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THE EXISTENCE OF SUBSPACE DESIGNS

PETER KEEVASH, ASHWIN SAH, AND MEHTAAB SAWHNEY

Abstract. We prove the existence of subspace designs with any given parameters, provided that
the dimension of the underlying space is sufficiently large in terms of the other parameters of the
design and satisfies the obvious necessary divisibility conditions. This settles an open problem from
the 1970s. Moreover, we also obtain an approximate formula for the number of such designs.

1. Introduction

A widely circulated problem in the 1970s asked for vector space analogues of combinatorial
designs, whereby combinatorial designs could be considered as designs in vector spaces over the
‘field with one element’. This problem arose during an exciting time in the history of combinatorial
designs, when Wilson [35] proved the graph case of the Existence Conjecture (a problem posed
by Steiner in the 19th century, eventually resolved by Keevash [23]). In an early article on the
general algebraic problem, Cameron [7] gave his ‘commentary’ on the combined efforts of many
researchers, including Petrenjuk, Wilson, Ray-Chaudhuri [4], Noda, Bannai, Delsarte [8], Goethals,
and Seidel. Cameron remarked that subspace 1-designs (spreads) are ‘common’, but there were no
known non-trivial subspace t-designs with t > 1.

This problem has recently seen considerable progress, following a renewed interest due to its
connections with Network Coding (see [12,17]) and advances in techniques, including computational
methods for finding explicit examples and probabilistic methods for obtaining general results. To
discuss progress on the problem to date we require the following definitions. Let Fq be a finite field
of order q. Let Grq(n, r) denote the set of r-dimensional subspaces (‘r-spaces’) of the n-dimensional
vector space Fnq . An (n, s, r, λ)q-design consists of a subset of Grq(n, s), called blocks, such that
each r-space is contained in exactly λ blocks. This definition captures the established meaning of
‘subspace design’ in Combinatorics and in Network Coding, although we remark that there is also a
large literature in Theoretical Computer Science on a similar but weaker notion of ‘subspace design’
(replace ‘exactly’ by ‘at most’) introduced by Guruswami and Xing [18].

There are some parallels between the histories of subspace designs and combinatorial designs.
Indeed, for combinatorial designs it was a longstanding open problem, resolved by Teirlinck [33], to
show the existence of non-trivial (n, s, r, λ)-designs for all r and some λ (where ‘non-trivial’ means
that s > r and not all s-sets are blocks). Similarly, the existence of non-trivial (n, s, r, λ)q-designs for
all r and some λ was a longstanding open problem, resolved much more recently by Fazeli, Lovett,
and Vardy [13]. This general result was preceded by various explicit constructions; for details of
these we refer to the survey by Braun, Kiermaier, and Wassermann [6]. While Teirlinck used an
explicit construction, the construction in [13] is probabilistic (adapting a method of Kuperberg,
Lovett, and Peled [27]), and requires λ ≥ qCrn.

The parallels continue for Steiner systems, where for many years after Teirlinck’s result the
existence of (n, s, r)-designs with s > r ≥ 3 was only known in sporadic cases, and the existence of
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any examples for r ≥ 6 was unknown until the general result of [23]. The situation for (n, s, r)q-
designs was even more dire, and was highlighted by Kalai [21] as one of the most important open
problems remaining in Design Theory. It was conjectured by Metsch [29] that no such designs with
s > r > 1 exist. This was recently disproved by Braun, Etzion, Östergård, Vardy, and Wassermann
[5], who developed improved computational methods to find (13, 3, 2)2-designs. However, there were
no known examples for any other parameters, let alone any general results.

In this paper we remedy this situation by completely answering the question: we show the
existence of (n, s, r)q-designs for any prime power q and s > r ≥ 1. Moreover, our result is
analogous to Keevash’s, in that we show the existence of (n, s, r)q-designs for all sufficiently large
n satisfying the necessary ‘divisibility conditions’. Here recall the Gaussian q-binomial

[n
k

]

q
, the

number of Fq-subspaces of Fnq of dimension k, also given by the formula
[

n

k

]

q

=
(qn − 1) · · · (q1 − 1)

(qk − 1) · · · (q1 − 1)(qn−k − 1) · · · (q1 − 1)
.

Definition 1.1. Let q be a prime power and let Fnq be the n-dimensional vector space over Fq. For
s > r and λ ≥ 1, an (n, s, r, λ)q-design is a multicollection S of s-dimensional subspaces such that
every r-dimensional subspace is contained in exactly 1 space in S. We say it is simple if there are
no repeated s-spaces.

Theorem 1.2. Fix q, s, r. For n ≥ n1.2(q, s) such that
[

s−i
r−i

]

q
|
[

n−i
r−i

]

q
for all 0 ≤ i ≤ r − 1 there is

an (n, s, r)q-design.

Remark. Additionally, one can prove an analogue for “sufficiently pseudorandom” collections of
r-dimensional subspaces, similar in spirit to [23, Theorem 1.10] (with certain q-analogues of pseu-
dorandomness conditions, as we will see in Section 3.1). However, we do not pursue this extension
here.

We also prove a counting version as a simple corollary of the proof.

Corollary 1.3. Under the assumptions of Theorem 1.2, for n ≥ n1.3(q, s) the number of (n, s, r)q-
designs is

(

(1± q−c1.3(r,s)n)

[

n−r
s−r

]

q

exp(
[

s
r

]

q
− 1)

)[nr]q/[
s
r]q
.

The situation when λ > 1 is very similar, with a few added considerations regarding simplicity
and the approximate covering step. We briefly sketch the necessary changes in Section 12, but the
majority of focus and discussion everywhere else will be regarding Theorem 1.2.

Theorem 1.4. Fix q, s, r, λ. For n ≥ n1.4(q, s, λ) such that
[s−i
r−i

]

q
| λ

[n−i
r−i

]

q
for all 0 ≤ i ≤ r − 1

there is a simple (n, s, r, λ)q-design.

We now briefly discuss at a high level some of the new techniques involved in this result. A more
detailed proof outline and guide to the structure of the paper is given in Sections 2 and 2.9.

1.1. New techniques: absorption in rigid algebraic scenarios. Classic methods such as the
Rödl nibble for hypergraph matchings or more recent results can easily be seen to give an “ap-
proximate” version, i.e., a collection of s-dimensional spaces which cover 1 − o(1) fraction of the
r-spaces exactly once, and the remainder is uncovered. Therefore, as is typical, the key issue is
dealing with the remainder. The most general form of this is the idea of absorption, often credited
to fundamental work of Erdős, Gyárfás, and Pyber [10], and extended by Rödl, Ruciński, and Sze-
merédi [32]. One sets aside some structure before attempting to solve a decomposition problem.
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Then, after approximately decomposing everything else, the remainder is small enough so that it
can be handled in conjunction with the absorbing structure (akin to a sponge absorbing water).

Several traditional methods of absorption involved setting aside essentially randomly found struc-
tures to work with, which often are robust enough for the desired situation. However, for the problem
of constructing Steiner systems, such absorbers are not sufficient for the task due to the sparsity
of usable “local switches” to work with in such structures (and a similar phenomenon holds in our
setting, to a worse degree). The work of Keevash [23] introduced a powerful idea of randomized
algebraic constructions to use as templates to construct Steiner systems in general. The method of
iterative absorption (introduced by Kühn and Osthus [26] and Knox, Kühn, and Osthus [25]) was
also adapted by Glock, Kühn, Lo, and Osthus [15] to construct Steiner systems; however, as we will
briefly discuss later, this technique appears to be less suitable in our setting.

In our situation, algebraic structure is already inherently present. In fact, the rigidity of subspaces
of a ground vector space compared to subsets of a ground set means that we are more restricted in
various ways. One can still perform approximate decompositions via the Rödl nibble (or the more
modern technique of random removal processes seen in Section 9), since this can be seen purely
from a hypergraph matching perspective, and we develop a framework for working with notions
of embedding, pseudorandomness, and “typicality” in q-analogues of hypergraphs, which we call q-
systems (Section 3.1). We note that even the interactions between pseudorandomness conditions and
counts of various “q-embeddings” already highlight the inherently subtle linear-algebraic nature of
the problem; see e.g. Lemma 3.5 which must account for certain “twists” when iteratively embedding
q-systems. Furthermore, when it comes to the template and the absorption process, the fact that
we are already forced to work with Fq-subspaces of Fnq poses substantial challenges.

The template, in this setting a special set of r-dimensional subspaces coming from a collection of s-
spaces, is formed via a randomized algebraic process as in [23], but we are focused on making entire
vector spaces play nice with respect to each other. Furthermore, one must ensure the template
is sufficiently generic (in the sense of Definition 3.11) to work with and the necessary algebraic
constructions may not exist over Fq directly. Thus, we must pass to a field extension L/Fq and put
an L-space structure on Fnq . In cases where n is not divisible by any small number, say n is prime,
this is not directly possible and we ultimately embed multiple incompatible L-structures on vector
spaces of finite codimension (Section 3.5).

For the absorption process itself, after creating an approximate decomposition, the remainder
(or leave) is covered in a way such that some r-dimensional subspaces in the template are covered
exactly twice. Then we attempt to remove certain template s-spaces and reconfigure the rest in a
way that removes the extra multiplicity from this spillover. To do this, we find a “signed integral
decomposition” of the spillover by understanding certain associated lattices, and we furthermore
guarantee that it is appropriately bounded (Definition 5.1). Then we use a “subspace exchange
process” to massage this integral decomposition into a form amenable to absorption using the
template structure. The latter bears similarity to the “clique exchange” of [23], although the q-
analogue and multiple L/Fq-structures pose various new technical difficulties.

However, the integral decomposition is significantly hampered by the rigidity of the subspace
setting. For Steiner systems, the key associated lattice is defined by relatively simple divisibility
conditions (due to work of Graver and Jurkat [16] and of Wilson [34]) and it in fact has a particularly
natural “bounded” generating set to work with, formed by certain “octahedral” structures (see
e.g. [23, Section 5]). However, work of Ray-Chaudhuri and Singhi [30] shows that lattices associated
to (n, s, r)q-designs are not nearly so nice. As a result, we work with a greedily designed bounded
approximate generating set, and introduce a way to boost this approximate behavior by using
multiple copies to “cover gaps”. Furthermore, many arguments using the symmetry of all vertices in
Kn are hampered by the less robust symmetries available in our setting, so here and elsewhere we
often resort to delicate moment computations instead of more standard concentration of measure
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arguments which do not apply. See Section 2.4 for further discussion of the bounded integral
decomposition and its role in the proof, and see Section 5.2 for further detail on this boosting.

Finally, we remark that despite the challenges posed by using a randomized algebraic template,
the iterative absorption method seemed less amenable in this setting. For instance, at a high level,
the “cover-down” procedure in [15] is not clearly compatible with the algebraic setting, since an
r-space will intersect a subspace of Fnq (that we may be trying to “zoom in towards”) in another sub-
space, which constrains the intersection types that may appear when treating this as a hypergraph
problem; these intersection types do not appear to play well together as nicely as in the Steiner
system scenario. Of course, there may be ways to use the vector space and dimensional structure to
proceed, but the aforementioned complicated structure of the underlying associated lattices [30] in
our setting suggest that at the very least, more work must be done if it is possible to accommodate
such an approach.

Acknowledgements. We thank Zach Hunter for pointing out an error in the previous version of
the proof of Lemma 5.9.

2. Proof strategy

We now outline the proof strategy in more detail. At a basic level we wish to run a random
subspace removal process to cover almost all r-spaces, and then cover the rest using an absorber.
Of course, as in the case of Steiner systems, the key issue is precisely what sort of absorption
strategy will suffice. As in the work of Keevash [23], we will take an algebraic approach: we plant
a well-structured template first, cover most of the remainder, and then absorb the rest into this
template using a robust quantity of local switches. Throughout, we let V = Fnq .

2.1. Algebraic template. The s-template Stem, precisely constructed in Definition 6.2, is a set
of s-spaces coming from a linear algebraic construction. This yields an underlying set of r-spaces,
Gtem, which are covered by this collection.

This construction is obtained from the following observation: if N ∈ Fs×rq has the property that
ΠN is invertible for every Π ∈ Fr×sq of rank r, then the multiset

{{spanFq
(Nx) : x ∈ V r and dim spanFq

(Nx) = s}}

provides an (n, s, r, λ)q-design (not necessarily simple) for some appropriate λ. Here the span of a
column vector with coordinates in V refers to taking the Fq-span of its s coordinates treated as a
set. Indeed, for every r-space R, there are a fixed number of possible Fq-bases b ∈ Rr and for each
Π ∈ Fr×sq of rank r each possible such b shows up as the value ΠNx = b for precisely one x by
invertibility of ΠN .

Therefore, if we sample the construction in a way that forces no r-space to be repeated, then
we will have a partial design appearing as a dense subset of a rigid algebraic structure. In reality,
we will further subsample this collection (at a rate depending on a parameter τ which ultimately
will be chosen to be q−cn) in order to ensure removing the template does not significantly limit our
options. We can enforce that no r-space is repeated by having each space R ∈ Gr(V, r) choose “how
it wants to be included in the template” so that only 1 out of the λ possible “configurations” can
possibly appear. A similar concept of sampling the template (called activation and used in a more
general situation) and using configurations to reduce multiplicity (called compatibility) appears in
[23, Definition 3.2].

However, note that if s, r are large and q is small then the desired matrix N may not exist.
Thus, we must actually consider a field extension L = Fqℓ of Fq for appropriate ℓ large enough
that such N ∈ Ls×r will exist (only with respect to Π with coefficients in Fq). In particular, an
algebraically generic choice of N works. If ℓ|n then it is possible to give V = Fnq the structure
of an (n/ℓ)-dimensional L-space and make sense of the matrix product Nx. When ℓ ∤ n, though,
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we can only do this on a subspace of V of bounded codimension. For this reason, and in order to
ensure the template is fully spread throughout V and not concentrated in one location, we actually
plant z = n2 different copies of the template within z different L-structures of randomly chosen
bounded codimension subspaces of V . For clarity of notation, we fix a single L-vector space K of
L-dimension ⌊n/ℓ⌋ (and Fq-dimension ℓ⌊n/ℓ⌋) and consider uniformly random injective linear maps
ι1, . . . , ιz : K → V . The indices i ∈ [z] for the different copies of the template will often be referred
to as colors, so that we can have a notion of monochromatic and rainbow s-spaces.

Finally, we explain in Section 2.7 exactly why this rigid algebraic structure leads to robust
switches which allow for absorption.

2.2. Approximate design. Having set aside the r-spaces Gtem, the next step is to construct an
approximate (n, s, r)q-design (avoiding the template). We do this by running a random process to
create an approximate matching in the

[s
r

]

q
-uniform hypergraph defined as follows: vertices are r-

spaces other than Gtem, and edges are labeled by s-spaces with the edge containing precisely vertices
corresponding to the r-dimensional subspaces (so we must restrict to s-spaces whose r-dimensional
subspaces are all not in Gtem).

Naively, one might run the following process: uniformly at random select a hyperedge covering
a set of yet-uncovered vertices and iterate until this is no longer possible. However, it is convenient
to terminate the process the moment the remaining induced hypergraph is sufficiently irregular in
an appropriate sense. Additionally, more importantly, we care greatly about the time for which we
can control this process (and specifically the number of r-spaces in the remainder). With this basic
process, the size of the remainder will be small, but dependent on the initial irregularity coming
from removing Gtem. Thus, the remainder will not be smaller than the size of the template, which
poses a problem for our absorption strategy.

Hence, there is an additional step where we find a subset of hyperedges which is regularized to
account for these minor irregularities, allowing us to control the process for longer. This is achieved
in Lemma 9.1, and the random process is run in Proposition 9.3. The content of Lemma 9.1 can
be thought of as a kind of regularity boosting ; procedures similar to this occur in [23, Lemma 4.1]
and in [3, Lemma 4.2] in the setting of Steiner systems, though the general idea dates back further
to approximate hypergraph matching results of Alon, Kim, and Spencer [1]. We note here that
the required regularity boost is obtained by “local rebalancing”, which is implemented using local
decodability of the lattice associated to (n, s, r)q-designs. In general the necessary local “gadgets”
used to implement regularity boosting correspond to short kernel vectors of the associated boundary
operator ∂s,r (see Section 3.2 for a precise definition of these lattices and operators).

Finally, we remark that the remainder is not only small with respect to the number of r-spaces
left over, but it also not too concentrated in any location. Specifically, every (r− 1)-space does not
have too many extensions to an r-space in the remainder, which we encode via a condition called
boundedness (Definition 5.1).

2.3. Covering the leave, and the spillover. After removing the template and this approximate
cover, the remainder is a leave which is significantly smaller than the template. The next step is to
take a collection of s-spaces, one covering each r-space in the leave, such that each s-space has all
but 1 of its r-spaces in Gtem. If we add in these s-spaces, then the result will have almost all r-spaces
covered exactly once, but some are covered twice. The ones covered twice form the spillover. This
is accomplished in Lemma 11.5.

For technical reasons that will become apparent in Section 2.7, we will further run the above
process so that the spillover satisfies a certain disjointness condition: for every r-space in the
spillover, it is contained in an s-space of Stem, and we wish for said s-spaces to be distinct. In fact,
we guarantee the slightly stronger property of field disjointness (Definition 11.1). Furthermore, we
wish for boundedness of the spillover and in fact r-dimensional field boundedness (Definition 8.1) to
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ensure that the results are not overly concentrated with respect to the underlying L-structures as
well.

2.4. Bounded integral decomposition. At this stage, we need to find a way to “remove” the
extra copy of the spillover from our design. Ideally, we wish to find S1 ⊆ Stem, a set of template
s-spaces, and a set S2 of s-spaces with the following properties: (a) all of the spillover is contained
in r-spaces coming from S1, so that removing S1 yields a partial design with all multiplicities 1 and
0, instead of 2 on the spillover, and (b) S2 precisely covers the “hole” of multiplicity 0 r-spaces left
by the removal of S1. We will ultimately find such a decomposition, but this requires multiple steps.

The first step is finding a reasonable integral decomposition of the spill. At this point, it is useful
to consider signed multicollections of s-spaces and r-spaces, and to represent these as vectors in
ZGr(V,s) and ZGr(V,r) with a natural boundary map ∂s,r mapping the first space to the second (see
Section 3.2). We show that the spillover, J , can be represented as the result of considering the
(signed) r-spaces within a signed sum of s-spaces Φ. Furthermore, we show that boundedness of
J guarantees we can obtain Φ which is bounded. This gets us a bit closer to the above, which is
equivalent to J = ∂s,r(S1 − S2) for S1 ⊆ Stem and S2 ⊆ Gr(V, s) (abusively identifying a set with
its indicator vector).

This is a highly nontrivial argument, and we prove the abstract Theorem 5.2 that shows that in
general bounded integral elements of an appropriate lattice have correspondingly bounded inverses.
We save detailed discussion of the techniques for the proofs in Section 5, but a crucial step involves
robustly showing in a sense that appropriate collections of r-spaces within a random host H ⊆
Gr(V, r) can be decomposed by s-spaces whose r-subspaces are all in H. Beyond this, the fact that
the key lattices defined in Section 3.2 have robust local decodability plays an important role. See
[23, Section 1.4] for a discussion of the interplay of robust local decodability and “bounded integral
designs” in the case of Steiner systems. We note however that the proof techniques in [23] are
largely unavailable to use at this stage as the proof relies on an essentially explicit description of
the corresponding lattice in terms of “octahedra”. No such nice characterization appears to exist for
subspace designs due to nontrivial conditions on the lattice (see [30]). Instead our proof essentially
only uses local decodability and the existence of local “subspace exchanges” (Proposition 4.1).

2.5. Subspace exchange process. At this stage, the spillover is expressed as a signed integral
decomposition of s-spaces that is appropriately bounded. We now massage its form to get closer
(but not all the way) to the S1,S2 mentioned in Section 2.4.

First, we rewrite the spillover J as a signed integral decomposition ∂s,rΦ where every r-space
appears with multiplicity at most 1 in the positive and negative portions (it could appear once in
both and cancel out). We furthermore require that the r-spaces that appear are contained within
Gtem and are not just bounded but field bounded, and that they continue to be field disjoint as in
Section 2.3. Additionally, for technical reasons we require the s-spaces that appear to be rainbow
in the sense that all

[s
r

]

q
different r-subspaces are in different template copies. This is the content

of Lemma 11.6, and it is accomplished in two steps of splitting and elimination. In splitting, we
randomly replace each s-space with a signed “flipped configuration” of s-spaces (with the same
signed sum of r-spaces) disjointly randomly from the current support in sequence, so that all the
high multiplicity cancellation occurs in a controllable way (being “split” into groups which do not
interact). In elimination, we take the high multiplicity cancellations and break them into pairs, and
then randomly replace these pairs with a signed “flipped configuration” that reduces the multiplicity
of the cancellation at a specified r-space (allowing us to “eliminate” all cancellations except of the
form (+1) + (−1) = 0).

Second, for a technical reason we slightly massage the resulting s-spaces to maintain the earlier
properties, but also to ensure that every s-space S coheres with all its r-subspaces R: if R comes

6



from template index i, then S 6 Ki, i.e., S is within the vector space upon which the field structure
for the ith template copy is placed. This is done in Lemma 11.7.

