤ n1/5 ·
K∑

k=1

(
E

[∣∣∣∣Ck(m,G) − Ck(m,G′)

∣∣∣∣
2])3/2

= n1/5 ·
K∑

k=1

(2k/(mn)E[Ck(m,G)2])3/2

≤ n−11/4

where we have applied Holder’s inequality, Theorem 3.6, and computed the variance using orthogo-
nality of various monomials in order to prove the desired result (note that all but at most 2k/(mn)
fraction of the monomials are canceled in Ck(m,G)− Ck(m,G′)).

Finally, we compute

E‖E′‖HS ≤ (E‖E′‖2HS)
1/2
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≤
(
2

∑

1≤k1<k2≤K

E
[
E[(Ck1(m,G)− Ck1(m,G′))(Ck2(m,G) − Ck2(m,G′))|G]2

]

+
∑

1≤k≤K

Var
[
E[(Ck(m,G) − Ck(m,G′))2|G]

])1/2

where we have used that 2k(E′)k,k = E[(Ck(m,G)−Ck(m,G′))2|G]− E[(Ck(m,G)−Ck(m,G′))2].
We now handle the off-diagonal and on-diagonal contribution separately. For ease of notation, given
an index I ∈ [m]× [n] we define

Ck(m,M, I) =

(
1√
n

)k( 1√
m

)k ∑

i1,...,ik∈[n] distinct

j1,...,jk∈[m] distinct

I∈⋃ℓ
k=1{(jℓ,iℓ),(jℓ,iℓ+1)}

k∏

i=1

Mjℓ,iℓMjℓ,iℓ+1
,

C∗
k(m,M, I) =

(
1√
n

)k( 1√
m

)k ∑

i1,...,ik∈[n] distinct

j1,...,jk∈[m] distinct

I∈⋃ℓ
k=1{(jℓ,iℓ),(jℓ,iℓ+1)}

∏

(j,i)∈⋃ℓ
k=1{(jℓ,iℓ),(jℓ,iℓ+1)}\I

Mj,i.

We consider the off-diagonal contribution first. We have

E
[
E[(Ck1(m,G)− Ck1(m,G′))(Ck2(m,G)− Ck2(m,G′))|G]2

]

=
1

m2n2
E

[( ∑

I∈[m]×[n]

Ck1(m,G, I)Ck2(m,G, I) + C∗
k1(m,G, I)C∗

k2(m,G, I)

)2]

≤ 2

m2n2
E

[( ∑

I∈[m]×[n]

Ck1(m,G, I)Ck2(m,G, I)

)2

+

( ∑

I∈[m]×[n]

C∗
k1(m,G, I)C∗

k2(m,G, I)

)2]
.

Note that as k1 6= k2, we have that Ck1(m,G, I)Ck2(m,G, I) and C∗
k1
(m,G, I)C∗

k2
(m,G, I) are mean

zero random variables. We will bound

E

[( ∑

I∈[m]×[n]

Ck1(m,G, I)Ck2(m,G, I)

)2]
.

Expanding, each term is of the form Ck1(m,G, I1)Ck2(m,G, I1)Ck1(m,G, I2)Ck2(m,G, I2). A term
contributes precisely if the monomial in G has all even powers. Furthermore, any Gj,i appears at
most 4 times, which means any contribution is of size at most 34K = (O(1))K . Therefore, we are
primarily interested in counting the number of nonzero terms that arise. We have a multigraph H
coming from layering two cycles of length k1 and two cycles of length k2, with possible overlaps
(including two guaranteed overlaps at edges I1, I2). Let there be v vertices, and let H ′ be the
multigraph formed by halving the multiplicities of H. Note that each vertex has at least two
outgoing edges to different vertices in H ′, and the total multiplicity of edges is 2k1 + 2k2. We
deduce that there are at most 2k1+2k2 vertices, with equality precisely when H ′ is a disjoint union
of cycles. However, H ′ must be connected and can be seen to not be a single cycle since k1 6= k2.
Thus in fact v ≤ 2k1 + 2k2 − 1.