Finally, we turn the positive s-spaces in our decomposition monochromatic, which is a necessary
precondition for having the form described in Section 2.4. In fact, there is another less obvious
precondition, which we call configuration compatibility of the s-space (Definition 7.3): essentially,
notice that every s-space in Stem is composed of r-spaces that each have a different configuration of
“how it wants to be included in the template” (recall the discussion in Section 2.1). Transforming
the positive s-spaces in such a way is done in Proposition 11.8, again by running a random process
of “flips”. The key issue at this stage is guaranteeing that we can indeed find flips that have the
resulting positive s-spaces be monochromatic (in fact, the negative s-spaces will not be monochro-
matic). Additionally, beyond guaranteeing r-dimensional field boundedness and field disjointness,
for technical reasons at this stage we need to guarantee some slightly stronger properties defined
over s-spaces.

2.6. Counting extensions (with accessories) and disjoint random processes. To prove
Lemmas 11.6 and 11.7 and Proposition 11.8, and in fact also Lemma 11.5, we need two ingredients:
(a) an understanding of how many ways there are to extend a fixed structure of r-spaces into a
larger pattern of r-spaces such that the new r-spaces are all in certain prescribed copies of the
template with certain configuration properties (etc.), and (b) an ability to run a disjoint random
process, i.e., one where at each stage the next choices are taken not randomly from all extensions,
but only those that are appropriately disjoint from the previous choices (etc.). It is not hard to see
that (b) requires some form of boundedness as an input, but we also need the heuristics for (a,b)
to work out that we can continue to maintain this boundedness throughout.

We achieve (a) in Section 10, in particular Proposition 10.2. It is written in a high degree of
generality, but basically shows that extensions into the template (with various conditions, as long
as they are not over-constraining) act as one might expect from a dense random set of r-spaces,
up to factors of the density of the template. The proof follows by various concentration techniques
over the randomness of the template, including Azuma–Hoeffding (Lemma 3.8) and the method of
moments.

We encapsulate a general framework for (b) in Lemma 11.4; however, we note that it is adapted
to processes that mainly consider properties defined via the underlying r-spaces, so it is not directly
suitable for Proposition 11.8 (in which we maintain some s-space related properties as well).

2.7. Absorbing the spillover. The output of Proposition 11.8 is a decomposition of the spillover
J as ∂s,rΦ where Φ ∈ {0,±1}Gr(V,s) and the positive s-spaces are monochromatic, configuration
compatible, and disjoint and bounded in various senses. Finally, in Proposition 8.3 we show that
the positive s-spaces can be transformed into a collection of positive and negative s-spaces with the
same image under ∂s,r, such that the new positive s-spaces are all in Stem. This provides us the
form as claimed in Section 2.4, and so will finish.

This is the stage where we strongly use the algebraic structure of the template. Up until this
point we have mainly used extension counts coming from Proposition 10.2 which merely ensure that
Gtem has many substructures as if random (with some basic accoutrements); then we performed
“flips” replacing s-spaces with other s-spaces, but these did not need to be in Stem (we only needed
that the r-subspaces were in Gtem, plus whatever other conditions). On the other hand, in this step
we specifically want to use “flips” such that in the result, all positive s-spaces are in Stem, which were
the highly structured algebraic s-spaces we set aside at the beginning. To highlight this difference,
up to factors of the template density there are roughly order qsn many s-spaces whose r-subspaces
are in Gtem, whereas #Stem ≤ q

rn is much smaller.
To prove Proposition 8.3, we use the Lovász Local Lemma (Lemma 3.10) to show we can simul-

taneously find disjoint “algebraic flips” that involve Stem in this special way. There are much fewer
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choices here than in Section 2.5. These special algebraic flips are given in Definition 7.1 (defined over
L; we then translate to template copies via the various maps ι1, . . . , ιz), and we analyze their basic
properties such as their count in Section 7, coming from the underlying structure of the template.
These properties allow us to establish Proposition 8.3, completing the final piece of the argument.

2.8. Possible future directions. In light of our resolution of the existence problem for (n, s, r)q-
designs, a number of natural questions arise. The most natural relate to so-called resolvability-type
variants. For instance, can one find (n, 3, 2)2-designs that can be partitioned into a collection
of (n, 3, 1)2-designs (for all large appropriately divisible n)? More generally, one might ask for a
Baranyai-type design: for given s ≥ 1, we want to partition Grq(n, s) into (n, s, s−1)q-designs, each
of we further partition into (n, s, s− 2)q-designs, etc., down to (n, s, 1)q-designs. More broadly, we
make the informal conjecture (the correct precise statement is not clear) that various extensions in
the style of [24] are all possible under the necessary divisibility conditions coming from associated
lattices (which are not always fully obvious).

2.9. Organization. We now briefly discuss the organization of the paper. In Section 3 we col-
lect a number of basic notions and results which will be used throughout the paper: q-analogues
of hypergraphs called q-systems (Section 3.1), lattices and boundary operators for integral designs
(Section 3.2), concentration inequalities (Section 3.3), a notion of a subset of field elements be-
ing generic with respect to algebraic equations (Section 3.4), and finally the formal basic setup
(Section 3.5). We then formally construct the subspace exchanges used which will be the ulti-
mate source of all manner of “local switches” and “flips” in Section 4. Using this we then prove
our bounded integral decomposition result in Section 5. In Section 6 we formally construct the
template. In Sections 7 and 8 we first prove that the template robustly contains many subspace
exchanges of a special form (involving template s-spaces) and use these to prove Proposition 8.3
(the main absorption statement). In Section 9 we prove the necessary approximate covering results.
In Section 10 we count various extensions into the template (Proposition 10.2) and these are then
exploited in Section 11 (alongside a disjoint random process framework Lemma 11.4) to both create
the spillover and then massage the spillover into a form where Proposition 8.3 is applicable. Finally
in Section 12 we put all the pieces together to prove Theorem 1.2, and also discuss Corollary 1.3
and Theorem 1.4.

3. Preliminaries and setup

3.1. q-systems and q-extensions. We will often need to understand the number of ways we can
embed certain configurations of subspaces in a (potentially random) host. Thus we define various
related notions for future use, starting with a natural q-analogue of hypergraphs.

Definition 3.1. An r-dimensional q-system H on Fnq is a subset of Grq(n, r), or equivalently an

element of {0, 1}Grq(n,r); multi-q-systems are elements of ZGrq(n,r)
≥0 and signed multi-q-systems are

elements of ZGrq(n,r). We will refer to the elements of these as r-spaces and write d(H) := |H|/
[n
r

]

q

for the density of H. We write Vec(H) for the underlying vector space upon which H lies. Given a
subspace F 6 Vec(H), we write H[F ] for the q-system on F composed of those r-spaces in H fully
contained within F .

Remark. Similar to hypergraphs, the underlying vector space of H may be larger than the span of
all its r-spaces.

Now we define q-embeddings and q-extensions (we may omit the parameter q as it is generally
obvious).
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Definition 3.2. A q-embedding of a q-system H in a multi-q-system G is an injective linear map
φ : Vec(H) → Vec(G) such that Gφ(R) > 0 for all R ∈ H. Given an r-dimensional q-system H, a
subspace F 6 Vec(H), and an injective linear map φ : F → Fnq , we call E = (φ, F,H) a q-extension.
We write eE := |H \H[F ]| and vE := dimVec(H)− dimF . Now if G is an r-dimensional q-system
on Fnq we write XE(G) for the set of embeddings of H in G+ φ(H[F ]) (not distinguishing potential
multiple edges) that agree with φ on F . Let XE(G) := #XE(G).

Definition 3.3. We say that an r-dimensional q-system G on Fnq is (c,h)-typical if for every q-
extension E = (φ, F,H) with vE > 0 and dimVec(H) ≤ h we have XE(G) = (1± c)d(G)eE qvEn.

We finally define a notion of boundedness of a vector J with respect to a potentially sparse
q-system L.

Definition 3.4. Given a q-extension E = (φ, F,H \ {R}), L ⊆ Grq(n, r), and J ∈ ZGrq(n,r), let

XR
E (L, J) :=

∑

φ∗∈XE(L)

|Jφ∗(R)|.

We say that J is (θ, h)-bounded wrt L if XR
E (L, J) ≤ θd(L)

eEqvEn for all q-extensions E = (φ, F,H \
{R}) with dimVec(H) ≤ h and R ∈ H \H[F ].

Finally, it will be useful for us to have a slightly easier condition for verifying typicality. For
hypergraphs, one can reduce the notion of typicality for G coming from extension counts to a
question of how many vertices simultaneously extend a collection of (r− 1)-sets into a collection of
edges of G (see e.g. [23, Definition 1.3, Lemma 2.16]). However, in q-systems there is a possibility
that vector spaces are in some sense “transverse” but still dependent, so the required notion is
subtler.

Lemma 3.5. Suppose c ∈ (0, 1), n is large with respect to h, and that the r-dimensional q-system
G on Fnq satisfies the following property:

• Consider any choice of (r − 1)-spaces Q1, . . . , Qa 6 Fnq and vectors v1, . . . , va ∈ Fnq where

a ≤ qrh such that if i 6= j and Qi = Qj then spanFq
(Qi ∪ {vi}) 6= spanFq

(Qj ∪ {vj}). Then

there are (1± c)d(G)aqn vectors v ∈ Fnq with spanFq
(Qi ∪ {v + vi}) ∈ G for all i ∈ [a].

Then G is (2hc, h)-typical.

Proof. Consider some extension E = (φ, F,H) with vE > 0 and t = dimVec(H) ≤ h. Thus
vE = t− dimF and t ≥ dimF + 1. Let {u1, . . . , ut} be a basis of Vec(H) where {u1, . . . , udimF } is
a basis for F and let Vi = spanFq

{u1, . . . , ui} for 0 ≤ i ≤ t. Let ei = |H[Vi]| − |H[Vi−1]| and note
eE = edimF+1 + · · ·+ et.

We now count ψ ∈ XE(G). Note that ψ(ui) = φ(ui) is fixed for i ∈ [dimF ]. For i ∈ {dimF +
1, . . . , t} in order, we count the number of ways to choose ψ(ui) given the prior choices. Specifically,
a choice of ψ(ui) will determine the locations of the r-spaces in H[Vi] \H[Vi−1]: each such space
can be written as spanFq

(Q∪{ui+w}) for some (r− 1)-space Q 6 Vi−1 and vector w ∈ Vi−1, hence
its image under ψ is spanFq

(ψ(Q) ∪ {ψ(ui) + ψ(w)}) where ψ(Q) 6 ψ(Vi−1) and ψ(w) ∈ ψ(Vi−1).
By the given condition, there are (1± c)d(G)eiqn choices of ψ(ui) which ensure that simultaneously
all these spaces land in G. We can apply the condition since clearly |H[Vi] \H[Vi−1]| ≤ qrh (being
r-spaces within a space of dimension at most h) and since the r-spaces of H[Vi] \H[Vi−1] with the
same restriction to Vi−1 (which is called Q here) will have associated vectors w that are different
(mod Q), otherwise they would represent the same r-space in H.

The total count can be read off by multiplying these numbers of choices, which gives (1 ±
c)vEd(G)eE qvEn = (1± 2hc)d(G)eE qvEn, as desired. �
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3.2. Lattices and boundary operators. We can view a (signed multi-)q-system of dimension s

as an element of ZGrq(n,s). Define the boundary map ∂s,r : ZGrq(n,s) → ZGrq(n,r) via

eS 7→
∑

R6S
dimR=r

eR

and linearity. The problem of constructing an (n, s, r)q-design is the same as finding Φ ∈ {0, 1}Grq(n,s),

or equivalently just Φ ∈ Z
Grq(n,s)
≥0 , with

∂s,rΦ =
∑

R∈Grq(n,r)

eR.

(We will often abusively treat sets as their indicator vectors in the appropriate space, which in
particular allows application of ∂s,r.)

It is therefore useful to define the image lattice L = Ls,r := ∂s,rZ
Grq(n,s), which defines the

conditions for the image. In order for the desired element to be just in the image of ∂s,r, this imposes
natural divisibility constraints on n which we will find to be identical to those in Theorem 1.2.

This lattice L was characterized by Ray-Chaudhuri and Singhi [30]. We note that they showed
the “obvious” necessary divisibility conditions are not sufficient for an element to be in the lattice
(unlike the set system case studied by Wilson [34] and Graver and Jurkat [16]); however, for a vector
in ZGrq(n,r) with all coefficients equal to some λ ∈ Z, the conditions degenerate to precisely those
natural conditions. In particular, it suffices to require:

[

s− i

r − i

]

q

| λ

[

n− i

r − i

]

q

for all 0 ≤ i ≤ r − 1. (3.1)

Note that a positive density of such values exist: the values n satisfying A!|n− r+ 1 for A large in
terms of q, r, s all satisfy (3.1). Alternatively, the values n satisfying s−i|n−i for all 0 ≤ i ≤ r−1 will
satisfy (3.1): this is a compatible system of modular constraints by the Chinese remainder theorem,
so this proves that the density of valid n is in fact lower-bounded independent of q. Additionally,
(3.1) is equivalent to constraining n to live in one of a finite list of bounded parameter modular
congruences (depending on q, s, r).

We state the precise result for future reference.

Theorem 3.6 ([30, Theorem 1.1]). For n ≥ s > r ≥ 1 we have

λ
∑

R6Fn
q

dimR=r

eR ∈ ∂s,rZ
Grq(n,s)

if and only if (3.1) holds.

3.3. Concentration inequalities. We will often need the Chernoff bound for binomial and hy-
pergeometric distributions (see e.g. [19, Theorems 2.1 and 2.10]). Recall that the hypergeometric
distribution Hyp(n, n1, n2) for n ≥ max{n1, n2} is the size of the intersection of two independent
uniformly random subsets of [n] of sizes n1, n2.

Lemma 3.7 (Chernoff bound). Let X be either:

• a sum of independent random variables, each [0, 1]-valued, or
• hypergeometrically distributed (with any parameters).

Then for any δ > 0

Pr[X ≤ (1− δ)EX] ≤ exp(−δ2EX/2), Pr[X ≥ (1 + δ)EX] ≤ exp(−δ2EX/(2 + δ)).

We will also frequently require the Azuma-Hoeffding inequality (see [19, Theorem 2.25]).
10



Lemma 3.8 (Azuma–Hoeffding inequality). Let X0, . . . ,Xn form a martingale sequence such that
|Xk −Xk−1| ≤ ck almost surely. Then

P[|X0 −Xn| ≥ t] ≤ 2 exp

(

−
t2

2
∑n

k=1 c
2
k

)

Remark. We will refer to
∑n

k=1 c
2
k as the variance proxy in such a situation.

We will also require the following useful binomial domination lemma.

Lemma 3.9. Let Xi ∈ {0, 1}, pi ∈ [0, 1], and ai ∈ R+ for i ∈ [n]. Suppose that

P[Xi = 1|X1, . . . ,Xi−1] ≤ pi

for all i ∈ [n] and let Yi be independent random variables distributed as Ber(pi) (i.e., it is 1 with
probability pi and 0 otherwise). Then for any t ≥ 0 we have

P
[

∑

i∈[n]

aiYi ≥ t
]

≥ P
[

∑

i∈[n]

aiXi ≥ t
]

.

Finally we will use the Lovász Local Lemma [11].

Lemma 3.10 ([2, Lemma 5.1.1]). Let B1, . . . ,Bn be events in a probability space and let D = ([n], E)
be a directed graph which is a dependency graph for (Bi)i∈[n], i.e., for each i ∈ [n], Bi is mutually
independent of all events {Bj : (i, j) /∈ E}. If xi ∈ [0, 1] and P[Bi] ≤ xi

∏

(i,j)∈E(1−xj) for all i ∈ [n]

then

P
[

⋂

Bi
]

≥
n
∏

i=1

(1− xi).

3.4. Algebraic genericity. It will be useful to introduce the following notion of algebraic gener-
icity.

Definition 3.11. For any field K and subsets S, T ⊆ K we say that S is T -generic of degree d
if there is no nonzero polynomial of degree at most d in variables {xs : s ∈ S} with coefficients in
T that vanishes when we substitute xs = s for all s ∈ S. We also say that a vector or matrix is
T -generic (and a collection of such is jointly T -generic) if the set of entries is T -generic.

One useful fact is that if a d × d matrix is {0,±1}-generic of degree d then it is invertible. We
additionally record a master lemma encapsulating the fact that certain linear-algebraic conditions
are algebraically generic outside of explicit degeneracies. This will be used to show various properties
of the algebraic template, e.g. it is well-defined and has good extendability properties.

Lemma 3.12. Given s > r ≥ 1 and prime power q, suppose that d ≥ d3.12(r) and ℓ ≥ ℓ3.12(d, s).
Then any matrix N ∈ Fs×r

qℓ
which is Fq-generic of degree d satisfies the following:

• For every Π ∈ Fr×sq of rank r, we have that ΠN is invertible.

• For every Π ∈ Fr×sq of rank r and y ∈ F1×s
q with y /∈ rowFq (Π), the row space, we have that

yN(ΠN)−1z ∈ F1×r
qℓ

has no coordinates in Fq for all z ∈ Frq \ {0}.

• For every choice of Πi,Π
∗
i ∈ Fr×sq of rank r for i ∈ {1, 2} such that (a) there do not

simultaneously exist Mi ∈ GL(Frq) with Πi = MiΠ
∗
i for i ∈ {1, 2}, and (b) there is not

M ∈ GL(Frq) with MΠ∗
1 = Π∗

2, we have that the vector (Π1N)(Π∗
1N)−1z1−(Π2N)(Π∗

2N)−1z2
is nonzero for every choice of z1, z2 ∈ Frq \ {0}.

Furthermore, such a matrix exists.
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Remark. In the second bullet, if y ∈ rowFq(Π) then we can write y = y′Π for some y′ ∈ F1×r
q

and thus yN(ΠN)−1 = y′ ∈ F1×r
q . In the third bullet, if the condition (a) is not satisfied then

(ΠiN)(Π∗
iN)−1 = Mi and the vector of interest equals M1v1 −M2v1 ∈ Frq, which can easily have

zero entries.

Proof. Let us treat N = (xij)i∈[s],j∈[r] as a matrix of variables. We will show that failure of at least
one of the bullet points implies at least one nontrivial polynomial relation over Fq of bounded degree
(in terms of only q, s). This will immediately imply that any evaluation N ∈ Fs×r

qℓ
which is Fq-generic

of degree d satisfies all these properties. Furthermore, for ℓ > (d+ 1)rs we can find rs elements of
Fqℓ which together are Fq-generic of degree d: simply consider {α,α(d+1), α(d+1)2 , . . . , α(d+1)rs−1

}
where α generates Fqℓ over Fq (which exists by the primitive element theorem). Indeed, when we
plug in these values in any order into an Fq-polynomial of degree at most d in rs variables, every
monomial gives a different degree of α due to uniqueness of base d+ 1 expansion.

In this proof we will denote by ei ∈ F1×s
q the row vector with 1 in coordinate i ∈ [s] and 0

elsewhere (and sometimes abuse notation to refer to the restriction to F1×r
q when i ∈ [r]). We let

Ir,s ∈ Fr×sq be the matrix with ei in its ith row for i ∈ [r]. Additionally, note that we may reduce
to the cases z = e1 by replacing Π by QΠ where Q ∈ GL(Frq) is such that Q−1e1 = z in the second
bullet point (this does not change the row space of Π), and similarly to z1 = z2 = e1 for the third
bullet point (the conditions (a) and (b) are unaffected). Now we study each bullet point in turn.

For the first bullet point, fix some Π ∈ Fr×sq of rank r and note that we can write Π = Ir,sM
for some M ∈ GL(Fsq). Since M is invertible, the elements of N ′ = MN are linearly independent
linear forms in the original variables composing N . Thus by shifting basis of the polynomial ring
in question we may assume that the elements of N ′ are our base variables. The condition fails if
ΠN = Ir,s(MN) is noninvertible, i.e., det(Ir,sN ′) = 0. This is just the determinant of the first r
rows of N ′, which gives a nontrivial polynomial relation of degree r.

For the second, again fix some appropriate Π and now y /∈ rowFq(Π). This implies that we can
simultaneously write Π = Ir,sM and y = er+1M for some M ∈ GL(Fsq). We have yN(ΠN)−1 =

er+1N
′(Ir,sN

′)−1 where again N ′ =MN has elements which are an invertible linear transformation
of those of N so can be treated as containing the base variables. Now the elements of (Ir,sN ′)−1 can
be obtained from the adjugate matrix via Cramer’s rule while the elements of er+1N

′ are completely
disjoint from the defining variables of this. We thus easily see that for any α ∈ F1×r

q each of the r
elements of det(Ir,sN ′) · (er+1N

′(Ir,sN
′)−1 − α) is a nontrivial polynomial of degree r (with degree

1 in each of the variables of er+1N
′).