If v ≤ 2k1 +2k2 − 8 log log n then there are at most (8k)8knv ≤ n2k1+2k2−4 choices of term, using
k ≤ η log n. Otherwise let r = 2k1 + 2k2 − v and note 1 ≤ r ≤ 8 log log n. We see that H ′ has at
most O(r) many vertices of degree at least 3, where we include multiplicity (since there are 2k1+2k2
edges with multiplicity, 2k1 +2k2 − r vertices, and each vertex has at least two distinct neighbors).

Notice that between such vertices, H ′ must have paths and there are at most Kr2 ways to choose
14



the sizes of all these paths. After doing so, there are 4O(K) ways to assign these edges to various
cycles. Finally, there are at most eO(K) ways to order these into cycles: outside of the r higher
degree vertices, we have bounded degree so a bounded number of choices for the next edge at every
stage, and among r ≤ 8 log log n = O(logK) vertices we have at most O(K) choices, for KO(logK)

choices. Since Kr2 = KO((logK)2) we easily find a total of at most (O(1))Kn2k1+2k2−1 total terms.
Plugging in, we find the contribution to (E‖E′‖HS)

2 from these off-diagonal terms is at most

1

m2n2
· (O(1))Kn2k1+2k2−1 ·

(
1

(mn)k1

)(
1

(mn)k2

)
.

The total contribution is at most n−5+1/6. The situation for C∗ is even simpler, and we can obtain
a bound of n−5+1/6 analogously. Additionally, this analysis is easily seen to hold when k1 = 1.

For the on-diagonal contribution, the analysis is quite similar. For k = 1, straightforward com-
putation gives a contribution to (E‖E′‖HS)

2 of at most O(n−6).
For k ≥ 2, note that we have

Var
[
E[(Ck(m,G)− Ck(m,G′))2|G]

]

=
1

m2n2
Var

[ ∑

I∈[m]×[n]

(Ck(m,G, I)2 + C∗
k(m,G, I)2)

]

≤ 2

m2n2

(
Var

[ ∑

I∈[m]×[n]

Ck(m,G, I)2
]
+Var

[ ∑

I∈[m]×[n]

C∗
k(m,G, I)2

])
.

As before we consider the C term, since the C∗ term can be analyzed analogously. We have

Var

[( ∑

I∈[m]×[n]

Ck(m,G, I)2
)]

= E

[( ∑

I∈[m]×[n]

Ck(m,G, I)2
)2]

− E

[ ∑

I∈[m]×[n]

Ck(m,G, I)2
]2
.

Again view this as an expansion into 4 overlapping cycles as in the off-diagonal case. Here however
as the two cycles in each pair coming from k1, k2 are isomorphic, one can overlap them perfectly,
which was not allowed in the prior analysis (which was used to argue that in fact v ≤ 2k1+2k2 − 1,
ruling out v = 2k1 + 2k2). In this remaining case, we can see the contribution is exactly cancelled
however by the subtracted term. The proof can thus proceed similarly to the off-diagonal case, and
we obtain a bound n−5+1/6 in this case as well.

Now we deduce

‖Λ−1‖op
(√

k

4
E‖E′‖HS +

1

9
E‖X ′ −X‖32

)
≤ mn(

√
log n(4n−5+1/6)1/2 + n−11/4) ≤ n−1/3,

and therefore Theorem 3.5 finishes. �

We are finally in position to deduce Lemma 2.8.

Proof of Lemma 2.8. The result is ultimately a straightforward combination of Lemma 3.3 and
Proposition 3.7. We prove the statement for G(2)(t); the proof in the other two cases are iden-
tical. Note that

E‖V (G(2)(t))− 2µ− V (G(0))‖2
≤ (E‖V (G(2)(t))− 2µ − V (G(0))‖22)1/2

≤
(
‖E[V (G(2)(t))− 2µ − V (G(0))]‖22 +

∑

1≤k≤K

Var[C̃k(m, t,G, σ(t,G(2)(t))) − Ck(m,G)]

)

≤ n−1/5
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where we have applied Lemma 3.3. This immediately implies that

|E[g(V (G(2)(t))− 2µ)− g(V (G(0))]| ≤ M1(g) · E[‖V (G(2)(t))− 2µ − V (G(0))‖2]
≤ M1(g) · n−1/5.

The desired result then follows from triangle inequality and Proposition 3.7. �

3.3. Miscellaneous estimates. Finally, we will additionally require the following basic estimate
on the binomial coefficient.

Claim 3.8. For 1 ≤ k ≤ n− 1 we have that
(
n

k

)
≤

√
n/(k(n − k)) exp

(
− k log

(
k

n

)
− (n− k) log

(
n− k

n

))
.

Furthermore for |k| ≤ √
n log n and n sufficiently large such that (n+ k)/2 ∈ Z, we have that

(
n

(n+ k)/2

)
=

2n
√
2√

πn
exp

(
− k2

2n
± n−1/2

)
.

4. Moment computations

In this section we prove Lemma 2.7 using the tools we have developed so far. We separate the
first and second moment computations.

4.1. First moment. We first prove the first moment.

Proof of (2.1). We choose a function h : R → [0, 1] which is 1 on [−L,∞], 0 on [−∞,−L − 1] and
in C∞(R). Notice that linearity of expectation yields E[X(G)] = 2npm and

E[X(G) exp(−YK(m,G)1[YK(m,G) ≥ −L])] ≥ E[X(G) exp(−YK(m,G)h(YK(m,G))]

= 2nE[1vn∈Sτpre(G) exp(−YK(m,G)h(YK (m,G))]

= 2npmE[exp(−YK(m,G(1))h(YK(m,G(1)))].

(Recall vn ∈ R
n is all 1s.) Note

YK(m,M) =

K∑

k=1

2(2β)kCk(m,M)− (2β)2k

4k
=

K∑

k=1

(2β)k√
2k

· Ck(m,M)√
2k

−
K∑

k=1

(2β)2k

4k
.

Viewing exp(−YK(m,G(1))h(YK(m,G(1))) as a function of Ck(m,G(1)) for k ∈ [K], by the product
rule we see that the function has first, second, and third derivatives of size O(n2η). Let Z ∼
N (µ∗, σ2) with

µ∗ =
K∑

k=1

(2β)k√
2k

· (2β)
k

√
2k

−
K∑

k=1

(2β)2k

4k
=

K∑

k=1

(2β)2k

4k
, σ2 =

K∑

k=1

(2β)2k

2k
.

Applying (2.5) of Lemma 2.8, we find that

E[X(G) exp(−YK(m,G)1[YK(m,G) ≥ −L])] ≥ 2npm(E[exp(−Zh(Z))]− n2η−1/6)

≥ 2npm(1− n−1/8)

where we have used that η is a sufficiently small constant in the final bound, and that

E exp(−Zh(Z)) = (1± n−2)E exp(−Z) = (1± n−2) exp

(
− µ∗ +

σ2

2

)
= 1± n−1/2. �
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4.2. Second moment. The second moment computation in Lemma 2.7 closely follows the com-
putation given in the work of Abbe, Li, and Sly [2]; we thus provide a proof tracking quantitative
aspects but omitting various routine calculations. We first prove (2.3) which handles the majority
of the range of overlaps; here our approach is essentially identical to that of Altschuler [3].

Proof of (2.3). By Claim 3.8, symmetry, and independence of the vectors of G note that

∑

t∈[−(n−1),−n1/2 logn]∪[n1/2 logn,n−1]

2n
(

n

(n+ t)/2

)
P[vn, vt ∈ Sτpre(G)]

≤ 2n
∑

t∈[n1/2 logn,n−1]

2n exp(nH(1/2 + t/(2n)))P[vn, vt ∈ Sτpre(G)]

= 2n
∑

1≤t≤n/2−√
n logn

2n exp(nH(t/n))(q(t/n))m

≤ n2
∑

1≤t≤n/2−√
n logn

2n exp(nH(t/n))(q(t/n))αcn

where we have used that by the Gaussian correlation inequality that q(t) ≥ q(1/2) = P[|Z| ≤ κ]2 > 0
and that η is a sufficiently small constant. We first handle 1 ≤ t ≤ ǫn/2. Notice that

∑

1≤t≤ǫn/2

2n exp(nH(t/n))(q(t/n))αcn ≤ n · max
1/n≤t≤ǫ/2

2n exp(nH(t/n)) · (q(t/n))αcn

≤ n · 2n exp(nH(1/n)) · (q(1/n))αcn

≤ n · exp(−Ω(
√
n)).