The third is the most complex. Recall that we may focus on the situation that the first column
is nonzero. Let Vi = rowFq(Π

∗
i ) for i ∈ {1, 2} and let V = V1 ∩ V2 and t = dimV . Let {v1, . . . , vt}

be an Fq-basis for V and extend this via {a1, . . . , ar−t} and {b1, . . . , br−t} to respectively obtain
bases for V1 and V2. Put together these vectors clearly generate the space V1 + V2, and there are
2r − t = dimV1 + dimV2 − dim(V1 ∩ V2) = dim(V1 + V2) of them, so they in fact form a basis of
V1 + V2 (this also implies max(0, 2r − s) ≤ t ≤ r). Now consider M⊺ ∈ GL(Fsq) which maps ei to vi
for i ∈ [t], et+i to ai for i ∈ [r − t], and er+i to bi for i ∈ [r − t]. We have

Π∗
1N = A1J

∗
1 (MN), Π∗

2N = A2J
∗
2 (MN)

for some appropriate Ai ∈ GL(Frq), where J∗
1 = Ir,s and J∗

2 has its ith row equal to ei for i ∈ [t]
and ei+r−t for i ∈ {t+1, . . . , r}. This is since we can trivially deduce rowFq(J

∗
iM) = rowFq(Π

∗
i ) for

i ∈ {1, 2}, which implies these two rank r matrices are related by left-multiplication of an invertible
matrix. Furthermore write Πi = JiM for i ∈ {1, 2}, and again let N ′ =MN and treat the elements
of N ′ as base variables for our polynomials. Note that

(Π1N)(Π∗
1N)−1 − (Π2N)(Π∗

2N)−1 = (J1N
′)(A1J

∗
1N

′)−1 − (J2N
′)(A2J

∗
2N

′)−1. (3.2)
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By the first given condition and without loss of generality, we may assume that Π1 and Π∗
1 are not

related by left-multiplication of an invertible matrix. Equivalently, the same can be said of J1 and
J∗
1 = Ir,s. This implies that J1 ∈ Fr×sq has a nonzero element outside the first r columns. Suppose

it is in the (i∗, j∗) position (so j∗ ∈ {r + 1, . . . , s}) and has value α ∈ F×
q and let z be the j∗th row

of N ′.
Now we split into two cases. In the first, we suppose j∗ ∈ {r + 1, . . . , 2r − t}. Let us focus on

the element of (3.2) which is in the (i∗, 1) position and specifically the influence of the variables
from z. The first term in the difference (3.2) contributes precisely the dot product of the i∗th
row of J1N ′ and the first column of (A1J

∗
1N

′)−1. Said row is equal to αz plus a vector composed
only of linear combinations of variables from other rows of N ′. Said column is a vector of nonzero
rational functions only of the first r rows of N ′ with an explicit representation due to Cramer’s
rule. The second term contributes something analogous but with J2N ′ and (A2J

∗
2N

′)−1. However,
since j∗ ∈ {r + 1, . . . , 2r − t}, the z influence looks qualitatively different. To be precise, the i∗th
row of J2N ′ can be written as some (potentially zero) multiple of z plus a linear combination z′

of other variables of N ′. But we can find y ∈ F1×r
q with yA2 = ej∗−(r−t) ∈ F1×r

q . and hence
from the definition of J∗

2 we deduce z = yA2J
∗
2N

′. Then z(A2J
∗
2N

′)−1 = y. On the other hand,
z′(A2J

∗
2N

′)−1 only involves the variables of z insofar as they are involved in the inverse matrix via
Cramer’s rule.

Ultimately, the condition that the (i∗, 1) element of (3.2) equals 0 leads to an equation of the
form (αL(z)+β)−I(z) = 0 where (a) L(z) is linear in z with nonzero rational functions in the other
variables as coefficients and β is a potentially zero rational function serving as a constant term, and
(b) I(z) is a potentially zero rational function in z with z-degree at most 0 with denominator the
nonzero polynomial det(A2J

∗
2N

′) = det(A2) det(J
∗
2N

′) of total degree r and z-degree 1. Multiplying
over by det(A1J

∗
1N

′) det(A2J
∗
2N

′) can be seen to therefore give a nontrivial polynomial relation due
to our analysis of the z variables, and the total degree is at most 2r. We conclude consideration of
this case.

The second case is when j∗ ∈ {2r − t+ 1, . . . , s}. We again consider the (i∗, 1) element of (3.2)
and its dependence on z. The first term contributes the same L(z) as before, and now the second
term is instead analogous to the first term and contributes something of the form α′L′(z) + β′ with
L′(z), β′ satisfying conditions analogous to L(z), β and α′ ∈ Fq (the only difference is that unlike
α, the value α′ can potentially be 0). We thus derive an equation αL(z) + β = α′L′(z) + β′ of the
described form. When we multiply over the determinants, this will become a polynomial relation
of degree at most 2r and it remains to show nontriviality.

To do this, note that αL(z) = αz(A1J
∗
1N)−1e∗1 where e∗1 ∈ Frq is the obvious indicator vector

and α′L′(z) = α′z(A2J
∗
2N)−1e∗1. If α′ = 0 then clearly we have a nontrivial relation. Otherwise, in

order to have a trivial relation we will need α(A1J
∗
1N)−1e∗1 = α′(A2J

∗
2N)−1e∗1 so

e∗1 = α−1α′(A1J
∗
1N)(A2J

∗
2N)−1e∗1.

But by the second given condition, Π′
1 = α−1A1J

∗
1 and Π′

2 = A2J
∗
2 are not equal up to left-

multiplication by an invertible matrix. Therefore there is a row y of Π′
1 with y /∈ rowFq(Π

′
2), and

we have
yN(Π′

2N)−1e∗1 ∈ {0, 1}.

This leads to a nontrivial polynomial relation of degree r by our proof of the second bullet point. �

3.5. Setup. Let s > r ≥ 1 and let V = Fnq be a vector space, with q fixed and n satisfying
divisibility conditions as in Theorem 1.2. Let z = n2. Fix a positive integer ℓ to be chosen later,
let n− ℓm = ℓ′ ∈ {0, . . . , ℓ− 1}, and let L = Fqℓ →֒ Fqℓm = K be finite fields. Let n be large with
respect to ℓ, q, r, s. Consider z uniformly random injective Fq-linear maps ι1, . . . , ιz : K → V . We
define the embedding ιi : K →֒ V by identifying Fℓmq arbitrarily as the additive structure of K and
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then choosing a uniformly random full rank matrix Wi ∈ Fn×ℓmq to embed this into V . Explicitly,
let α be a generator of K× and define

ιi

( ℓm−1
∑

j=0

vjα
j

)

=Wi







v0
...

vℓm−1






∈ Fnq = V.

Now let Ki = ιi(K) and Li = ιi(L). (Note that there are z = n2 different field structures present
at once on various subsets of V , or equivalently a single field structure linearly embedded in various
ways; it will always be obvious when we are, say, multiplying an element of Li and Ki according to
the field structure on Ki given by ιi.) Finally, consider d ≥ 1 and let Ntem ∈ L

s×r and x∗abs ∈ L
s×s

be jointly Fq-generic of degree d.
We wish to find a subset of the q-system Gr(V, s) such that every r-space in the q-system G :=

Gr(V, r) is contained in exactly one s-space. This can also be thought of as a hypergraph matching
with vertex set Gr(V, r), where each S ∈ Gr(V, s) is thought of as a

[s
r

]

q
-uniform edge consisting of

its constituent r-subspaces.

Remark. There is a relation to “special” hypergraph decompositions as well, which will not be
directly fruitful here but may lead to more general types of decomposition problems that may be
of interest. The q-system G = Gr(V, r) can be thought of as the (qr − 1)-graph on V \ {0} where

the edges are precisely the sets of nonzero elements of r-dimensional subspaces. Let M ∈ F
(qs−1)×s
q

be the matrix with every possible distinct nonzero row in Fsq and let H be a (qr − 1)-graph on
[qs − 1] whose edges are the (qr − 1)-tuples of rows corresponding to the nonzero elements of an
r-dimensional subspace of Fsq.

An M -copy of H in G is a copy realized by some vector Mx ∈ V qs−1 with x ∈ V s (treating M
abusively as the base-changed operator M : V s → V qs−1). That is, for each I ∈ E(H) the set of
coordinates of MIx ∈ V

qr−1 is an edge of G. An (M,H)-decomposition of G is an H-decomposition
of G using M -copies of H. Given this setup, we see that this precisely corresponds to an (n, s, r)q-
design.

Beyond the hypergraph and lattice divisibility conditions which naturally arise for an (M,H)-
decomposition in a more general setting, one also has conditions from linear algebra. For example,
the Fq-rank of any edge in G must be at most the maximum Fq-rank of any MI with I ∈ E(H).
Given our specific choices of M,H, and G, we see that the M -copies of H in G are those induced
by x ∈ V s which are composed of s linearly independent vectors.

3.6. Notation. We write Grq(n,m) for the Grassmannian, the set of m-dimensional Fq-subspaces
of Fnq . If V is a vector space (the underlying field structure implicit) we alternatively write Gr(V,m)
for the set of m-dimensional subspaces of V , and we also write GL(V ) for the set of invertible linear
maps V → V . We write V 6 W if V is a vector subspace of W , typically over Fq, and we write
V 6L W to signify that the subspace relation is treated with respect to an L-structure for the field
L. For a field K we write dimK to give the K-dimension of a vector space; if K = Fq we typically
drop the subscript. We write spanK(S) where S is a subset of a K-vector space to be the K-span,
treated as a K-vector space. In certain cases, S may be a single vector or matrix with its elements
coming from said K-vector space, in which case we abusively treat this as taking the span of the
elements (not the column or row-span of the matrix). Let rowK of a matrix be its row-space over K.

Given a vector Φ, we write Φ+,Φ− for the portion of the vector with positive and negative
coefficients, respectively, so that Φ = Φ+ + Φ−. For example, (1,−1)+ = (1, 0) and (1,−1)− =
(0,−1). Given an index i in some index set I , we write ei for the identity vector ei ∈ ZI (mostly
used for r-spaces and s-spaces in a Grassmannian).
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We write range,dom, supp for the range of a function, its domain, and for the support of a vector,
respectively. We write |X|,#X for the size of a set X, and Sam(X, p) for p ∈ [0, 1] denotes the
distribution on subsets of X created by independently including each element of X with probability
p. Given a hypergraph or q-system H of uniformity d on vertex set or vector space V , and given
hypergraph or q-system S of uniformity d′ ≤ d, we write H[S] for the resulting induced system: we
keep a d-edge or d-space of H precisely when all d′-subsets or d′-subspaces are in S. In the case
d′ = 1, this corresponds to the traditional notion of an induced subgraph, and in this case as long
as S is a set or subspace, we further restrict the vertex set or underlying vector space to S.

Finally, we use asymptotic notation as follows: we write f = O(g) or f . g if |f | ≤ Cg for some
absolute constant C > 0, and we write f = Ω(g) if f ≥ c|g| for some absolute constant c > 0.
We put subscripts such as Oq,s to indicate that the absolute constant chosen depends on q, s but
nothing else. Furthermore, for parameters α, β we write α≪ β to mean β is chosen to be at least
some sufficiently large function of α; this is read left-to-right.

4. Subspace exchanges

We record the following subspace exchange statement.

Proposition 4.1. Given q and s > r, there exists k = k4.1(s) and two nonempty s-dimensional

q-systems on Fkq (i.e. subsets of Grq(k, s)), call them Υ and Υ′, such that

• For distinct P,P ′ ∈ Υ we have dim(P ∩ P ′) < r, and same for P,P ′ ∈ Υ′;
• For P ∈ Υ and P ′ ∈ Υ′ we have dim(P ∩ P ′) ≤ r;
• ∂s,rΥ = ∂s,rΥ

′.

Remark. The first and third bullets imply these give s-space decompositions of some set of r-spaces.
The second implies that the two decompositions do not intersect more than is strictly necessary,
and in particular are disjoint as sets of s-spaces.

Proof. Fix k1|k2 = k to be chosen later so that Fq →֒ X = Fqk1 →֒ Y = Fqk2 as finite fields. Let
d = d(r) be large to be chosen later larger than the degree of various determinants that arise in rank
considerations later, e.g. via Lemma 3.12. Let u ≥ 1. Fix distinct x(1), x(2) ∈ Xs×u and N ∈ Xs×r

such that x(2) − x(1), N are jointly Fq-generic of degree d. Consider any w′ ∈ Y r and any w ∈ Y u

which are together X-generic of degree 1. These can be found as long as k1 is large in terms of
d, s and k2/k1 is large in terms of d, s (see e.g. the first paragraph of the proof of Lemma 3.12 and
consider the field extensions Fqk1/Fq and then Fqk2/Fqk1 in succession).

For j ∈ {1, 2} let P(w)
j = {spanFq

(Nw′ + (Nx + x(j))w) : x ∈ Xr×u}. For one of these to not
correspond to an element of Grq(k, s), we need that for some nonzero y ∈ F1×s

q ,

y(Nw′ + (Nx+ x(j))w) = 0.

That is, (yN)w′ + y(Nx + x(j))w = 0. Since yN ∈ X1×r and y(Nx + x(j)) ∈ X1×u and w′, w

are jointly X-generic, we have yN = 0 and y(Nx + x(j)) = 0. But y ∈ F1×s
q is nonzero and N is

Fq-generic so we have a contradiction.

We now let Υ = P
(w)
1 and Υ′ = P

(w)
2 .

We claim that as x ∈ Xr×u varies within a single P(w)
j , we have distinct s-spaces and in fact

their intersection has dimension less than r, which verifies the first bullet point. If not, then x 6= x′

produce s-spaces which share an r-dimensional subspace. Thus there is an r-space which is within
both the span of the coordinates of Nw′ + (Nx+ x(j))w and of Nw′ + (Nx′ + x(j))w. Thus there
are Π1,Π2 ∈ Fr×sq with rank r such that

Π1(Nw
′ + (Nx+ x(j))w) = Π2(Nw

′ + (Nx′ + x(j))w).
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Thus (Π1N)w′ +Π1(Nx+ x(j))w = (Π2N)w′ +Π2(Nx
′ + x(j))w. We have Π1N,Π2N ∈ X

r×r and
Π1(Nx + x(j)),Π2(Nx

′ + x(j)) ∈ Xr×u. Since w′, w are X-generic we deduce Π1N = Π2N and
Π1(Nx+ x(j)) = Π2(Nx

′ + x(j)). Now Π1,Π2 ∈ Fr×sq have rank r and N is Fq-generic so Π1 = Π2

and additionally Π1N ∈ Xr×r has rank r (from the first bullet of Lemma 3.12). Thus we first find
Π1N(x− x′) = 0 and then deduce x− x′ = 0, a contradiction!

We now check the second bullet point. If there is an (r+1)-space which is shared between some

elements of Υ and Υ′ then similarly we can find Π1,Π2 ∈ F
(r+1)×s
q with rank r+1 and x, x′ ∈ Xr×u

(not necessarily distinct) such that

Π1(Nw
′ + (Nx+ x(1))w) = Π2(Nw

′ + (Nx′ + x(2))w).

Thus (Π1N)w′+Π1(Nx+x
(1))w = (Π2N)w′+Π2(Nx

′+x(2))w. Similarly, we deduce Π1N = Π2N

and Π1(Nx + x(1)) = Π2(Nx
′ + x(2)) and then Π1 = Π2. Thus (Π1N)(x − x′) = Π1(x

(2) − x(1)).
Since N is Fq-generic, Π1N ∈ X

(r+1)×r = X(r+1)×r has rank r (again use Lemma 3.12, this time
on an appropriate subset of rows). Let a ∈ X1×(r+1) be nonzero and in its kernel, expressed as a
polynomial in the coefficients of N (by Cramer’s rule). We thus have aΠ1(x

(2) − x(1)) = 0. Since
N,x(2) − x(1) are jointly Fq-generic, this is a contradiction.

Now we check the third bullet point, which guarantees that Υ,Υ′ provide the same subspace
decomposition. Due to what we know so far, it suffices to show that every r-subspace of an s-space
of Υ′ can be found in some s-space of Υ, and vice versa. Without loss of generality let us start
with an r-space coming from Υ′. This can be identified via a choice of x′ ∈ Xr×u and Π′ ∈ Fr×sq of
full rank, and then considering the span of the elements of Π′(Nw′ + (Nx′ + x(2))w). We seek to
identify Π ∈ Fr×sq of rank r and x ∈ Xr×u with

Π(Nw′ + (Nx+ x(1))w) = Π′(Nw′ + (Nx′ + x(2))w),

which will finish. To this end we let Π = Π′ and let

x = x′ + (Π′N)−1Π′(x(2) − x(1)).

Again recall that Π′N ∈ Xr×r = Xr×r is invertible since N is Fq-generic and Π′ ∈ Fr×sq has rank r.
This immediately rearranges to the desired condition. �

5. Bounded integral decomposition

5.1. Preliminaries. We now define the notion of a bounded complex. In this section we will not
directly need the setup in Section 3.5, and in particular we will (unambiguously) use L to denote
certain sparse random q-systems as opposed to a finite field.

Definition 5.1. Define an r-dimensional signed multi-q-system R ⊆ Gr(V, r) with dimV = n to
be θ-bounded if ‖∂r,r−1R

±‖∞ ≤ θq
n, where R+ denotes the positive part and R− the negative part

when R is written as a vector, so that R = R+ +R−.

The goal of this section is to show that any θ-bounded vector S ∈ L = ∂s,rZ
Grq(n,s) has a preimage

under ∂s,r whose positive and negative parts have O(θ)-bounded images. (We can think of this as
roughly meaning just that the preimage itself is bounded in some sense.)

Theorem 5.2. There are C = C5.2(q, s) and c = c5.2(q, s) so that for n large, if θ ≥ q−cn and

J ∈ ∂s,rZ
Grq(n,s) is θ-bounded then there is Φ ∈ ZGrq(n,s) with ∂s,rΦ = J such that ∂s,rΦ

± are
Cθ-bounded.

The first ingredient in our proof is robust local decodability of the lattice L; this is analogous to
[23, Lemma 5.13].
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Proposition 5.3. There are C = C5.3(q, s) and ∆ = ∆5.3(q, s, r) so that for n large, if θ ≥ q−n/2

and J ∈ ∆ZGrq(n,r) is θ-bounded there is Φ ∈ ZGrq(n,s) such that ∂s,rΦ = J and ∂s,rΦ
± are Cθ-

bounded.

Proof. It is enough to prove the result when J = J+ has nonnegative coefficients. Let R0 =
spanFq

(e1, . . . , er) and T0 = spanFq
(e1, . . . , er+s). Let R0 = Grq(r+s, r) be the set of r-dimensional

spaces R 6 T0 and S0 = Grq(r + s, s) be the set of s-dimensional spaces S 6 T0.
Consider the matrix A where rows are indexed by elements of R0 and columns are indexed by S0

with an entry being 1 if the column index (as a subspace) contains the row index. This is a square
matrix of dimension

[r+s
r

]

q
=

[r+s
s

]

q
. By a theorem of Kantor [22], we have that ∆ := |detA| 6= 0,

i.e., A is invertible. Thus by Cramer’s rule, we can write ∆eR0 as an integer combination of the
columns. Extending these vectors to ZGrq(n,r) shows that there are explicit aS ∈ Z (which are up
to sign determinants of some submatrices of A) such that

∆eR0 =
∑

S∈S0

aS∂r,seS . (5.1)

Now write
J = ∆

∑

R∈J

eR

where J is an appropriately defined multiset. For each R ∈ J we choose a uniformly random
BR ∈ GL(Fnq ) mapping R0 7→ R (here we abusively treat multiple copies of an r-space R as
different). Then by (5.1),

J =
∑

R∈J

∆eR =
∑

R∈J

∑

S∈BRS0

aB−1
R
S∂r,seS = ∂r,s

∑

S∈Grq(n,s)

∑

R∈J

(

∑

S′∈S0

1S=BRS′aS′

)

eS =: ∂r,sΦ,

where Φ is an appropriately defined random integer vector. Now

‖∂r,r−1∂s,rΦ
±‖∞ .q,s sup

Q∈Grq(n,r−1)

∑

R∈J

1Q6BRT0 =: sup
Q∈Grq(n,r−1)

YQ

since the weight on an (r − 1)-space Q is bounded (up to a factor of maxS∈S0 aS = Oq,s(1)) by
the number of times it occurs within one of the random spaces BRT0. For any Q, YQ is a sum
of independent indicator random variables. When dim(Q ∩ R) = t ∈ {0, . . . , r − 1}, the indicator
has probability bounded by Oq,s(q−(r−1−t)n) and there are at most Oq,s(θq(r−t)n) such r-spaces R
since J is θ-bounded. Thus EYQ = Oq,s(θq

n), and Chernoff (applied to each value of t separately)
thus shows P[YQ ≥ Cθqn] ≤ exp(−Ω(θqn)). Taking a union bound over at most q(r−1)n many
(r − 1)-spaces Q and using θ ≥ q−n/2 finishes. �

We next record a technical “flattening lemma” which will let us assume that our lattice element
J is not too focused, which will be useful later. It follows from the previous lemma (in particular
“flattening” is in general a trivial consequence of robust local decodability).

Lemma 5.4. Let ∆ = ∆5.3(q, s, r) as in Proposition 5.3. There is C = C5.4(q, s) so that for n

large, if θ ≥ q−n/2 and J ∈ ZGrq(n,r) is θ-bounded then there is Φ ∈ ZGrq(n,s) with ∂s,rΦ = J − J ′

such that J ′, ∂s,rΦ
± are Cθ-bounded and |J ′

R| ≤ ∆ for all R ∈ Grq(n, r).

Proof. Write J = J+ + J− and let J0 = ∆⌊J+/∆⌋ + ∆⌈J−/∆⌉, where the floor and ceiling are
applied coordinate-wise in the standard basis. That is, J0 is the result of finding a multiple of
∆ by “rounding towards zero”. Clearly J0 is also θ-bounded, and by Proposition 5.3 we can write
J0 = ∂s,rΦ with ∂s,rΦ

± being Oq,s(θ)-bounded. We have that J ′ = J − J0 is also θ-bounded and
|J ′
R| ≤ ∆ for all R ∈ Grq(n, r), as desired. �
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We also record a technical “boundedness lemma” which shows that a reasonable lattice element
J has at most the expected number of extensions (of a specific type) from J into a random host.

Lemma 5.5. Let h ≥ 1. There is c = c5.5(h, q, r) so that for n large and q−cn ≤ p ≤ 1/2, the

following holds. First, whp L ∼ Sam(Grq(n, r), p) is (q−n/20, h)-typical. Second, if θ ≥ q−n/20 and

J ∈ ZGrq(n,r) is θ-bounded with |JR| ≤ q
n/10 for all R ∈ Grq(n, r) then whp J is (2θ, h)-bounded wrt

L.

Proof. Fix an r-dimensional q-extension E = (φ, F,H \ {R}) to Fnq with dimVec(H) ≤ h and

R ∈ H \ H[F ]; there are Oh,q,r(q
(dimF )n) possible choices of E. We will apply Lemma 3.8 to

XR
E (L, J). The first part of the lemma concerns J = 1, i.e., it is 1 in all coordinates.
Consider a given r-space R′ and whether it is included in L. If R′ 6 F , it cannot affect XR

E (L, J).
Now for any k ∈ {0, . . . ,min(dimF, r−1)}, there are at most Oq,r,h(q(r−k)n) r-spaces R′ which inter-
sect F in dimension k. Changing whether or not R′ is included in L can change the count XR

E (L, J)

by at most qn/10 · Oq,r,h(q(vE−(r−k))n) = Oq,r,h(q
(vE−r+k+1/10)n). Therefore the variance proxy for

XR
E (L, J) when applying Lemma 3.8 is, up to constants, bounded by

∑

0≤k≤min(dimF,r−1)(q
(vE−r+k+1/10)n)2q(r−k)n.

Thus it is at most q(2vE−3/4)n for n sufficiently large. Furthermore d(L) = (1± q−n/10)p with high
probability by Chernoff.

Finally, we have

EXR
E (L, J) = E

[

∑

φ∗∈XE(L)

|Jφ∗(R)|

]

= peE
∑

φ∗∈XE(Grq(n,r))

|Jφ∗(R)| ≤ θ(1 + 2q−n/10)eEd(L)eE qvEn,

since dim(R∩F ) ≤ r−1. Therefore by Lemma 3.8 and taking a union bound of size Oh,q,r(q(dimF )n),
the second part of the result follows. The first part follows by noting that EXR

E (L, J) for J = 1

evaluates to (1± q−n/3)peEqvEn. �

5.2. Lattices and sparse subsets. We now construct the crucial object for our proof: we take
a random sparse subset of Grq(n, r) and prove that the associated lattice in some sense is “mostly
generated” by a sparse basis set. The strategy for Theorem 5.2 at a high level would be to find a
representation of J (mod ∆) (where ∆ = ∆5.3(q, s, r)) by starting with an arbitrary representation,
covering the parts outside our sparse subset in a “spread out” way, and then decomposing the parts
inside with the sparse basis set. Since we are working (mod ∆), the coefficients are small and the
representation is bounded by design. If we take the least residues (mod ∆) and then consider the
image over Z, we obtain some bounded J∗ such that J − J∗ ∈ ∆ZGrq(n,r), at which point we can
use Proposition 5.3. However, the fact that we can only obtain a sparse “almost basis” leads to
additional difficulties; at a high level we take multiple independent copies of this sparse object and
show that together they can “cover the gaps” with high probability.

Proposition 5.6. Let C = C5.6(q, s), c = c5.6(q, s), q
−cn ≤ p ≤ c, and n be sufficiently large.

Given ∆ ≥ 1, let L ∼ Sam(Grq(n, r), p). Whp, there is a set S ⊆ Grq(n, s)[L] (i.e., s-spaces with

all r-subspaces in L) which is such that (a) each Q ∈ Grq(n, r− 1) has at most p1/2qn extensions to

an s-space in S and (b) there is B ⊆ Grq(n, r − 1) with |Grq(n, r − 1) \B| ≤ C∆p1/2q(r−1)n and

∂s,r(Z/∆Z)S ⊇ ∂s,r(Z/∆Z)Grq(n,s)[L[B]].

Proof. Consider the following greedy process: start with S empty, and continually add in an arbi-
trary S ∈ Grq(n, s)[L] such that (i) ∂s,reS /∈ ∂s,r(Z/∆Z)S and (ii) adding it to S does not make any
(r − 1)-space Q have more than p1/2qn extensions to an element in S.

At the termination of this process, either (i) fails for all remaining subspaces so we have an
appropriate (taking B = Grq(n, r−1)) subset with ∂s,r(Z/∆Z)S ⊇ ∂s,r(Z/∆Z)Grq(n,s)[L] and we are
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done, or (ii) fails. In the latter case, there is a subset B′ ⊆ Grq(n, r−1) of “saturated” (r−1)-spaces
Q such that every S ∈ Grq(n, s)[L] with ∂s,reS /∈ ∂(Z/∆Z)S contains an element of B′, and every
space in B′ is contained within ⌊p1/2qn⌋ many s-spaces in S. Let B = Grq(n, r − 1) \B′.

Now we have the bound ⌊p1/2qn⌋|B′| ≤
[ s
r−1

]

q
|S| by counting pairs of s-spaces of S and (r − 1)-

spaces, one containing the other. We also have |S| ≤ ∆ · |L| since each newly added element of
S strictly extends the subgroup spanned by the ∂s,reS ∈ (Z/∆Z)L, and the longest chain of such
subgroups is bounded in size by ∆|L|. Since |L| ≤ 2pqrn whp, the result follows. �

We now create a “regularized” subset L∗ ⊆ L[B] such that every r-space in L∗ has around the
same number of extensions to an s-space all of whose r-subspaces are in L[B].

Lemma 5.7. Let c = c5.7(q, s), q
−cn ≤ p ≤ c, and n be sufficiently large. Given ∆ ≥ 1, sample L

and create S and B as in Proposition 5.6 (existing whp). Whp there exists a collection L∗ ⊆ L[B]

with |L∗| = (1 ± ∆p1/5)p
[n
r

]

q
such that every R ∈ L∗ has (1 ± p1/5)p[

s
r]q−1[n−r

s−r

]

q
extensions to an

s-space in Grq(n, s)[L[B]].

Proof. First, by Lemma 5.5 whp |L| = (1 ± q−n/20)p
[n
r

]

q
, every Q ∈ Grq(n, r − 1) has (1 ±

q−n/20)p
[sr]q

[n−(r−1)
s−(r−1)

]

q
extensions to some S ∈ Grq(n, s)[L], every r-space R ∈ L has (1±q−n/20)p[

s

r]q−1[n−r
s−r

]

q

extensions to some S ∈ Grq(n, s)[L], and finally |Grq(n, s)[L]| = (1± q−n/20)p[
s
r]q

[

n
s

]

q
. In particular

every Q ∈ Grq(n, r− 1) has at most 2p
[sr]q

[n−(r−1)
s−(r−1)

]

q
extensions into an s-space in Grq(n, s)[L]. Let

L∗ ⊆ L be the r-spaces with (1 ± p1/5)p[
s

r]q−1[n−r
s−r

]

q
extensions to an s-space in Grq(n, s)[L[B]].

Clearly L∗ ⊆ L[B].
We now count X, the number of pairs (Q,S) of (r− 1)-spaces Q ∈ Grq(n, r− 1) \B and s-spaces

S > Q with S ∈ Grq(n, s)[L]. We have by Proposition 5.6 that

|L \ L∗| · (p1/5 − q−n/20)p[
s
r]q−1

[

n− r

s− r

]

q

≤

[

s

r

]

q

X ≤

[

s

r

]

q

· C5.6∆p
1/2q(r−1)n · 2p[

s
r]q

[

n− (r − 1)

s− (r − 1)

]

q

.

The first inequality is deduced by considering any element R ∈ L\L∗ and using the definition of L∗

and initial bounds on extensions within L to find an extension to an s-space containing an (r− 1)-
space within Grq(n, r− 1) \B (this process can overcount by at most a factor of

[s
r

]

q
corresponding

to the choice of R given (Q,S)). The second inequality follows by starting with the bound on
Grq(n, r − 1) \B from Proposition 5.6 and then using initial bounds on extensions within L.

Dividing both sides and using the bounds on p shows that

|L \ L∗| .q,s ∆p
3/10 · p

[

n

r

]

q

.

Combining with the initial bound |L| = (1± q−n/20)p
[n
r

]

q
finishes. �

We now fix p = q−ξn, ξ > 0 to be chosen small later, ∆ = ∆5.3(q, s, r) and fix a given realization
of S, B, L[B], and L∗[B] satisfying the conditions of Proposition 5.6 and Lemma 5.7 with these
values of ∆, p, and n. We will consider a set of “rotated” collections defined by applying the action
of A1, . . . , Au ∈ GL(Fnq ). Thinking of the indices [u] as colors, we first show that certain colored
configurations can be generated by the images of monochromatic s-spaces.

Proposition 5.8. Let 0 < ξ ≤ ξ5.8(q, s), fix some positive integers u ≥ u5.8(ξ, q, s) and ∆ ≥ 1,

and suppose n is large with respect to these parameters. Let p = q−ξn, and then let L,S, B be as
in Proposition 5.6 and L∗ be as in Lemma 5.7 (all existing whp). Sample A1, . . . , Au ∈ GL(Fnq )
uniformly at random. Whp, the following two properties hold.
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• Suppose S ∈ Grq(n, s) and there exists ψ : Gr(S, r) → [u] so that R ∈ Aψ(R) · L
∗ for all

R ∈ Gr(S, r). Then there exists a representation

∂s,reS =
∑

S′∈I

aS′∂s,reS′

such that for all S′ ∈ I, aS′ ∈ Z and Gr(S′, r) ⊆ Ai · L[B] for some i ∈ [u].
• Suppose S, S∗ ∈ Grq(n, s) with dim(S ∩ S∗) = r and there exists ψ : (Gr(S, r) ∪Gr(S∗, r)) \
{S ∩ S∗} → [u] so that R ∈ Aψ(R) · L

∗ for all R in the domain. Then there exists a
representation

∂s,r(eS − eS∗) =
∑

S′∈I

aS′∂s,reS′

such that for all S′ ∈ I, aS′ ∈ Z and Gr(S′, r) ⊆ Ai · L[B] for some i ∈ [u].

Remark. A matrix in GL(Fnq ) is applied to a set of subspaces of Fnq by extending the action and
applying the operation element-wise in the natural way.

To prove this, we first show a “rainbow” version of the first bullet point.

Lemma 5.9. Let 0 < ξ ≤ ξ5.9(q, s), fix some positive integers u ≥ u5.9(ξ, q, s) and ∆ ≥ 1,

and suppose n is large with respect to these parameters. Let p = q−ξn, and then let L,S, B be as
in Proposition 5.6 and L∗ be as in Lemma 5.7 (all existing whp). Sample A1, . . . , Au ∈ GL(Fnq )
uniformly at random. Whp, the following property holds:

• Suppose S ∈ Grq(n, s) and there exists an injective ψ : Gr(S, r)→ [u] so that R ∈ Aψ(R) ·L
∗

for all R ∈ Gr(S, r). Then there exists a representation

∂s,reS =
∑

S′∈I

aS′∂s,reS′

such that for all S′ ∈ I, aS′ ∈ Z and Gr(S′, r) ⊆ Ai · L[B] for some i ∈ [u].

Proof. Let H be a s-dimensional q-system defined as follows. Let b =
[s
r

]

q
. Take one copy of the

construction in Proposition 4.1, with underlying k-dimensional vector space W and with collections
of s-spaces Υ0,Υ

′
0. Choose some F ∈ Υ0, and let Fj for 1 ≤ j ≤ b be the s-spaces in Υ′

0 intersecting
F in r dimensions. Then glue b additional copies of the construction from Proposition 4.1, call them
Wj for j ∈ [b], linearly disjointly along each Fj , with collections of s-spaces Υj ,Υ

′
j labeled such that

Fj ∈ Υj. Let F ′
j be the unique s-space in Υ′

j which contains F ∩ Fj . Thus if k = k4.1(s), we see
that dimVec(H) = k + b(k − s). Finally, let the s-spaces of H be

Υ0 ∪ (Υ′
0 \ {F1, . . . , Fb}) ∪

b
⋃

j=1

(

(Υj \ {Fj}) ∪Υ′
j

)

.

The key point here is that applying Proposition 4.1 shows ∂s,rΥ0 = ∂s,rΥ
′
0 and ∂s,rΥj = ∂s,rΥ

′
j

for all j ∈ [b]. Therefore, we can first express ∂s,reF in terms of ∂s,reS for the s-spaces in Υ′
0 and

Υ0\{F}. Then we can express ∂s,reFj
in terms of ∂s,reS for the s-spaces in Υ′

j and Υj \{Fj} for each
j ∈ [b]. Overall this provides an expression for ∂s,reF in terms of ∂s,reS for S ∈ H \H[F ] = H \{F}.

Finally, let S0 = F and fix a basis {v1, . . . , vs} for S0 (within Vec(H)). For R ∈ Gr(S0, r) if j ∈ [b]
is the unique index so that Fj ∩F = R, define SR = F ′

j . We can see this is the unique s-space of H
satisfying S0 ∩ SR = R. Let the remaining s-spaces in H \ ({S0} ∪ {SR : R ∈ Gr(S0, r)}) be labeled
as S1, . . . , St, where clearly t ≤

[k+b(k−s)
s

]

q
.

Consider any outcomes of L,S, B, L∗ satisfying the conditions of Proposition 5.6 and Lemma 5.7
for the given parameters as well as Lemma 5.5 for J = 1, and now only consider the randomness
of A1, . . . , Au. For any S ∈ Grq(n, s) and injective ψ : Gr(S, r)→ [u] let ES,ψ be the event that (a)
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R ∈ Aψ(R) · L
∗ for all R ∈ Gr(S, r) and (b) a desired representation as in the lemma statement

does not exist. It suffices to give a sufficiently strong bound on P[ES,ψ] so that we can take a union
bound.

To this end, let us further condition on each A−1
ψ(R)

for all R ∈ Gr(S, r). In order to contribute

to ES,ψ we may assume that R ∈ Aψ(R) · L
∗ occurs for all R ∈ Gr(S, r) (and this property can be

deduced given this information). From now on, everything other than the remaining conditional
randomness will be taken to be fixed. Thus Ai for i /∈ ψ(Gr(S, r)) are uniformly random elements
of GL(Fnq ) while A−1

ψ(R) are fixed.

Now fix an Fq-basis {v′1, . . . , v
′
s} for S (within Fnq ). Consider some sequence T = (u1, . . . , ut) ∈ [u]t

of distinct colors that are not in ψ(Gr(S, r)), which exists as long as u is large enough. Consider
YT , the number of q-embeddings φ : Vec(H)→ Fnq of H in Grq(n, s) such that:

• φ(S0) = S and in fact φ(vi) = v′i for all i ∈ [s].
• For each R ∈ Gr(S0, r), we have φ(SR) ∈ Grq(n, s)[Aψ(φ(R)) · L[B]].
• For each i ∈ [t] we have φ(Si) ∈ Grq(n, s)[Aui · L[B]].

We now compute the mean and variance of YT .
First note that by Lemma 5.7 there are at least

1
[s
r

]

q

(1−∆p1/5)p

[

n

r

]

q

· (1− p1/5)p
[sr]q−1

[

n− r

s− r

]

q

≥ (1− 2∆p1/5)p
[sr]q

[

n

s

]

q

many s-spaces in Grq(n, s)[L[B]], counting by starting with an element of L∗ and extending it to an s-
space all of whose r-subspaces are in L[B]. On the other hand Lemma 5.5 shows |Grq(n, s)[L]| = (1±

q−n/20)pb
[n
s

]

q
, which provides a matching upper bound. So |Grq(n, s)[L[B]]| = (1± 2∆p1/5)pb

[n
s

]

q
.

Additionally, every R ∈ L∗ has (1± p1/5)pb−1
[n−r
s−r

]

q
extensions to an s-space in Grq(n, s)[L[B]].

Extend {v1, . . . , vs} to an Fq-basis {v1, . . . , vd} for Vec(H) (note d = Oq,s(1)) with the additional
property that for j ∈ [b], we have Vec(Wj) = spanFq

{Fj , vs+(k−s)(j−1)+1, . . . , vs+(k−s)j}. This is
possible since in the definition of H, we glued the b additional copies of the construction from
Proposition 4.1 (namely, the Wj) linearly disjointly along each Fj , and the Wj therefore can be
seen to satisfy dim(Vec(Wj) ∩ Uj) = r where

Uj := spanFq

(

W ∪
⋃

j′ 6=j

Vec(Wj′)

)

.

We in fact guarantee the further additional property that

F ′
j = spanFq

(Fj ∩ F, vs+(k−s)(j−1)+1, . . . , vs+(k−s)(j−1)+s−r}

for j ∈ [b], which is evidently possible. Here we are using F ′
j ∩ Uj = F ′

j ∩ Fj = Fj ∩ F and hence
also dim(F ′

j ∩ Fj) = r due to definition (specifically, this dimension is not bigger due to the second
bullet point of Proposition 4.1).

We can specify φ satisfying the first bullet above by additionally specifying where {vs+1, . . . , vd}
map into vectors of Fnq which are jointly linearly independent with {v′1, . . . , v

′
s}. We do this in

stages, starting with {vs+(k−s)(j−1)+1, . . . , vs+(k−s)j} in order for j ∈ [b] and then ending with
{vs+(k−s)b+1, . . . , vd}. Let Y be the set of such maps with the additional property that for every
R ∈ Gr(S0, r), the unique j ∈ [b] such that F ′

j = SR satisfies Gr(φ(F ′
j), r) ⊆ Aψ(φ(R)) · L

∗ (which
guarantees the second bullet point above). This is a deterministic set given the revealed information,
and we see |Y| = (1± p1/6)(pb−1)bq(d−s)n for n large, using that R ∈ Aψ(R) ·L

∗ for all R ∈ Gr(S, r)
as well as the above extension property of L∗. Finally, for each map φ ∈ Y we let 1φ be 1 if the
third bullet point holds for φ and 0 otherwise, which is now purely a function of the randomness of
Aui for i ∈ [t].
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We have
EYT =

∑

φ∈Y

E1φ =
(

(1± 2∆p1/5)pb
)|H|−b−1

|Y|

because of the earlier estimates on the size of Grq(n, s)[L[B]] and because T is composed of distinct
colors not in ψ(Gr(S, r)), because ψ is injective, and because the definition of Y already guarantees
the first two bullet points in the definition of YT .

Now to compute EY 2
T , note that Y 2

T counts pairs (φ1, φ2) ∈ Y
2 satisfying the third bullet point

above. Let us first consider such pairs where additionally {v′1, . . . , v
′
s} and {φ1(vs+1), . . . , φ1(vd)}

and {φ2(vs+1), . . . , φ2(vd)} together have some linear dependency, call this set Z. By definition of
Y, this implies we have some linear combination where a vector from the second set and a vector
from the third set both have a nonzero coefficient. This easily implies there are |Z| ≤ (qn)2(d−s)−1/2

such terms, each of which is counted by Y 2
T with probability at most 1. For the other possibilities

of (φ1, φ2) ∈ Y2 \ Z we find

E[1φ11φ2 ] ≤
(

(1 + q−n/25)p2b
)|H|−b−1

.

This is computed by using the fact that for i ∈ [t] the images of A−1
ui φ1(Si) and A−1

ui φ2(Si) are jointly
uniform over pairs of subspaces whose intersection is ri-dimensional for some 0 ≤ ri ≤ r− 1 defined
via ri = dim(Si ∩S0), using the definition of Z. Then typicality of L coming from Lemma 5.5 gives
the desired upper bound on the counts of such configurations in L[B] ⊆ L.

Finally this means

EY 2
T ≤

(

(1 + q−n/25)p2b
)|H|−b−1

|Y|2 + q(2(d−s)−1/2)n

and we deduce for ξ small and n sufficiently large with respect to our parameters that

Var[YT ] ≤ p
1/6

(

pb
)2(|H|−b−1)

|Y|2.

Now if YT > 0 then some φ ∈ Y with 1φ = 1 exists. Considering φ(H), we see that iterative
use of Proposition 4.1 as described earlier provides a representation of ∂s,reS as a signed sum of
∂s,reS′ for S′ ∈ φ(H) \ {S}. Furthermore, the second and third bullets imply that each S′ satisfies
Gr(S′, r) ⊆ Ai · L[B] for some i, providing a desired representation and showing that ES,ψ fails.
Thus ES,ψ ⊆ {YT = 0}.