We have implicitly used S3 and S5 from Lemma 3.1 as well as the fact that q(0)αcn = pαcn = 2−n.
Next, notice that the function F (γ) is easily seen to have bounded derivatives away from the

endpoints of the interval [0, 1] and therefore as F ′(1/2) = 0 (by symmetry) and F ′′(1/2) ≤ −ε (S2),
we have that there exists δ > 0 such that

F (1/2 + τ) ≤ F (1/2) − δτ2

for |τ | ≤ δ. This implies that
∑

(1/2−δ)n≤t≤n/2−√
n logn

2n exp(nH(t/n))(q(t/n))αcn

≤ n · 2n(F (1/2) − δ(log n)2/n)n ≤ exp(−(log n)5/3)

given that n is sufficiently large. Finally for the intermediate range, note that
∑

ǫn/2≤t≤(1/2−δ)n

2n exp(−nH(t/n))(q(t/n))αcn ≤ n · 2n · max
ǫ/2≤β≤1/2−δ

F (β)n

≤ exp(−Ω(n))

where we have used S4 with a = ε, b = 1/2− δ (the above analysis demonstrates that F (ε) < F (0)
and F (1/2 − δ) ≤ F (1/2) − δ3). �

We now handle the second moment in full generality.

Proof of (2.2). Notice that linearity of expectation and conditioning gives

E[X(G)2 exp(−2YK(m,G)1[YK(m,G) ≥ −L])]

=
∑

−n≤t≤n
(n+t)/2∈Z

2n
(

n

(n+ t)/2

)
P[vn, vt ∈ Sτpre(G)]E[exp(−2YK(m,G(2)(t))1[YK(m,G(2)(t)) ≥ −L])].
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We first handle the range when n1/2 log n ≤ |t| ≤ n− 1. By (2.3) we have that

∑

n1/2 logn≤|t|≤n−1
(n+t)/2∈Z

2n
(

n

(n+ t)/2

)
P[vn, vt ∈ Sτpre(G)]E[exp(−2YK(m,G(2)(t))1[YK(m,G(2)(t)) ≥ −L])]

≤ exp(2L) ·
∑

n1/2 logn≤|t|≤n−1
(n+t)/2∈Z

2n
(

n

(n+ t)/2

)
P[vn, vt ∈ Sτpre(G)]

≤ n2η exp(−(log n)3/2) ≤ exp(−(log n)4/3)

which is decaying faster than any polynomial. We next handle the case where t = ±n; notice the
contribution in this case is

2 · 2nP[vn ∈ Sτpre(G)]E[exp(−2YK(m,G(2)(n))1[YK(m,G(2)(n)) ≥ −L])]

= 2E[X(G)] · E[exp(−2YK(m,G(1))1[YK(m,G(1)) ≥ −L])]

. E[X(G)] ≤ n−Ω(1)
E[X(G)]2.

We used (2.5) of Lemma 2.8 with an appropriate test function g (an exponential of a linear func-
tion with smooth cutoff) to bound the quantity E[exp(−2YK(m,G(1))1[YK(m,G(1)) ≥ −L])] by
a constant, similar to in the proof of (2.1). The final inequality follows since τpre is such that

EX(G) = nΘ(η) is of polynomial size.

Finally we handle the case where |t| ≤ n1/2 log n. For the sake of brevity, we define Ỹ (t) =

E[exp(−2YK(m,G(2)(t))1[YK(m,G(2)(t)) ≥ −L])]. Now

∑

|t|≤n1/2 logn
(n+t)/2∈Z

2n
(

n

(n + t)/2

)
P[vn, vt ∈ Sτpre(G)]Ỹ (t)

=
∑

|t|≤n1/2 logn
(n+t)/2∈Z

4n
√
2√

πn
exp

(
− t2

2n
± n−1/2

)
q

(
n+ t

2n

)m

Ỹ (t)

= q(1/2)m−αcn
∑

|t|≤n1/2 logn
(n+t)/2∈Z

4n
√
2√

πn
exp

(
− t2

2n
± n−1/4

)
q

(
n+ t

2n

)αcn

Ỹ (t)

= q(1/2)m−αcn
∑

|t|≤n1/2 logn
(n+t)/2∈Z

4n
√
2√

πn
exp

(
− t2

2n
± n−1/4

)(
q

(
1

2

)
+

t2q′′(1/2)
8n2

± n−5/4

)αcn

Ỹ (t)

= q(1/2)m−αcn
∑

|t|≤n1/2 logn
(n+t)/2∈Z

4n
√
2√

πn
exp

(
− t2

2n
± n−1/6

)(
q

(
1

2

)
+

t2q′′(1/2)
8n2

)αcn

Ỹ (0).