We estimate by Chebyshev’s inequality that

P[YT = 0] ≤ p1/7

as long as ξ is sufficiently small. Unfortunately, this probability is not small enough to take a union
bound over S,ψ. However, if we take u5.9(ξ, q, s) sufficiently large then we can find T1, . . . , Tu′ with
u′ = ⌈8s/ξ⌉ which are disjoint, and then we see by (conditional) independence that

P[ES,ψ] ≤
u′
∏

i=1

P[YTi = 0] ≤ pu
′/7 ≤ q−8sn/7.

We have a union bound of size at most qsn · u|H|, so for n large we have that whp, none of the ES,ψ
hold. This directly implies the desired conclusion. �

Now we prove Proposition 5.8. The strategy is somewhat similar to the proof of Lemma 5.9, con-
sidering the probability a random extension to a configuration as in Proposition 4.1 gives something
with good color properties. In Lemma 5.9 we were careful to ensure that each color in some sense
only appears once in the random variable YT , and the most difficult property we needed was that
r-spaces of L∗ have a predictable number of extensions to s-spaces of Grq(n, s)[L[B]]. Here, the
argument is substantially simpler since Lemma 5.9 tells us it suffices to find a representation where
each new clique is rainbow, rather than monochromatic.

22



Proof of Proposition 5.8. We will only prove the second bullet point; the first is similar and simpler.
Let H be the s-dimensional q-system on Fkq for k = k4.1(s) which is Υ ∪ Υ′ from Proposition 4.1.
As in the proof of Lemma 5.9 let S0 be a specific s-space of H. Let R0 6 S0 be a specific r-
subspace. Let S1 be the unique s-space of H other than S0 containing R0. Label the r-spaces
in (

⋃

S∈H Gr(S, r)) \ Gr(S1, r) as R1, . . . , Rt, where here clearly t ≤
[k
r

]

q
. Finally, fix a basis

{v1, . . . , vs} for S1 (within Fkq), suppose R0 = spanFq
{vs−r+1, . . . , vs}, and then extend this to a

basis {vs−r+1, . . . , v2s−r} for S0. Extend this to a basis {v1, . . . , vd} of spanFq
(
⋃

S′∈H S
′).

Let us again consider any outcomes of L,S, B, L∗ satisfying the conditions of Proposition 5.6
and Lemma 5.7 for the given parameters as well as Lemma 5.5 for J = 1, and now only consider
the randomness of A1, . . . , Au. For S, S∗ ∈ Grq(n, s) with dim(S ∩ S∗) = r define ES,S∗,ψ for
ψ : (Gr(S, r) ∪ Gr(S∗, r)) \ {S ∩ S∗} → [u] to be the event that (a) R ∈ Aψ(R) · L

∗ for all R in the
domain of ψ and (b) such a desired representation for the second bullet point does not exist. Again
it suffices to give a sufficiently strong bound on P[ES,S∗,ψ] so that we can take a union bound.

Again let us further condition on A−1
ψ(R)v for all choices of v ∈ R ∈ (Gr(S, r)∪Gr(S∗, r))\{S∩S∗}.

In order to contribute to ES,S∗,ψ we may again assume that R ∈ Aψ(R) ·L
∗ for all R ∈ dom(ψ). From

now on Ai for i /∈ range(ψ) are uniformly random elements of GL(Fnq ) while A−1
ψ(R)

for R ∈ dom(ψ)

are uniformly random in GL(Fnq ) conditional on knowing the images of all v ∈ R.
Since dim(S ∩S∗) = r, we can fix an Fq-basis {v′1, . . . , v

′
2s−r} with the property that {v′1, . . . , v

′
s}

is a basis for S and {v′s−r+1, . . . , v
′
2s−r} is a basis for S∗ (within Fnq ). Consider some sequences

T = (u1, . . . , ut) ∈ [u]t and T ∗ = (u∗1, . . . , u
∗
t ) ∈ [u]t of mutually distinct colors that are not in

range(ψ), which exists as long as u is large enough. Finally consider YT,T ∗, the number of pairs of
q-embeddings φ, φ∗ : Fkq → Fnq of H in Grq(n, s) such that:

• φ(S1) = S and φ∗(S1) = S∗ and in fact φ(vi) = v′i and φ∗(vi) = v′2s−r+1−i for i ∈ [s]. In
particular φ(R0) = spanFq

{v′s−r+1, . . . , v
′
s} = φ∗(R0).

• φ(S0) = φ∗(S0).
• {v′1, . . . , v

′
2s−r} and {φ(vs+1), . . . , φ(v2s−r)} and {φ(vi) : 2s−r < i ≤ d} and {φ∗(vi) : 2s−r <

i ≤ d} are jointly Fq-linearly independent.
• For each i ∈ [t] we have φ(Ri) ∈ Grq(n, s)[Aui · L

∗] and φ∗(Ri) ∈ Grq(n, s)[Au∗i · L
∗].

This can be thought of as gluing “linearly disjoint” two copies of H along S0 and then making their
respective images of S1 map to S and S∗ (which share an r-subspace). If YT,T ∗ > 0 then, similar
to the proof of Lemma 5.9, we can use Proposition 4.1 to rewrite ∂s,r(eS − eS∗) as a signed sum of
∂s,reS′ for S′ ∈ φ(H \{S0, S1}) and S′ ∈ φ∗(H \{S0, S1}), and each such S′ satisfies the conditions of
Lemma 5.9: every S′ ∈ H \ {S0, S1} has images under φ, φ∗ which are “rainbow” in the correct way,
and φ(S0) = φ∗(S0) (which are the only s-spaces other than S, S∗ in this configuration that contain
the r-space S ∩ S∗ for which we have no guarantees) cancel each other out in this representation.
Applying Lemma 5.9 would therefore show that S, S∗ do have a valid representation. That is, if we
let E5.9 be the event that the conclusion of Lemma 5.9 holds for these parameters, then

ES,S∗,ψ ∩ E5.9 ⊆ {YT,T ∗ = 0}.

Now we perform an analogous second-moment computation for YT,T ∗. Defining Y as the number of
pairs of maps φ, φ∗ : Fkq → Fnq satisfying the first three bullets above, we have |Y| = Θq,s(q

(2d−3s+r)n).
Thus from Lemmas 5.5 and 5.7 we find

EYT,T ∗ = ((1 ±∆p1/5)p)2t|Y|,

EY 2
T,T ∗ ≤ ((1 + q−n/4)p)2t|Y|2 + q(2(2d−3s+r)−1/2)n

in a manner similar to the proof of Lemma 5.9. We similarly deduce P[YT,T ∗ = 0] ≤ p1/7 by
Chebyshev’s inequality, and now if u is sufficiently large in terms of ξ then taking u′ = ⌈16s/ξ⌉ and
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appropriate disjoint Ti, T ∗
i for i ∈ [u′] yields

P[ES,S∗,ψ ∩ E5.9] ≤
u′
∏

i=1

P[YTi,T ∗

i
= 0] ≤ pu

′/7 ≤ q−16sn/7

Taking a union bound of size at most q2sn · u
2[sr]q and combining with Lemma 5.9 finishes. �

Next we wish to show that an arbitrary “flat” J can be split up in some sense as the image of a
bounded element plus something whose support is purely within

⋃u
i=1(Ai · L

∗). The proof goes by
covering the parts outside in a spread-out manner using Lemma 5.5. We will first need the following
estimate for extending r-spaces into some Ai · L∗.

Lemma 5.10. Let 0 < ξ ≤ ξ5.10(q, s), fix some positive integers u ≥ u5.10(ξ, q, s) and ∆ ≥ 1,

and suppose n is large with respect to these parameters. Let p = q−ξn, and then let L,S, B be as
in Proposition 5.6 and L∗ be as in Lemma 5.7 (all existing whp). Sample A1, . . . , Au ∈ GL(Fnq )
uniformly at random. Whp, for every R ∈ Grq(n, r) there is an index iR ∈ [u] so that the number

of s-spaces S > R with Gr(S, r) \ {R} ⊆ AiR · L
∗ is (1± p1/6)p[

s

r]q−1[n−r
s−r

]

q
.

Proof. By the first part of Lemma 5.5 whp for all R ∈ Grq(n, r) and all i ∈ [u] the number of

s-spaces S > R with Gr(S, r) \ {R} ⊆ Ai · L is (1 ± q−n/20)p
[sr]q−1[n−r

s−r

]

q
. We also deduce that

for every i ∈ [u] and distinct R1, R2 ∈ Grq(n, r) with d = dim spanFq
{R1, R2} ≤ s that there are

(1 ± q−n/20)p[
s

r]q−2[n−d
s−d

]

q
extensions to an s-space S containing R1, R2 with Gr(S, r) \ {R1, R2} ⊆

Ai · L.
Now for fixed i and for some R ∈ Grq(n, r) let us consider YR,i, the number of s-spaces S > R

with Gr(S, r) \ {R} ⊆ Ai · L and such that at least one element of Gr(S, r) is in Ai · (L \ L
∗). We

consider only the randomness of Ai and see that EYR,i is independent of R, and satisfies the bound

EYR,i ≤

[

s

r

]

q

|L \ L∗|
[n
r

]

q

· (1 + q−n/20)p
[sr]q−2

[

n− r

s− r

]

q

.q,s (∆p
1/5 + q−n/3) · p[

s

r]q−1
[

n− r

s− r

]

q

,

by using Lemma 5.7 to bound |L \ L∗| and using the above fact about extension counts within

L (and summing appropriately). By Markov’s inequality, we have YR,i ≥ p2/11p
[sr]q−1[n−r

s−r

]

q
with

probability at most p1/64 as long as n is large. Since the various values of i are independent, we

see that YR,i ≤ p2/11p
[sr]q−1[n−r

s−r

]

q
for some i ∈ [u] with probability at least 1 − pu/64. For u large

in terms of ξ, we can take a union bound over all values of R and find that whp, every R has some

index iR ∈ [u] where YR,iR ≤ p
2/11p

[sr]q−1[n−r
s−r

]

q
.

Finally, combining with the observations in the first paragraph we see that for every R the number

of s-spaces S > R with Gr(S, r) \ {R} ⊆ AiR · L
∗ is at most (1 + q−n/3)p

[sr]q−1[n−r
s−r

]

q
and at least

(1− q−n/20 − p2/11)p[
s

r]q−1
[

n− r

s− r

]

q

≥ (1− p1/6)p[
s

r]q−1
[

n− r

s− r

]

q

. �

Now we show that we can cover into
⋃u
i=1(Ai · L

∗) in a bounded manner.

Lemma 5.11. Let J ∈ ZGrq(n,r) be θ-bounded for some θ ≥ q−n/20 with |JR| ≤ q0.1n for all
R ∈ Grq(n, r). Let 0 < ξ ≤ ξ5.11(q, s), fix some positive integers u ≥ u5.11(ξ, q, s) and ∆ ≥ 1,

let C = C5.11(u, ξ, q, s), and suppose n is large with respect to these parameters. Let p = q−ξn,
and then let L,S, B be as in Proposition 5.6 and L∗ be as in Lemma 5.7 (all existing whp). Sample
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A1, . . . , Au ∈ GL(Fnq ) uniformly at random. Whp, there is Φ ∈ ZGrq(n,s) with ∂s,rΦ = J − J ′ such

that J ′, ∂s,rΦ
± are Cθ-bounded and supp(J ′) ⊆

⋃u
i=1(Ai · L

∗).

Proof. Whp L satisfies Lemma 5.5 for J , which we now assume. Next, for each R ∈ Grq(n, r), let
iR be as in Lemma 5.10 (existing whp). For each signed element R of J , counted with multiplicity,
we consider a uniformly random extension SR ∈ Grq(n, s) with the property that Gr(SR, r)\{R} ⊆
AiR · L

∗. Let Φ be the sum of said elements with the corresponding signs, and write J ′ = J − ∂Φ.

Note that there are (1 ± p1/6)p
[sr]q−1[n−r

s−r

]

q
choices of each SR by Lemma 5.10 and that clearly

supp(J ′) ⊆
⋃u
i=1(Ai · L

∗). It suffices to show the necessary boundedness.
For any R′ ∈

⋃u
i=1(Ai · L

∗) we consider the expected number of SR that it is contained in. If we
consider the contribution from R with dim(R ∩ R′) = k ∈ {max(0, 2r − s), . . . , r − 1} and iR = i,

there are at most 2θp
[2r−k

r ]
q
−2
q(r−k)n choices of R (counting multiplicity) by Lemma 5.5, each of

which has at least (1/2)p
[sr]q−1[n−r

s−r

]

q
choices of SR. On the other hand, for given R we know R′ is

contained in at most 2p
[sr]q−[

2r−k
r ]

qq(s−(2r−k))n many SR by Lemma 5.5. Thus the expected number
of SR that R′ is contained in is bounded by

u ·
r−1
∑

k=max(0,2r−s)

2θp
[2r−k

r ]
q
−2
q(r−k)n · 2p[

s

r]q−[
2r−k

r ]
qq(s−(2r−k))n ·

1

(1/2)p
[sr]q−1[n−r

s−r

]

q

≤ Ou,q,s(θp
−1).

Finally, for any Q ∈ Grq(n, r − 1) by Lemma 5.5 it is in at most 2upqn many r-spaces R′ ∈ L,
so say (∂Φ+)Q has mean bounded by Ou,q,s(θq

n). It is therefore easy to see that we can apply
Chernoff (to each value of k separately, similar to the proof of Proposition 5.3) to show that ∂Φ±

are Ou,q,s(θ)-bounded. �

Next, we show that something in the lattice whose support is within {S ∈ Grq(n, s) : Gr(S, r) ⊆
⋃u
i=1(Ai · L[B])} can be generated purely by ∂s,reS for S a monochromatic s-space. This is done

by taking an arbitrary representation as ∂s,rΦ and using a “subspace exchange” process to reduce
to s-spaces for which we can apply Lemma 5.9.

Proposition 5.12. Let 0 < ξ ≤ ξ5.12(q, s), fix some positive integers u ≥ u5.12(ξ, q, s) and ∆ ≥ 1,

and suppose n is large with respect to these parameters. Let p = q−ξn, and then let L,S, B be as
in Proposition 5.6 and L∗ be as in Lemma 5.7 (all existing whp). Sample A1, . . . , Au ∈ GL(Fnq )

uniformly at random. Whp, for any J ∈ ∂s,rZ
Grq(n,s) with supp(J) ⊆

⋃u
i=1(Ai · L

∗) there is a
representation

J ′ =
∑

S∈I

aS∂s,reS

such that for all S ∈ I, aS ∈ Z and there is i ∈ [u] such that Gr(S, r) ⊆ Ai · L[B].

Proof. Assume Proposition 5.8 and Lemma 5.10 hold (whp). Write

J =
∑

S∈I0

aS∂s,reS

for I0 ⊆ Grq(n, s) and aS ∈ Z. For each S ∈ I0, we can find a representation of ∂s,reS as a
signed sum of ∂s,reS′ where each S′ is such that all of Gr(S′, r) except perhaps one r-space is in
⋃u
i=1(Ai · L

∗). This can be proved similar to Proposition 5.8 and Lemma 5.9: we use a subspace
exchange from Proposition 4.1 to flip out into a bunch of “rainbow” s-spaces. The s-spaces which
share an r-space with S are the only ones that may have an exceptional r-space. We forgo the
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details of the proof as it is essentially the same. Explicitly, we have

J =
∑

S∈I1

bS∂s,reS +
∑

S∈I2

bS∂s,reS

for I1 ∪ I2 ⊆ Grq(n, s) with the property that bS ∈ Z and for all S ∈ I1, Gr(S, r) ⊆
⋃u
i=1(Ai · L

∗)
and for all S ∈ I2, there is RS ∈ Gr(S, r) such that Gr(S, r) \ {RS} ⊆

⋃u
i=1(Ai · L

∗) and RS /∈
⋃u
i=1(Ai · L

∗).
Now we can write J as an integer linear combination of vectors of the form ∂s,reS for Gr(S, r) ⊆

⋃u
i=1(Ai · L

∗) and ∂s,r(eS − eS′) where there is some r-space R ⊆ S ∩ S′ such that (Gr(S, r) ∪
Gr(S′, r)) \ {R} ⊆

⋃r
i=1(Ai · L

∗). Indeed, just note that for each r-space R /∈
⋃r
i=1(Ai · L

∗) the
s-spaces containing R must have weights summing to 0 by the support condition, and two such
R,R′ cannot have the same s-space containing both by the above condition on I2.

By the first bullet of Proposition 5.8, the vectors ∂s,reS of the first type can be reduced to a
sum of the desired form. The vectors ∂s,r(eS − eS′) almost can via the second bullet, except that
we do not necessarily know that dim(S ∩ S′) = r. However, given such a term with corresponding
r-space R note that by Lemma 5.10 there is iR ∈ [u] so that the number of s-spaces S∗ > R with

Gr(S∗, r) \ {R} ⊆ AiR ·L
∗ is at least (1/2)p[

s
r]q−1[n−r

s−r

]

q
. This is greater than q(s−r−1/2)n for ξ small

and n sufficiently large. On the other hand, the number of choices of S∗ where dim(S ∩ S∗) > r or
dim(S∗ ∩ S′) > r is at most Oq,s(q(s−r−1)n). Therefore there is a choice of S∗ so that, writing

∂s,r(eS − eS′) = ∂s,r(eS − eS∗) + ∂s,r(eS∗ − eS′),

we can apply Proposition 5.8 to both terms. The result follows. �

Finally, we are ready to prove Theorem 5.2.

Proof of Theorem 5.2. Let ∆ = ∆5.3(q, s, r). Choose ξ very small in terms of q, s and then u very
large so that, taking p = q−ξn, we can apply all of the prior lemmas for these parameters. We
will choose c5.2, C

−1
5.2 very small with respect to these at the end to satisfy various inequalities. In

particular, let us now let L,S, B be as in Proposition 5.6 and L∗ as in Lemma 5.7, existing whp
and suppose Proposition 5.12 hold, which can be done whp.

We are given J which is θ-bounded such that J ∈ ∂s,rZ
Grq(n,s). By Lemma 5.4 we can write

J = ∂s,rΦ1 + J (1) with J (1), ∂s,rΦ
±
1 being Oq,s(θ)-bounded and |J (1)

R | ≤ q0.1n for all R ∈ Grq(n, r)
(in a way that does not depend on our conditioned randomness). Now by Lemma 5.11, whp we
can write J (1) = ∂s,rΦ2 + J (2) with J (2), ∂s,rΦ

±
2 being Oq,s(θ)-bounded and such that supp(J (2)) ⊆

⋃u
i=1(Ai · L

∗). By Proposition 5.12, since J (2) is in the lattice, there is a representation

J (2) =
∑

S∈I

aS∂s,reS

where for all S ∈ I , aS ∈ Z and Gr(S, r) ⊆ Ai · L[B] for some i.
Now for each S ∈ I , consider i so that Gr(S, r) ⊆ Ai ·L[B]. By the conclusion of Proposition 5.6

and applying the invertible linear map Ai, we have ∂s,reS ∈ ∂s,r(Z/∆Z)Ai·S since S ∈ Grq(n, s)[Ai ·
L[B]]. Thus the above implies that

J (2) ∈ ∂s,r(Z/∆Z)
⋃u

i=1(Ai·S),

so we can write J (2) = ∂s,rΦ3 + J (3) where J (3) ∈ ∆ZGrq(n,r) and Φ3 is a nonnegative sum of eS
for S ∈

⋃u
i=1(Ai · S) with coefficients in {0, . . . ,∆ − 1}. (We are treating Φ3 as an integral vector,

not (mod ∆).) By Proposition 5.6, ∂s,rΦ
±
3 are u∆p1/2-bounded hence θ-bounded as long as c5.2 is

much smaller than ξ. Thus J (3) is Oq,s(θ)-bounded.
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Finally, by Proposition 5.3 we can write J (3) = ∂s,rΦ4 with ∂s,rΦ
±
4 being Oq,s(θ)-bounded. Now

J = ∂s,r(Φ1 +Φ2 +Φ3 +Φ4) satisfies the desired by the triangle inequality. �

6. Template

We define the template via an algebraic construction similar to that appearing in the proof of
Proposition 4.1. Recall from Section 3.5 that V = Fnq ,K = Fqℓm ←֓ Fqℓ = L, and ι1, . . . , ιz : K → V
are uniformly random embeddings of our field into the vector space V . Recall Ki = ιi(K) and
Li = ιi(L). Our template will consist of (the r-subspaces of) certain s-spaces realized by the vectors
ιi(Nx) ∈ Ks

i for some fixed N ∈ Ls×r (applying ιi element-wise in the obvious way) and where
x ∈ Kr is a varying parameter. However, as discussed in Section 2.1, in order to use each r-space
at most once while performing this we must in fact only take a dense subset, and also guarantee
that there are no overlaps between the different values i ∈ [z]. The most natural way to do this is
to specify for each r-space a “configuration” defining how it is allowed to be used in the template
as well as which template it can be used in, and only including those s-spaces coming from some
ιi(Nx) all of whose r-subspaces agree with the given configuration. After this, we further subsample
these s-spaces for later use.

To define the template, we first define the possible space of configurations.

Definition 6.1. Let Redr×sq be the set of matrices Π ∈ Fr×sq of rank r that are in reduced row
echelon form. That is, there are 1 ≤ j1 < · · · < jr ≤ s so that Πi,ji = 1 and Πi,j = 0 for j < ji and
Πk,ji = 0 for k < i.

By basic facts about Gaussian elimination, we see that for every full rank Π ∈ Fr×sq there is
a unique Π′ ∈ GL(Frq) so that Π′Π ∈ Redr×sq , and hence we can compute |Redr×sq | =

[s
r

]

q
. In

particular, given an s-space S 6 V = Fnq with basis given by the elements of b ∈ V r, the distinct
r-subspaces are given by spanFq

(Πb) for Π ∈ Redr×sq . (For notational convenience, given a vector
b composed of r or s elements of Fnq or a similar vector space, we will abuse notation and write
spanFq

(b) for the result of taking the Fq-span of the elements of b, and we will allow ourselves to
apply linear maps coordinate-wise on the elements.)

Definition 6.2. Given the setup in Section 3.5, choose some τ ∈ (0, 1]. Recall N = Nabs ∈ L
s×r is

an Fq-generic matrix of degree d. For each r-space R within V , sample independent yR ∼ Ber(τ)
and iR ∼ Unif([z]). For each r-space R in V , let bR ∈ Rr be a uniformly random basis of R arranged
as a column vector and let ΠR be a uniformly random element of Redr×sq . The s-template Stem is
the set of s-spaces in Fnq that are of the form spanFq

(ιi(Nx)) with i ∈ [z] and x ∈ Kr such that
dimL spanL(x) = r and:

• For each r-space R within spanFq
(ιi(Nx)), we have iR = i.

• For each Π ∈ Redr×sq , we have for R = spanFq
(ιi(ΠNx)) that ιi(ΠRNx) = bR;

• For each r-space R within spanFq
(ιi(Nx)), we have yR = 1.

The template, Gtem ⊆ G, is the r-dimensional multi-q-system formed by taking the multiset of
r-subspaces of s-spaces in the s-template. We let Gtem,i be the portion of Gtem arising from ιi for
index i ∈ [z] and define Stem,i similarly. We will often think of the indices i ∈ [z] as “colors”.

Remark. Since the coordinates of x ∈ Kr are L-linearly independent, spanFq
(ιi(Nx)) will always

form an s-space over Fq (otherwise the coefficients of N satisfy a nontrivial Fq-linear relation, which
is of degree 1 ≤ d).

We record some basic facts about the template, in particular that it is well-defined and Gtem is
actually a q-system and not a multi-q-system.
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Lemma 6.3. Given Section 3.5 and Definition 6.2, we have the following as long as c = c6.3(q, s) >
0, q−cn ≤ τ ≤ c, d ≥ d6.3(r), ℓ ≥ ℓ6.3(d, s), and n is large.

• The template is well-defined.
• Every r-space R 6 V appears at most once in an s-space in Stem;
• For t ∈ {s, r + s} call a t-space obstructed by the template if any of its r-subspaces is

contained in Gtem. Whp, for each r-space R /∈ Gtem at most a τ1/2-fraction of {T ∈
Gr(V, t) : R 6 T} is obstructed by the template.
• Every R ∈ Gtem,i satisfies dimL spanL(ι

−1
i (R)) = r.

Proof. First, the template is well-defined as long as we can choose N with the desired genericity
property and as long as spanFq

(ιi(ΠNx)) is an r-space always for possible choices of i, x,Π. The
former holds as long as ℓ ≥ ℓ6.3(d, s) as in the beginning of the proof of Lemma 3.12. For the
remainder of the argument we will specify d6.3(r) sufficiently large so that Fq-genericity guaran-
tees that for all Π ∈ Fr×sq of rank r, ΠN ∈ Lr×r is invertible, which follows from Lemma 3.12.
This guarantees the latter property, since now the r elements of ΠNx span r dimensions over Fq:
dimL spanL(ΠNx) = dimL spanL(x) = r hence dim spanFq

(ΠNx) ≥ r.
Second, suppose some r-space R appears twice, associated to ιi and x as well as ιj and x′.

The first condition in Definition 6.2 ensures that i = j. Next note from the discussion following
Definition 6.1 that every r-subspace of S = spanFq

(ιi(Nx)) will show up as spanFq
(Πιi(Nx)) =

spanFq
(ιi(ΠNx)) for some Π ∈ Redr×sq (and similar for x′). Thus the second condition forces

ιi(ΠRNx) = ιi(ΠRNx
′) = bR and hence ΠRNx = ΠRNx

′ since ιi is an injective map. By the
condition on N above, we have that ΠRN is invertible so x = x′.

The third result follows from concentration. For t ∈ {s, r+s} call a t-space trivially unobstructed
if each constituent r-subspace R′ satisfies yR′ = 0. Given R ∈ Gr(V, r), the expected fraction of
t-spaces extending R (of which there are

[n−r
t−r

]

q
= Θq,s(q

(t−r)n) total) that are trivially unobstructed

other than possibly due to R is 1 − Os(τ). Furthermore there are at most q(r−u)n many r-spaces
R′ such that dim(R ∩ R′) = u for max(0, 2r − s) ≤ u ≤ r − 1 and each such r-space can cause at
most q(t−(2r−u))n many t-spaces extending R to become obstructed. The result then follows from
Lemma 3.8 with variance proxy bounded by Oq,s(maxu≤r−1 q

2(t−2r+u)n ·q(r−u)n) = Oq,s(q
(2t−2r−1)n)

and taking a union bound: whp every R ∈ Gr(V, r) has at most a τ1/2 fraction of extending t-spaces
obstructed by the template via an r-space other than R, which implies the desired condition for
those r-spaces satisfying R /∈ Gtem.

Finally, any possible R has a basis of the form ιi(ΠNx) where x ∈ Kr is L-linearly independent.
Thus it suffices to show dimL spanL(ΠNx) = r. But ΠN is invertible if d ≥ r by genericity, and
x ∈ Kr being L-linearly independent thus shows the desired. �

7. Absorber analysis

We first prove that the templates are robust in configurations that are useful for absorption.
However, there are some natural constraints that are necessary to impose in order for an s-space to
be absorbable into the template.

The absorber configuration we use is essentially the same as constructed in the proof of Proposition 4.1
with the field inclusion X →֒ Y replaced by L →֒ K, except we specialize x(1) = 0 to ensure one of
the two s-space decompositions is fully compatible with the definition of the template.

Definition 7.1. Given the setup in Section 3.5 and Definition 6.2, consider u ≥ 1 and let x∗ ∈ Ls×u

be such that N = Ntem and x∗ are jointly Fq-generic of degree d. For w′ ∈ Kr and w ∈ Ku such that

the elements of (w′, w) are L-linearly independent, define P(w′,w)
out = {spanFq

(Nw′+(Nx+x∗)w) : x ∈

Lr×u} and P(w′,w)
in = {spanFq

(Nw′ + Nxw) : x ∈ Lr×u}. An absorber with parameters (w′, w)
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is P(w′,w)
out ,P

(w′,w)
in , which we respectively call the out- and in-flips. We say that the root of the

absorber is spanFq
(Nw′ + x∗w) ∈ P

(w′,w)
out . The absorber is valid for template index i ∈ [z] if

P
(w′,w)
in ⊆ ι−1

i (Stem,i).

We will always count the absorber by the number of choices of parameters; the next lemma shows
that this will not make a big difference (and also shows that the absorber behaves as expected, e.g.,
we have two families of s-spaces with no degeneracies that each contain the same overall collection
of distinct r-spaces).

Lemma 7.2. Given the setup of Definition 7.1 and assuming d ≥ d7.2(r), for w′ ∈ Kr and w ∈ Ku

whose elements are jointly L-linearly independent, we have the following:

• w′ + xw is L-linearly independent for all x ∈ Lr×u;

• The spaces in P
(w′,w)
out generated by x ∈ Lr×u are distinct and s-dimensional;

• For distinct P,P ′ ∈ P
(w′,w)
out we have dim(P ∩ P ′) < r, and same for P,P ′ ∈ P

(w′,w)
in ;

• For P ∈ P
(w′,w)
out and P ′ ∈ P

(w′,w)
in we have dim(P ∩ P ′) ≤ r;

• ∂s,rP
(w′,w)
out = ∂s,rP

(w′,w)
in .

Additionally, if d ≥ r, given the identities of all the s-spaces in P
(w′,w)
in then there are at most

Ou,q,s(1) choices of L-linearly independent (w′, w) producing them.

Proof. For the first bullet point, it is trivial that w′ + xw ∈ Kr is L-linearly independent for all
x ∈ Lr×u: any nontrivial L-dependence of these coordinates would give a nontrivial L-dependence
of (w′, w) since it will involve at least one coordinate of w′.

For the other four bullets, inspection of the proof of Proposition 4.1, which has the same subspace
setup, reveals that it suffices for the following to hold where we let x(1) = 0 and x(2) = x∗:

• For all y ∈ F1×s
q and j ∈ {1, 2}, we have y(Nw′ + (Nx+ x(j))w) 6= 0.

• For all distinct x, x′ ∈ Lr×u, Π1,Π2 ∈ Fr×sq of rank r and j ∈ {1, 2}, we have Π1(Nw
′ +

(Nx+ x(j))w) 6= Π2(Nw
′ + (Nx′ + x(j))w).

• For all x, x′ ∈ Lr×u (not necessarily distinct) and Π1,Π2 ∈ F
(r+1)×s
q of rank r + 1, we have

Π1(Nw
′ + (Nx+ x(1))w) 6= Π2(Nw

′ + (Nx′ + x(2))w).
• For all x′ ∈ Lr×u and Π′ ∈ Fr×sq of rank r and j ∈ {1, 2}, there are x ∈ Lr×u and Π ∈ Fr×sq

of rank r such that Π(Nw′ + (Nx+ x(j))w) = Π′(Nw′ + (Nx′ + x(3−j))w).
The first of these guarantees every space in the in-flip and out-flip is actually s-dimensional, the
second guarantees that each flip is composed of distinct spaces (whose intersections have dimension
strictly less than r), and the third guarantees that s-spaces of the out-flip and in-flip share at most
a single r-space each. The fourth shows that every r-space contained within an s-space of one flip
will show up in the other, and combining these facts does show ∂s,rP

(w′,w)
out = ∂s,rP

(w′,w)
in .

The fourth bullet here is trivial: take Π = Π′ and x = x′ + (Π′N)−1(x(j)− x(3−j)) (similar to the
last part of the proof of Proposition 4.1). For the first three, the proof in Proposition 4.1 shows that
these hold for (w′, w) which are L-linearly independent (since these are linear equations in w′, w
with coefficients in L and constant term 0, the only failure can be due to an L-degeneracy of the
defining equations, which is ruled out in the proof of Proposition 4.1).

For the final part of this lemma, suppose we are given the identities of the s-spaces in P(w′,w)
in .

Just choose which spaces correspond to which values Nw′+Nxw for x = 0 and for values of x with
a single nonzero coordinate; this gives a comprehensive set of equations for w′, w since the first r
rows of N form an invertible matrix. �

We wish to show that there exist many valid absorbers rooted at s-spaces. To do this, we first
codify a (necessary) condition under which this will hold.
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Definition 7.3. Given the setup of Section 3.5 and Definition 6.2 and i ∈ [z], we say that S ∈
Gr(V, s) is configuration compatible for i if:

• S ∈ Grq(Ki, s);
• dimL spanL(ι

−1
i (S)) = s;

• There is an Fq-basis b ∈ Ks
i of S so that for every Π ∈ Redr×sq , we have for R = spanFq

(Πb)
that ΠR = Π, bR = Πb, and R ∈ Gtem,i.

We now provide the desired lower bound on absorbers involving s-spaces. We also bound the
number of potential absorbers involving certain r-spaces and s-spaces, which will be useful in un-
derstanding the total influence that certain interactions will have on random quantities for purposes
of concentration.

Proposition 7.4. Given the setup of Definition 7.1, we have the following as long as u ≥ s,
c = c7.4(u, q) > 0, C = C7.4(u, q), q

−cn ≤ τ ≤ c, d ≥ d7.4(s), ℓ ≥ ℓ7.4(d, u), C
′ = C ′

7.4(u, ℓ, q),
and n is large:

• Given r-space R 6 K and s-space S 6 K with dimL spanL(R) = r and dimL spanL(S) = s

as well as dimL(spanL(R) ∩ spanL(S)) = t, there are at most C ′q(u−s+t)n many absorbers
with root S such that the in-flip contains an s-space S′ > R.
• Whp over the randomness of the template, for every i ∈ [z] and every S ∈ Gr(V, s) which is

configuration compatible for i there are at least (τ/z)Cq(u−s+r)n many absorbers valid for i
with root ι−1

i (S).

Proof. For the first bullet point, we claim dimL spanL(P
(w′,w)
out ∪ P

(w′,w)
in ) ≤ r + u. Indeed, note

that every coordinate of Nw′ + Nxw,Nw′ + (Nx + x∗)w ∈ Ks can be formed as an L-linear
combination of coordinates of w′, w, of which there are r + u. Thus given R,S which clearly
satisfy dimL spanL(R ∪ S) = r + s − t by the given, there are at most (r + u)|K|(r+u)−(r+s−t) =

q(u−s+t)n ways to extend to a space of at most the required dimension. There are then Ou,ℓ,q,s(1)
potential collections within this that form an absorber and by the last part of Lemma 7.2 there are
Ou,q,s(1) ways to then choose the absorber parameters (note u ≥ s). Notice this argument used no
randomness.

For the second bullet point, we first condition on any revelation of ι1, . . . , ιz. Now let us consider
any i ∈ [z], any S ∈ Grq(Ki, s) satisfying dimL spanL(ι

−1
i (S)) = s, and any b ∈ Ks

i an Fq-basis of
S. Consider the event E that (a) for all Π ∈ Redr×sq , the r-space R = spanFq

(Πb) satisfies ΠR = Π,

bR = Πb, and R ∈ Gtem,i but also (b) the number of absorbers valid for i with root ι−1
i (S), call

it X, satisfies X < (τ/z)Cq(r+u−s)n. (One of these events occurs if the second bullet fails, by
Definition 7.3.)

In such a situation, let us examine what possible absorbers rooted at S′ = ι−1
i (S) look like.

Writing b′ = ι−1
i (b), let us look in particular at such absorbers with Nw′ + x∗w = b′. As we vary

Π ∈ Redr×sq , we see that (ΠN)w′ + Πx∗w = Πb′ spans the r-subspaces of S′, call them R′
Π. Since

ΠN is invertible from Lemma 3.12, this satisfies

Πb′ = (ΠN)(w′ + (ΠN)−1Πx∗w)

so for xΠ = (ΠN)−1Πx∗ we see that R′
Π is within the s-space generated by xΠ in P(w′,w)

in =

{spanFq
(Nw′ +Nxw) : x ∈ Lr×u}. Let P(w′,w)

adj = {spanFq
(Nw′ +NxΠw) : Π ∈ Redr×sq } be the set

of these s-spaces (note these xΠ are independent of S, b, and any randomness). Now let Y be the
number of (L-linearly independent) choices of parameters so that S′ is still the root, but now we

only require the absorber to be almost valid in the sense that P(w′,w)
in \ P

(w′,w)
adj ⊆ ι−1

i (Stem,i).

We claim that under E , we have Y < (τ/z)Cq(r+u−s)n. In fact, any absorber counted by Y
will actually be counted by X in such a circumstance, implying Y ≤ X < (τ/z)Cq(r+u−s)n. The
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argument is as follows. For each s-space in P(w′,w)
adj , say S′

Π = spanFq
(Nw′ + NxΠw), we have

from the above analysis that it shares R′
Π with S′. Now fix some Π ∈ Redr×sq and note that

R = RΠ = ιi(R
′
Π) has basis Πb. By part (a) of E , we have that ΠR = Π, bR = Πb, and R ∈ Gtem,i.

But for R to be included in template i given that ΠR = Π and bR = Πb, we must have iR = i and
ιi(ΠNx

′) = Πb for the defining value x′ ∈ Kr which gives rise to the inclusion of R in this outcome
of the template. This gives x′ = (ΠN)−1ι−1

i (Πb) = (ΠN)−1Πb′. Recalling b′ = Nw′ + x∗w for the
choice of absorber parameters, we have x′ = w′ + (ΠN)−1Πx∗w = w′ + xΠw. That is, the r-space
corresponding so spanFq

(N(w′ + xΠw)) must be in Gtem,i. Varying over Π ∈ Redr×sq , this means

that P(w′,w)
adj ⊆ ι−1

i (Stem,i). This along with the conditions for (w′, w) to be counted for Y mean
that it is counted for X, and the claim is indeed true.

So now we consider some fixed as above S, b, i (so dimL spanL(ι
−1
i (S)) = s and b is an Fq-basis

of S) and wish to study P[Y < (τ/z)Cq(r+u−s)n] where recall we have conditioned on ι1, . . . , ιz.
We thus are only using the randomness of iR, yR, bR,ΠR for all R ∈ Grq(n, r). We first show that
Y is concentrated around its mean. Let us consider what Y depends on. Note that from the
fourth bullet of Lemma 6.3, we see that the only possible R that Y depends on satisfy R 6 Ki and
dimL spanL(ι

−1
i (R)) = r (this collection is deterministic given the revealed information).

Let S′ = ι−1
i (S) and consider the collection of such r-spaces R satisfying dimL(spanL(R

′) ∩

spanL(S
′)) = t where R′ = ι−1

i (R) (so we have dimL spanL(R
′) = r). There are clearly Oℓ,q,s(q(r−t)n)

such spaces: choose a dimension t subspace of spanL(S
′) over L and then choose ways to extend this

to an r-dimensional space over L, and then choose an Fq-subspace of dimension r. Furthermore,
changing iR, yR, bR,ΠR for one of these can affect Y by at most an amount depending on the number
of total absorbers with root S′ and containing R′. But note that S′, R′ satisfy the conditions of the
first bullet point (which holds deterministically): this count is bounded by C ′q(u−s+t)n ≤ zq(u−s+t)n,
say. Furthermore, it suffices to consider 0 ≤ t ≤ r − 1 since Y is not affected by R 6 S (due to the

exclusion of P(w′,w)
adj , and noting that the last four bullet points of Lemma 7.2 imply that there are

no other possible interactions of such R with the condition). Thus using Lemma 3.8 with variance
proxy Oℓ,q,s(max0≤t≤r−1 q

(r−t)n · z2q2(u−s+t)n) ≤ q2u−2s+2r−1/2/2 yields

P[|Y − EY | ≥ q(u−s+r−1/8)n] ≤ exp(−qn/4).

This is enough to take a union bound over all S, b, i.
Thus it remains to show EY ≥ 2(τ/z)Cq(u−s+r)n. For any L-linearly independent parame-

ters (w′, w) where ι−1
i (S) is the corresponding root, we consider the probability that P(w′,w)

in ⊆

ι−1
i (Stem,i). For every s-space in P(w′,w)

in of the form spanFq
(Nw′ +Nxw) for x ∈ Lr×u, we merely

require that it is included in the template. Note that by the first bullet of Lemma 7.2, w′+xw ∈ Kr

has L-linearly independent coordinates so this is possible, and the probability of these events oc-
curring simultaneously is at least ((τ/z)A)|L|

ru

for some appropriately chosen A = A(q, s): we make
every constituent subspace R have the right set of parameters so that the corresponding s-spaces
are chosen, all simultaneously (there are no overlaps in conditions due to the third bullet point of
Lemma 7.2).

Therefore it merely remains to give a sufficient lower bound for Z, the number of parameters
(w′, w) with L-linearly independent coordinates whose associated absorber has root S′ = ι−1

i (S)
(given ιi, or even just S′, Z is non-random). Recall b′ ∈ Ks is an Fq-basis for S′. Equivalently, we
need to count (w′, w) ∈ Kr×Ku with L-linearly independent coordinates satisfying Nw′+x∗w = b′.
Let Z0 be the number of solutions to Nw′+x∗w = b′ for (w′, w) ∈ Kr×Ku with no conditions, and
for each (v1, v2) ∈ (L1×r×L1×u) \{(0, 0)} let Z(v1,v2) be the number of solutions to Nw′+x∗w = b′

satisfying v1w′ + v2w = 0. First, since N,x∗ are jointly Fq-generic of degree d ≥ d7.4(s) ≥ s, and
since u ≥ s, we know that the matrix N ′ obtained by augmenting N by x∗ on the right has rank s
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(e.g. since the initial s× s block has nonzero determinant). Therefore Z0 = (qn)r+u−s. For (v1, v2)
that is not in the L-span of the rows of N ′, we see that adding in the equation v1w′+v2w = 0 drops
the total number of solutions to Z(v1,v2) = (qn)r+u−s−1. Finally, for (v1, v2) 6= (0, 0) in the span of
the rows of N ′, we can find y ∈ L1×s with y 6= 0 so that

yN = v1, yx∗ = v2

and then 0 = v1w
′ + v2w = y(Nw′ + x∗w) = yb′. Thus if there is a solution then b′ is L-linearly

dependent. But recall again that dimL spanL(S
′) = dimL spanL(ι

−1
i (S)) = s, so this cannot happen.