We used Claim 3.8 in the first line, used that q(·) has bounded first, second, third derivatives in the

neighborhood of 1/2 in the second and third lines, and that Ỹ (t) = (1 ± n−2/11)Ỹ (0) (which is an
immediate consequence of Lemma 2.8 and an argument identical to that in the proof of (2.1)) in
the final line.
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Continuing,

q(1/2)m−αcn
∑

|t|≤n1/2 logn
(n+t)/2∈Z

4n
√
2√

πn
exp

(
− t2

2n
± n−1/6

)(
q

(
1

2

)
+

t2q′′(1/2)
8n2

)αcn

Ỹ (0)

= 4np2mỸ (0)
∑

|t|≤n1/2 logn
(n+t)/2∈Z

√
2√
πn

exp

(
− t2

2n
± n−1/6

)(
1 +

t2q′′(1/2)
8n2p2

)αcn

= 4np2mỸ (0)
∑

|t|≤n1/2 logn
(n+t)/2∈Z

√
2√
πn

exp

(
− t2

2n
+

t2q′′(1/2)αc

8np2
± n−2/13

)

≤ (1 + n−1/7)E[X(G)]2Ỹ (0)
∑

t∈Z

1√
2πn

exp

(
− t2

2n
+

t2q′′(1/2)αc

8np2

)

= (1 + n−1/7)E[X(G)]2Ỹ (0)
∑

t∈Z

1√
2πn

exp

(
− t2

2n
+

t2κ2e−κ2

αc

πnp2

)

= (1 + n−1/7)E[X(G)]2Ỹ (0)
∑

t∈Z

1√
2πn

exp

(
− t2

2n
+

t2αc(1− µ2)
2

2n

)

= (1 + n−1/7)E[X(G)]2Ỹ (0)
∑

t∈Z

1√
2πn

exp

(
− t2(1− 4β2)

2n

)

= (1± n−1/8)E[X(G)]2Ỹ (0)
1√
2π

∫ ∞

−∞
exp

(
− x2(1− 4β2)

2

)
dx

= (1± n−1/8)E[X(G)]2Ỹ (0)
1√

1− 4β2

where we have used that q(1/2) = p2, the values of q′′(1/2), (1 − µ2)p and identities relating this
value to β via S1 and S6 of Lemma 3.1, and finally using the Euler–Maclaurin formula to transfer
from the final sum to an integral.

The final remaining task is therefore to bound

Ỹ (0) = E[exp(−2YK(m,G(2)(0))1[YK(m,G(2)(0)) ≥ −L])].

Note that YK(m,G(2)(0)) is approximately normally distributed as Z ∼ N (µ∗, σ2) with

µ∗ =
K∑

k=1

(2β)k√
2k

· 2(2β)
k

√
2k

−
K∑

k=1

(2β)2k

4k
=

K∑

k=1

3(2β)2k

4k
, σ2 =

K∑

k=1

(2β)2k

2k
.

Via an argument essentially identical to that in the proof of (2.1), we have that

Ỹ (0) = (1± n−1/4)E[exp(−2Z)]

= (1± n−1/4) exp(−2µ∗ + 2σ2)

= (1± n−1/4) exp

(
−

K∑

k=1

(2β)2k

2k

)

= (1± n−Ω(1))
√

1− 4β2.

Finally, putting everything together we have

E[X(G)2 exp(−2YK(m,G)1[YK(m,G) ≥ −L])] ≤ n−Ω(1)
EX(G)2+e−(log n)4/3+(1±n−Ω(1))EX(G)2,
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so the desired result follows immediately. �
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