Thus for these values, Z(v1,v2) = 0.
We are done: this analysis implies that for large n we have

Z ≥ Z0 −
∑

(v1,v2)6=(0,0)

Z(v1,v2) ≥ (qn)u−s+r/2. �

8. Using the absorber

The goal of this section is to provide a general setup for using the abundance of absorbers in the
template, via a random process, to complete a decomposition. At a high level, we will show that
a collection of s-spaces satisfying certain properties with respect to the template can be changed
instead to a sum of distinct template s-spaces minus other s-spaces. This will be used in the final
step of our absorption algorithm; in Section 9 we will create an approximate decomposition and
then in Section 11 we will show how we can arrive at the desired situation from it.

Since the availability of template absorbers involves various conditions defined over L as seen in
Proposition 7.4, beyond the notion of boundedness from Definition 5.1 we will require a notion of
boundedness of a collection of r-spaces with respect the field structure L imposed.

Definition 8.1. Given the setup of Definition 6.2, and for t ∈ {r, s}, we define ι∗i : Z
Grq(n,t) →

ZGr(K,t) to map eT 7→ eι−1
i (T ) if T 6 Ki and dimL spanL(ι

−1
i (T )) = t, and eT 7→ 0 otherwise. We

define ∂Lt,r−1 : Z
GrFq (K,t) → ZGrL(K,r−1) via

eT 7→
∑

Q∗6spanL(T )

eQ∗ .

We say a t-dimensional signed multi-q-system Φ on V = Fnq is (θ, L)-field bounded with respect to

the template if for all i ∈ [z] we have ‖∂Lt,r−1ι
∗
i (Φ

±)‖∞ ≤ θq
n.

Remark. Here GrL(K, r − 1) denotes the L-subspaces of K with L-dimension r − 1. Note that
this definition gives no bound on the parts of T which are not contained in some Ki or fail the
L-dimension condition, so it will generally be applied only to T that are already supported on such
t-spaces. In the case t = r, note that all R ∈ Gtem will appear in these bounds by the fourth bullet
of Lemma 6.3.

We briefly note that in relevant situations, boundedness in the sense of Definition 5.1 is weaker
than field boundedness, which will simplify matters later.

Lemma 8.2. Given the setup of Definition 6.2 and as long as c = c8.2(q, s) > 0, q−cn ≤ τ ≤ c,

d ≥ d8.2(r), ℓ ≥ ℓ8.2(d, s), any R ∈ ZGtem which is (θ, L)-field bounded is also zθ-bounded.

Proof. Note that R is supported on Gtem ⊆ Gr(V, r). For any R ∈ R there is i ∈ [z] with R ∈ Gtem,i

and by the fourth bullet of Lemma 6.3 this satisfies dimL spanL(ι
−1
i (R)) = r.

Now consider Q ∈ Gr(V, r − 1). We wish to bound the number of r-spaces in R+, say, that
contain Q (with multiplicity). For each i ∈ [z] consider the number of r-spaces in R+ and Gtem,i

containing Q. If we do not have Q 6 Ki then there are 0 such spaces, and otherwise we may assume
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Q 6 Ki. If dimL spanL(ι
−1
i (Q)) = r − 1 then let Q∗

i = spanL(ι
−1
i (Q)) and apply Definition 8.1 to

Q∗
i and index i. If R > Q and R ∈ Gtem,i then by the above consideration dimL spanL(ι

−1
i (R)) = r

and this means the number of occurrences of R in R will be counted by Definition 8.1 for Q∗
i .

Thus we obtain a bound of θqn in this case. Now suppose that dimL spanL(ι
−1
i (Q)) < r − 1. We

claim no R ∈ Gtem,i contains Q. Indeed, if this did occur then ι−1
i (Q) 6 ι−1

i (R) =: R′ would
occur. Let {v1, . . . , vr−1} ⊆ K be a basis for ι−1

i (Q) and vr ∈ K be chosen to extend it to a basis
of R′. Again Lemma 6.3 tells us that R ∈ Gtem,i implies dimL spanL(R

′) = r, hence {v1, . . . , vr}
is L-independent. Thus so is {v1, . . . , vr−1}, so in fact ι−1

i (Q) spans r − 1 dimensions over L,
contradicting our assumption!

Putting everything together, the contribution of r-spaces in R+ containing Q coming from Gtem,i

is bounded by θqn. Adding up over all i ∈ [z] yields a bound of at most zθqn, so R is zθ-bounded
as desired. �

We now prove the main absorption statement.

Proposition 8.3. Given the setup of Definition 6.2, if we have c = c8.3(q, s) > 0, q−cn ≤ τ ≤ c,
d ≥ d8.3(s), ℓ ≥ ℓ8.3(d, s), and n is large then whp (over the randomness of the template) the

following holds for θ ≤ (τ/z)1/c. Consider any Φ ∈ {0, 1}Grq(n,s) such that ‖∂s,rΦ‖∞ ≤ 1 and Φ
is (θ, L)-field bounded with respect to the template. Suppose that for each S ∈ supp(Φ) there is
i ∈ [z] such that (a) dimL spanL(ι

−1
i (S)) = s and (b) there is an Fq-basis b ∈ Ks

i of S so that
for every Π ∈ Redr×sq , we have for R = spanFq

(Πb) that ΠR = Π, bR = Πb, and R ∈ Gtem,i.

Suppose additionally that (c) for all i ∈ [z] and distinct S1, S2 ∈ supp(Φ)∩Grq(n, s)[Gtem,i] we have

dimL(spanL(ι
−1
i (S1) ∩ ι

−1
i (S2))) < r.

Then there exist Φ1, Φ2 such that Φ1,Φ2 ∈ {0, 1}
Grq(n,s), supp(Φ2) ⊆ Stem, and

∂s,rΦ = ∂s,r(Φ2 − Φ1).

Remark. Note that (b) above implies that S 6 Ki and hence ι−1
i (S) in (a) is well-defined. Also,

the condition (c) is required in order to rule out the case that S1, S2 involve two different r-spaces
participating in the same template s-space S ∈ Stem, which would destroy any hopes of using
template absorbers for S1, S2 simultaneously (both would require use of S).

Proof. Fix u = s and note that N = Ntem, x
∗ = x∗abs as defined in Section 3.5 satisfy the setup of

Definition 7.1. (One could substitute any value of u which is at least s; for the sake of clarifying the
forthcoming calculations we will differentiate u and s.) Then note that whp over the randomness
of the template Proposition 7.4 holds, and let C = C7.4(u, q, s). Now condition on any revelation
of these random outcomes satisfying this. Let {S1, . . . , S|Φ|} be a labeling of the s-spaces in Φ. By
the given condition (b), St has all its r-spaces in Gtem,it for some it ∈ [z]. Consider the collection
Wt of parameters (w′, w) for absorbers with root St that are valid for template index it. For each
t ∈ [|Φ|] we sample a uniformly random choice of parameters (w′

t, wt) ∼ Unif(Wt). Call an outcome

successful if P(w′

t,wt)
in for t ∈ [|Φ|] are simultaneously disjoint.

By the fifth bullet of Lemma 7.2 we can write

∂s,reSt = ∂s,rP
(w′

t,wt)
in − ∂s,r(P

(w′

t,wt)
out \ {St})

for all t ∈ [|Φ|], and then summing this up shows that for Φ2 =
⋃|Φ|
t=1 P

(w′

t,wt)
in and Φ1 =

⋃|Φ|
t=1(P

(w′

t,wt)
out \

{St}) as multisets, we have ∂s,rΦ = ∂s,r(Φ2 − Φ1). We see that Φ2 has no repetitions due to the
definition and success of the process. Then we claim Φ1 is therefore forced to have no repetitions.
Indeed, ∂s,rΦ has no repetitions by ‖∂s,rΦ‖∞ ≤ 1, and we showed Φ2 has no repetitions but it is
within Stem hence ∂s,rΦ2 has no repetitions as well (since the s-spaces defining the template have
disjoint constituent r-spaces). Since ∂s,rΦ = ∂s,r(Φ2 − Φ1) and Φ1 has nonnegative coefficients, we
deduce that ‖∂s,rΦ1‖∞ ≤ 1. Therefore Φ1,Φ2 satisfy the necessary conditions.
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Now it suffices to show that a successful outcome occurs with positive probability. For this we
use the Lovász Local Lemma (Lemma 3.10). For 1 ≤ t1, t2 ≤ |Φ| with t1 6= t2 let Bt1,t2 be the event

that P
(w′

t1
,wt1)

in ,P
(w′

t2
,wt2)

in share an s-space, or equivalently that it1 = it2 and the randomly chosen
absorbers with roots St1 and St2 have in-decompositions sharing a template s-space. Furthermore
let S∗

tj = spanL(ι
−1
itj

(Stj )) for j ∈ {1, 2} and dt1,t2 = dimL(S
∗
1 ∩ S

∗
2). By the given condition (c), we

have dt1,t2 < r.
Assuming Bt1,t2 holds, we must have it1 = it2 = i for some i ∈ [z]. Call the shared s-space

in the in-decompositions S′, let S = ι−1
i (S′), and let R 6 S be an arbitrary r-subspace. Suppose

uj = dimL(spanL(R)∩S
∗
j ) for j ∈ {1, 2} and let u0 = dimL spanL(R∪S

∗
1∪S

∗
2)−dimL spanL(S

∗
1∪S

∗
2).

By the first bullet point of Proposition 7.4, for C ′ = C ′
7.4(u, ℓ, q) there are at most

Oℓ,q,r(q
u0n) · C ′q(u−s+u1)n · C ′q(u−s+u2)n

choices of absorber parameters that yield such a situation: first choose R by picking R∩ spanL(S
∗
1 ∪

S∗
2) in Oℓ,q,r(1) ways and then extending to u0 further dimensions, and second choose the absorbers

containing St1 , R and St2 , R respectively. But then using the second bullet of Proposition 7.4 and the
given conditions on all S ∈ supp(Φ), we see for C = C7.4(u, q, s) there are at least (τ/z)Cq(u−s+r)n

choices of absorber for St1 and St2 each. Finally, we have

r − u0 = dimL spanL(R)− dimL spanL(R ∪ S
∗
1 ∪ S

∗
2) + dimL spanL(S

∗
1 ∪ S

∗
2)

= dimL(spanL(R) ∩ spanL(S
∗
1 ∪ S

∗
2)) ≥ u1 + u2 − dt1,t2

where the first equality uses the fourth bullet of Lemma 6.3 and where the inequality uses

dim(V1 ∩ (V2 +V3)) ≥ dim((V1 ∩V2)+ (V1 ∩V3)) = dim(V1 ∩V2)+dim(V1 ∩V3)− dim(V1 ∩V2 ∩V3)

for finite-dimensional vector spaces V1, V2, V3 within some host vector space (note this is not an
equality in general). Therefore a union bound over possible choices of u0, u1, u2 yields

P[Bt1,t2 ] ≤ Oℓ,q,r(1) · (z/τ)
2Cq−2(u−s+r)n max

r−u0≥u1+u2−dt1,t2

qu0nq(2(u−s)+u1+u2)n

≤ Oℓ,q,r((z/τ)
2Cq(dt1,t2−r)n).

Now we construct a dependency graph for the defined events: connect Bt1,t2 and Bt3,t4 if |{t1, t2}∩
{t3, t4}| ≥ 1. Furthermore let xt1,t2 = q−(r−dt1,t2)n(z/τ)2C+1. Notice that for fixed (t1, t2),

xt1,t2
∏

t6=t1

(1− xt1,t)
∏

t6=t2

(1− xt,t2) ≥ q
−(r−dt1,t2)n(z/τ)2C+1

r−1
∏

d=0

(1− q−(r−d)n(z/τ)2C+1)Oq,s,ℓ(zθq
(r−d)n)

≥ q−(r−dt1,t2)n(z/τ)2C+1 exp(−Oq,s,ℓ(zθ(z/τ)
2C+1))

≥ P[Bt1,t2 ]

as long as c = c8.3(q, s) is small enough in terms of C so that 1/c ≥ 2C+2 and hence zθ(z/τ)2C+1 ≤
1. We have used dt1,t2 < r and that for any S∗ which is an s-dimensional space over L and for any
0 ≤ d ≤ r − 1,

#{t ∈ [|Φ|] : dimL(S
∗ ∩ spanL(ι

−1
it

(St))) = d} ≤ z ·Oq,s,ℓ(θq
(r−d)n)

due to the (θ, L)-field boundedness of Φ. Indeed, we argue as follows. First we reduce to the case
d = r − 1 by considering at most q(r−d−1)n ways to augment S∗ to a slightly larger space T ∗ such
that the intersection with spanL(ι

−1
it

(St)) has L-dimension r − 1. Then there are Oq,s,ℓ(1) ways to
choose the (r− 1)-dimensional L-space Q∗ = T ∗ ∩ spanL(ι

−1
it

(St)). Finally, (θ, L)-field boundedness
shows that for each i ∈ [z], Φ contains in its support at most θqn many s-spaces St with it = i so
that spanL(ι

−1
i (St)) contains Q∗ (the condition 8.3(a) shows that the bound applies).
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Finally, Lemma 3.10 demonstrates that with positive probability none of the Bt1,t2 hold, and we
are done by the earlier discussion. �

9. Approximate covering

In this section we will use a randomized process to cover almost all of the r-spaces in Grq(n, r)
outside the template using s-spaces, leaving a small portion. To do so we will use well-studied
general purpose tools regarding greedy random matching processes; we will use the work of [9] for
our situation.

9.1. Regularizing s-spaces with respect to the template. The size of the leftover from the
greedy random process will depend on a certain degree of irregularity that we start with, induced
by the removal of the template. In order to ensure that the leftover can actually be small in an
appropriate sense with respect to the template, we have to first regularize the complement. More
specifically, we find a subset of s-spaces such that the number of s-spaces containing a fixed r-space
is substantially more regular than if we used the entire set of s-spaces.

At a high level we need a version of Lemma 6.3 (but for the complement of the template) in
which the regularity of the collection of s-spaces not involving r-spaces of Gtem is decoupled from τ .
This can be achieved by finding an appropriate weighting of Grq(n, s)[G \Gtem], constructed using
that the lattice L is locally decodable (see e.g. Proposition 5.3), and then sampling.

Lemma 9.1. Given the setup of Section 3.5 and Definition 6.2, we have the following as long as

q
−c9.1(q,s)n ≤ τ ≤ c9.1(q, s), d ≥ d9.1(r), ℓ ≥ ℓ9.1(d, s), and n is large. Recall an s-space is

obstructed by the template if any of its r-dimensional subspaces is contained in Gtem. Whp over the
randomness of the template, there exists a set Sreg ⊆ Grq(n, s) of unobstructed s-spaces such that
for each r-space R /∈ Gtem we have

#{S ∈ Sreg : S > R} ≥ (1− τ1/4)#{S ∈ Gr(V, s) : S > R}

and for distinct r-spaces R1, R2 /∈ Gtem we have

#{S ∈ S : S > R1} = (1± q−n/3)#{S ∈ S : S > R2}.

Proof. From the first part of the proof of Proposition 5.3, given r-space R and (r+ s)-space T such
that R 6 T , there exists f : {0, 1, . . . , r} → Q depending only on q, s, r such that

eR =
∑

S∈Gr(T,s)

f(dim(S ∩R))∂r,seS .

(We derive this by starting with (5.1), dividing by ∆, and then averaging the resulting equation over
all automorphisms of T which permute R among itself; one can check that the resulting equation
has rational coefficients for each ∂r,seS that depend only on dim(S ∩R).)

Thus given R 6 T (of dimensions r, r + s respectively) and R′ ∈ Grq(n, r) we have

1R=R′ =
∑

S∈Gr(T,s)

f(dim(S ∩R))1R′6S .

Let Tr denote the set of r-spaces in Gr(V, r) \ Gtem and let Ts = {S ∈ Gr(V, s) : Gr(S, r) ⊆ Tr}
(the unobstructed s-spaces). For each r-space R ∈ Tr, let Ts(R) = {S ∈ Ts : S > R} and let
Tr+s(R) = {T ∈ Gr(V, r + s) : T > R, Gr(T, r) ⊆ Tr}.

For each R ∈ Tr, define

cR =

[n−r
s−r

]

q
− |Ts(R)|

|Tr+s(R)|
.
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Note that by definition, |Ts(R)| ≤
[

n−r
s−r

]

q
and |Tr+s(R)| ≤

[

n−r
s

]

q
(these being the number of total

t-spaces within V extending R for t ∈ {s, r + s} respectively). Additionally, by the third bullet of
Lemma 6.3 we have that |Ts(R)| ≥ (1−τ1/2)

[n−r
s−r

]

q
and also |Tr+s(R)| ≥ (1−τ1/2)

[n−r
s

]

q
. Therefore

it follows that for each r-space R /∈ Gtem,

|cR| ≤
2τ1/2

[n−r
s

]

q
/
[n−r
s−r

]

q

.

For R and T ∈ Tr+s(R), define ψR,T : Ts → R by

ψR,T (S) =

{

f(dim(S ∩R)) if S 6 T,

0 if S 66 T.

By definition for any r-spaces R,R′ ∈ Tr and any T ∈ Tr+s(R) we have
∑

R′6S6T

ψR,J(S) =
∑

S∈Gr(T,s)

f(dim(S ∩R))1R′6S = 1R=R′ .

Now, define ψ : Ts → R by

ψ(S) = 1 +
∑

R∈Tr

cR
∑

T∈Tr+s(R)

ψR,T (S).

Notice that

|ψ(S)− 1| ≤
∑

R∈Tr

cR
∑

T∈Tr+s(R)

|ψR,T (S)| ≤
∑

R∈Tr

2τ1/2
[n−r
s

]

q
/
[n−r
s−r

]

q

∑

T∈Tr+s(R)
T>S

|ψR,T (S)|

≤
2τ1/2‖f‖∞

[

n−r
s

]

q
/
[

n−r
s−r

]

q

∑

R∈Tr

∑

T∈Tr+s(R)
T>S

1 ≤
2τ1/2‖f‖∞

[

n−r
s

]

q
/
[

n−r
s−r

]

q

[

n− s

r

]

q

[

r + s

r

]

q

≤ τ3/8,

where the second-to-last inequality is proven by counting choices of T containing S and then R
within T and the last inequality is valid as long as τ is small with respect to q, s.

Furthermore for each R ∈ Tr we have
∑

S∈Ts(R)

ψ(S) = |Ts(R)|+
∑

R′∈Tr

cR′

∑

T∈Ts+r(R′)

∑

S∈Ts(R)

ψR′,T (S)

= |Ts(R)|+
∑

R′∈Tr

cR′

∑

T∈Ts+r(R′)

∑

R6S6T
dimS=s

f(dim(S ∩R′))

= |Ts(R)|+
∑

R′∈Tr

cR′

∑

T∈Ts+r(R′)

1R=R′ = |Ts(R)|+ cR|Ts+r(R)|

=

[

n− r

s− r

]

q

.

Finally, we define a random Sreg ⊆ Ts by independently including each S ∈ Ts with probability
ψ(S)/(1 + τ3/8) (this is well defined as |ψ(T )− 1| ≤ τ3/8). For every R ∈ Tr, the expected number
of T ∈ Sreg containing R is exactly (1 + τ3/8)−1

[

n−r
s−r

]

q
by above. We immediately see Sreg satisfies

the desired conditions with positive probability by the Chernoff bound, and we are done. �
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9.2. Approximate covering given regularization. We now cover the majority of subspaces
outside the template using results from hypergraph matching. For a hypergraph H, define

∆(H) := max
v∈V (H)

degH(v), ∆co(H) := max
v1,v2∈V (H)

codegH(v1, v2).

Call a function ω : E(H) → R≥0 a weight function, and for X ⊆ E(H) let ω(X) =
∑

x∈X ω(x).
We will use the following result of Ehard, Glock, and Joos [9] which guarantees the existence of
hypergraph matchings which are pseudorandom with respect to a collection of weight functions.

Theorem 9.2 ([9, Theorem 1.2]). Suppose β ∈ (0, 1) and r ∈ N with r ≥ 2, and let ε := β/(50r2).
Then there exists ∆0 such that for all ∆ ≥ ∆0 the following holds: Let H be an r-uniform hypergraph

with ∆(H) ≤ ∆ and ∆co(H) ≤ ∆1−β as well as e(H) ≤ exp(∆ε2). Suppose that W is a set of

at most exp(∆ε2) weight functions on E(H). Then, there exists a matching M in H such that
ω(M) = (1±∆−ε)ω(E(H))/∆ for all ω ∈ W with ω(E(H)) ≥ maxe∈E(H) ω(e)∆

1+β .

Given this, we record the following consequence in our setting.

Proposition 9.3. Given the setup of Section 3.5 and Definition 6.2, we have the following as long as

q
−c9.3(q,s)n ≤ τ ≤ c9.3(q, s), d ≥ d9.3(r), ℓ ≥ ℓ9.3(d, s), and n is large. There is η = η9.3(q, s) > 0

so that whp over the template, there exists a set Sapprox ⊆ Gr(V, s) such that:

• Every r-space R 6 V appears at most once in an s-space of Stem ∪ Sapprox;
• For Gapprox = ∂s,rSapprox we have that G\(Gtem∪Gapprox) is q−ηn-bounded (Definition 5.1).

Remark. Note here that η is independent of τ , and recall G = Grq(n, r).

Proof. This is essentially an immediate application of Lemma 9.1 and Theorem 9.2.
Consider the collection Sreg of s-spaces guaranteed by Lemma 9.1 (existing whp). Let the vertices

of hypergraph H be the collection of r-spaces not in Gtem and the edges of H be the collections of
r-spaces contained in an s-space of Sreg. In particular, H is a

[s
r

]

q
-uniform hypergraph. Notice that

(recall G = Grq(n, r))

∆(H) = max
R∈G\Gtem

#{S ∈ Sreg : S > R}, δ(H) = min
R∈G\Gtem

#{S ∈ Sreg : S > R}

hence ∆(H) = (1 ± q−n/3)δ(H) ≥
[

n−r
s−r

]

q
/2 and ∆(H) ≤

[

n−r
s−r

]

q
. Furthermore note that ∆co(H) ≤

q(s−(r+1))n ≤ q−n/2∆(H) since distinct r-spaces R,R′ satisfy dim(spanFq
(R ∪R′)) ≥ r + 1.

We now specify the weight functions. For each (r − 1)-space Q define ωQ : Sreg → R≥0 via
ωQ(S) = 1S>Q. We have that ωQ(E(H)) ≥ 2−1

[n−r+1
s−r+1

]

q
given τ is sufficiently small, and there

are at most q(r−1)n weight functions, and therefore (say) β = 1/(4(r + s + 1)) and ∆ = ∆(H) are
admissible for n sufficiently large in Theorem 9.2. Thus there exists a matching such that M in H
such that ωQ(M) = (1±∆−ε)ωQ(Sreg)/∆ for all Q ∈ Grq(n, r − 1). This is equivalent to

∆
∑

S∈M

1Q6S = (1±∆−ε)
∑

S∈Sreg

1Q6S.

This implies
∆

∑

dimR=r
S∈M

1Q6R6S = (1±∆−ε)
∑

dimR=r
S∈Sreg

1Q6R6S. (9.1)

We write R ∈ V (M) to mean R is covered by one of the hyperedges (corresponding to s-spaces) in
M. Therefore it follows that for fixed Q ∈ Grq(n, r − 1),

∑

R/∈Gtem
R/∈V (M)

1Q6R =
∑

R/∈Gtem

1Q6R −
∑

R∈V (M)

1Q6R =
1± 2q−n/3

∆

∑

R/∈Gtem
S∈Sreg

1Q6R6S −
∑

dimR=r
S∈M

1Q6R6S
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=
1± 2q−n/3

∆

∑

dimR=r
S∈Sreg

1Q6R6S −
∑

dimR=r
S∈M

1Q6R6S

= (1± 4(q−n/3 +∆−ε))
∑

dimR=r
S∈M

1Q6R6S −
∑

dimR=r
S∈M

1Q6R6S (9.2)

by definition, using the relationship between ∆(H), δ(H), simplifying, and finally using (9.1). Now
(9.2) is bounded by q−cn · qn for some appropriate c depending only on q, s since there are at most
qn many R containing Q and each is in exactly one or zero S ∈ M. We used that ε is purely a
function of q, s, and r. The desired result follows, noting that Stem covers the r-spaces in Gtem

precisely and our matching constructs Sapprox =M. �

10. Extension Counts in Template

We will next require that the template has in some sense, up to some constants and factors
of z = n2, “the correct number” of q-extensions of bounded complexity, including rainbow and
colored combinations. However, for technical reasons the color classes will be required to not be
“too large”. Furthermore, we will need to be able to maintain some control over the ΠR and bR for
r-spaces R that end up embedded, so that we can guarantee configuration compatibility as needed
in Proposition 8.3. Additionally, we will need to know that every “new vector” that is embedded
can be put into various prescribed spaces Ki as a necessary precondition to turning our s-spaces
monochromatic in Proposition 11.8.

We first detail the setup for the precise statement, as it is somewhat involved.

Definition 10.1. Given Section 3.5 and Definition 6.2, consider the following data.

• A q-extension E = (φ, F,H) in G = Grq(n, r) with vE > 0;
• A r-space coloring function ψ : H \H[F ]→ [z] such that |ψ−1(i)| ≤

[s
r

]

q
for all i ∈ [z];

• Injective r-space configuration functions πi : ψ
−1(i)→ Redr×sq for all i ∈ [z];

• Bases xR ∈ Rr for R ∈ H \H[F ];
• A basis (v∗1 , . . . , v

∗
dimVec(H)) of Vec(H) so that the last dimF vectors span F ;

• Extension basis coloring sets C1, . . . , CvE ⊆ [z].

We define X (E,ψ, (πi)i∈[z], (xR)R∈H\H[F ], (v
∗
t )t∈[dimVec(H)], (Ct)t∈[vE ]) to be the set

{

φ∗ ∈ XE(Gtem) :
φ∗(R) ∈ Gtem,ψ(R), Πφ∗(R) = πψ(R)(R), bφ∗(R) = φ∗(xR) for all R ∈ H \H[F ];

φ∗(H) ⊆
⋂

i∈ψ(H\H[F ])Ki and φ∗(v∗t ) ∈
⋂

i∈Ct
Ki for all t ∈ [vE ]

}

.

Proposition 10.2. Given Section 3.5 and Definition 6.2, we have the following as long as h ≥ 1,
C = C10.2(h, q, s) > 0, c = c10.2(h, q, s) > 0, q−cn ≤ τ ≤ c, d ≥ d10.2(r), ℓ ≥ ℓ10.2(d, s), and
n is large. Whp over the randomness of the template, for any choice of data as in Definition 10.1
with dimVec(H) ≤ h and |Ct| ≤ h for t ∈ [vE ] such that (a) φ(F ) 6

⋂

i∈ψ(H\H[F ])Ki and (b)

dimL spanL(ι
−1
ψ(R)(φ(R ∩ F ))) = dimFq (R ∩ F ) for all R ∈ H \H[F ], we have

#X (E,ψ, (πi)i∈[z], (xR)R∈H\H[F ], (v
∗
t )t∈[dimVec(H)], (Ct)t∈[vE ]) ≥ (τ/z)CqvEn.

Remark. The condition (a) is a bit stronger than what is actually needed, but something of the sort
is required to ensure that we can extend within prescribed template parts correctly. The condition
(b) is necessary since every completed r-space in the template corresponds to something of maximum
L-dimension when pulled back to K. We will only need the choice of functions πi and bases xR in
Proposition 11.8; in the other application, Lemma 11.4, arbitrary choices are implicitly made (such
choices satisfying injectivity of πi do exist since |ψ−1(i)| ≤

[s
r

]

q
). Furthermore, the sets Ct are only
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needed in the application of Lemma 11.4 to Lemma 11.7, in which we prepare our signed s-space
decomposition to be turned into a monochromatic decomposition.

Similarly to the proof of Lemma 3.5, we will prove it for E with vE = dimVec(H) − dimF = 1
and then prove the result inductively. However, to ensure that we can maintain the condition
φ(F ) 6

⋂

i∈ψ(H\H[F ])Ki when we iteratively embed the extension, we must prove a slightly stronger
statement. The role of the additional element in Lemma 10.3, the global set of colors C, is to ensure
that embedded vectors are good with respect to colors that might not yet have been seen in the
partially embedded extension so far. This plays a slightly different role than the Ct, since we must
assume that φ(F ), the base of the extension, is contained within Kj for j ∈ C to successfully embed
everything.

Lemma 10.3. Given Section 3.5 and Definition 6.2, we have the following as long as h ≥ 1,
C = C10.3(h, q, s) > 0, c = c10.3(h, q, s) > 0, q−cn ≤ τ ≤ c, d ≥ d10.3(r), ℓ ≥ ℓ10.3(d, s), and n is
large. Whp over the randomness of the template, for any choice of data as in Definition 10.1 with
vE = dimVec(H)− dimF = 1, dimVec(H) ≤ h, |C1| ≤ h and choice of C ⊆ [z] of size at most qrh

such that (a) φ(F ) 6
⋂

i∈ψ(H\H[F ])∪CKi and (b) dimL spanL(ι
−1
ψ(R)(φ(R ∩ F ))) = dimFq(R ∩ F ) for

all R ∈ H \H[F ], we have

#

{

φ∗ ∈ X (E,ψ, (πi)i∈[z], (xR)R∈H\H[F ], (v
∗
t )t∈[dimVec(H)], (C1)) : φ

∗(v∗1) ∈
⋂

i∈C

Ki

}

≥ (τ/z)Cqn.

Remark. Since vE = 1, v∗1 is the unique element of the chosen basis of Vec(H) that is outside of F .
Also, compared to Proposition 10.2 the condition (a) has the addition of the color set C.

Proof. As in Lemma 6.3, we may assume the template is well-defined as long as ℓ is large with respect
to d, s, and we may assume that d is large enough to ensure that the statements in Lemma 3.12
are satisfied. Of key importance is that for all Π ∈ Fr×sq of rank r, ΠN ∈ Lr×r and all its
square submatrices are nonsingular; the other conditions will naturally arise when ruling out certain
degeneracies.

As seen in the proof of Lemma 3.5, our extension can be represented by picking a ≤ qrh and
considering Q1, . . . , Qa 6 F and v1, . . . , va ∈ F such that if i 6= j and Qi = Qj then spanFq

(Qi ∪
{vi}) 6= spanFq

(Qj ∪ {vj}). Then E = (φ, F,H) where H is on the vector space F ⊕ Fq and the
r-spaces of H \H[F ] are Ri = spanFq

(Qi ∪ {(vi, 1)}) where we abusively extend Qi by zeros in the
obvious way here. Note that we can set things up so that furthermore v∗1 = (0, 1).

Thus XE(Gtem) contains embeddings φ∗ which agree with φ on F and where, writing v =
φ∗((0, 1)) = φ∗(v∗1), we have v /∈ φ(F ) and spanFq

(φ(Qi) ∪ {v + φ(vi)}) ∈ Gtem for all i ∈ [a].
To prove the desired statement, we are further given colors ci := ψ(Ri) ∈ [z] for i ∈ [a] (which
do not contain too many repetitions by the given conditions from Definition 10.1) and C ⊆ [z] of
size at most qrh and C1 ⊆ [z] of size at most h, and we wish to understand X, the number of such
extensions where in fact spanFq

(φ(Qi)∪{v+φ(vi)}) ∈ Gtem,ci for all i ∈ [a] and also v ∈
⋂

i∈C∪C1
Ki,

and furthermore Πφ∗(Ri) = πci(Ri) and bφ∗(Ri) = φ∗(xRi
) for i ∈ [a]. It suffices to show that whp,

for all appropriate data the associated variable X is always sufficiently large: combining the second-
to-last condition just listed with the assumed event φ(F ) 6

⋂

j∈CKj gives the necessary property
φ∗(H) ⊆

⋂

i∈C Ki for embeddings φ∗ that are counted for extensions and colorings that we care
about. Fix a basis {wi,1, . . . , wi,r−1} for φ(Qi) for all i ∈ [a].

Note that X =
∑

v∈Fn
q \φ(F )Xv where Xv ∈ {0, 1}, dependent on the randomness of the template,

is the random variable which is 1 precisely when setting φ∗((0, 1)) = v satisfies the above conditions
given φ and Qi, vi, ci, xRi

for i ∈ [a] and the πj for j ∈ [z]. Given v ∈ Fnq \ φ(F ), let us consider for
i ∈ [a] the basis (v+ φ(vi), wi,1, . . . , wi,r−1) for spanFq

(φ(Qi)∪ {v + φ(vi)}) and arrange it as a size
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r column vector bv,i ∈ (Fnq )
r. (This could be different from the sampled value bR for this r-space

R.) Write φ∗(xRi
) = Γibv,i, where Γi ∈ GL(Frq) is fixed and does not depend on v; such a choice is

easily seen to exist.
Now for each Π ∈ Redr×sq consider xv,i,Π ∈ Kr, if it exists, such that

ιci(ΠNxv,i,Π) = Γibv,i = φ∗(xRi
).

This is unique when it exists, namely when {v + φ(vi), wi,1, . . . , wi,r−1} ⊆ Kci , in which case
xv,i,Π = (ΠN)−1ι−1

ci (Γibv,i). (Recall ΠN is invertible.) If xv,i,Π ∈ Kr spans r dimensions over
L then for any further Π′ ∈ Redr×sq we can then consider spanFq

(ιci(Π
′Nxv,i,Π)) 6 Kci : this

corresponds to an r-space contained within the same s-space which is potentially contributing to
the template via xv,i,Π and ιi (it contributes when the random event spanFq

(ιci(Nxv,i,Π)) ∈ Stem,ci
holds).

Fix Π∗
i = πci(Ri) ∈ Redr×sq for i ∈ [a] and note that if i 6= j and ci = cj then Π∗

i 6= Π∗
j (from

injectivity of the π functions in Definition 10.1). Given ι1, . . . , ιz, we call v nonoverlapping if (a)
v ∈

⋂

j∈C∪C1
Kj, (b) for all i ∈ [a], the vector xv,i,Π∗

i
= (Π∗

iN)−1ι−1
ci (Γibv,i) ∈ K

r exists and is such
that dimL spanL(x) = r, and (c) for all choices of Πi ∈ Redr×sq we have that ιci(ΠiNxv,i,Π∗

i
) span

distinct r-spaces over Fq as we vary i ∈ [a]. The idea is that this provides situations where we can
guarantee Xv = 1 occurs with nonnegligible probability. Here (c) is the key property which will
show that nonoverlapping vectors are likely to contribute to X, whereas the other conditions are
more akin to feasibility conditions.

Consider any nonoverlapping v (which is a function only of ι1, . . . , ιz) and take xv,j,Π∗

j
as in the

definition of nonoverlapping. Consider the event that for each j ∈ [a] and Π ∈ Redr×sq the r-space
R = spanFq

(ιcj (ΠNxv,j,Π∗

j
)) satisfies iR = cj , bR = ιcj (ΠNxv,j,Π∗

j
), yR = 1, and ΠR = Π. In the

case Π = Π∗
j the second equation simplifies to bφ∗(Rj) = bR = Γjbv,j = φ∗(xRj

) and the fourth
gives Πφ∗(Rj) = Π∗

j = πψ(Rj)(Rj). Additionally, such an event would guarantee by definition that
spanFq

(ιcj (Nxv,j,Π∗

j
)) ∈ Stem,cj for all j ∈ [a]. Combining these properties, as a consequence we

would have Xv = 1. Furthermore, since the nonoverlapping condition guarantees that all these
r-spaces R are distinct as j,Π vary, this can be simultaneously accomplished and occurs with

probability at least λ[
s

r]qa where λ = ((qr−1) · · · (qr−qr−1)
[s
r

]

q
)−1τ/z, which implies EXv ≥ (τ/z)A

for some appropriately chosen A ≥ 1 depending only on h, q, s due to the bound on a (the value
A = 2qr(h+s) certainly suffices).

Now let Y be the number of v ∈ Fnq \φ(F ) which are nonoverlapping, which is a random function
of ι1, . . . , ιz only. We see

E[X|ι1, . . . , ιz] ≥ (τ/z)AY,

and additionally note that the remaining randomness is purely over the independent choices of
iR, bR, yR,ΠR for all R ∈ Grq(n, r). Furthermore, it is easily seen that (if we condition on ι1, . . . , ιz)
each of these random variables can influence the identity of Xv for at most Oq,s(z) values v since
every R-space can only be included in z · Oq,s(1) ways into some potential s-space which in total
accounts for at most Oq,s(z) other r-spaces that can be affected by the choice of defining variables
for R. Therefore, Lemma 3.8 shows that conditional on ι1, . . . , ιz the variable X concentrates in a
window of size q2n/3 with probability at least 1−exp(−Ω(q−n/4)), which is sufficient to take a union
bound over all possible E and colors involved in ψ and C, C1 (of which there are at most qOh,q,s(n)

total choices).
It remains to show that whp over the randomness of ι1, . . . , ιz, for all extensions E, functions

ψ, color sets C, C1 as above, and the remaining choice of auxiliary information, the corresponding
variable Y (whose definition depends on E,ψ, C, C1 and the πi,Γj and whose randomness only uses
ι1, . . . , ιz) satisfies Y ≥ qn/z whenever 10.3(a,b) hold. To do this, we will show that for fixed choices
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as above the probability that Y < qn/z and φ(F ) 6
⋂

i∈[a]Kci and dimL spanL(ι
−1
ψ(R)(φ(R ∩F ))) =

dimFq(R ∩ F ) for all R ∈ H \H[F ] simultaneously occur is at most q−n logn and then take a union
bound.

Let Y0 be the number of v ∈ Fnq \ φ(F ) such that xv,i,Π∗

i
= (Π∗

iN)−1ι−1
ci (Γibv,i) ∈ Kr exists

for all i ∈ [a] and such that v ∈
⋂

j∈C∪C1
Kj . For i ∈ [a] let Yi be the number of v for which the

nonoverlapping condition is failed in the following way: the second part of condition (b), namely the
r-dimensionality condition, fails for index i (but the first part is valid). Similarly, for 1 ≤ i < j ≤ a
let Yij be the number of v where condition (c) fails for indices i, j and some Πi,Πj ∈ Redr×sq . Note
that

Y ≥ Y0 −
a

∑

i=1

Yi −
∑

1≤i<j≤a

Yij .

Since Ki 6 V = Fnq has codimension at most ℓ, we see that Y0 ≥ qn−(a+qrh+h)ℓ − qdimF is true
because φ(F ) 6

⋂

i∈[a]Kci (since requiring v ∈ ιci(K) for all i ∈ [a] and v ∈ ιj(K) for all j ∈ C ∪ C1
is therefore enough).

Additionally, we claim that Yi = Oℓ,q,r(1) no matter the choice of ι1, . . . , ιz. Indeed, if v is counted
in Yi, then (Π∗

iN)−1ι−1
ci (Γibv,i) exists and spans less than r dimensions over L, which means there

is nonzero y ∈ L1×r so that y(Π∗
iN)−1ι−1

ci (Γibv,i) = 0. If the first coordinate of y(Π∗
iN)−1Γi is

nonzero, then given ιci , Qi, vi there is a fixed value of ι−1
ci (v) and hence at most one value of v. If

the first coordinate is zero, then we see that dimL spanL(ι
−1
ψ(R)(φ(R ∩ F ))) = dimFq(R ∩ F ) fails for

the edge R = Ri ∈ H \H[F ] corresponding to this i ∈ [a], since then we have a nontrivial L-linear
relation among the embedding of Ri (in K ≃ Kci) not involving ι−1

ci (v) (which violates 10.3(b)).
We ultimately deduce Yi ≤ qℓr due to the possible choices for y.

Combining the lower bound on Y0 and the upper bound on Yi, we see that if Y < qn/z and
10.3(a,b) hold then we have Yij ≥ qn/z for some 1 ≤ i < j ≤ a. Let us first consider the possibility
that this occurs for some i, j with ci = cj = c∗. We deduce that for some Πi,Πj ∈ Fr×sq of rank r,
we have

ιc∗(ΠiN(Π∗
iN)−1ι−1

c∗ (Γibv,i)) = ιc∗(ΠjN(Π∗
jN)−1ι−1

c∗ (Γjbv,j))

and both sides are well-defined (since certain corresponding bases over Fq span the same r-space).
This implies (ΠiN)(Π∗

iN)−1ι−1
c∗ (Γibv,i) = (ΠjN)(Π∗

jN)−1ι−1
c∗ (Γjbv,j).

First consider the case that simultaneously there are Mi,Mj ∈ GL(Frq) with Πi = MiΠ
∗
i and

Πj = MjΠ
∗
j . Then the above becomes Miι

−1
c∗ (Γibv,i) = Mjι

−1
c∗ (Γjbv,j) so MiΓibv,i = MjΓjbv,j . But

multiplying by one of these invertible matrices will preserve the span of the r coordinates, so we
see that spanFq

(bv,i) = spanFq
(bv,j). However, the given conditions for the form of the extension

imply either Qi 6= Qj or Qi = Qj and spanFq
(Qi ∪ {vi}) 6= spanFq

(Qj ∪ {vj}), which ensures that
for v ∈ Fnq \ φ(F ) these two spanned spaces are distinct. Thus this cannot happen.

Furthermore, the matrices Π∗
i ,Π

∗
j ∈ Redr×sq are distinct since ci = cj and i < j. By the dis-

cussion following Definition 6.1 they are not related via left-multiplication of an invertible r × r
matrix. At this stage, we use the third bullet point from Lemma 3.12 to deduce that the vector
(ΠiN)(Π∗

iN)−1Γie1 − (ΠjN)(Π∗
jN)−1Γje1 is nonzero. But this means that when we consider the

equation

(ΠiN)(Π∗
iN)−1Γiι

−1
c∗ (bv,i)− (ΠjN)(Π∗

jN)−1Γjι
−1
c∗ (bv,j) = 0

and isolate the parts containing ι−1
c∗ (v), one of the instances on the left has a nonzero coefficient.

This means that given any ι1, . . . , ιz , there is at most 1 choice for v. Therefore we have ultimately
shown that Yij = Oq,s(1) if ci = cj .
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Finally, we consider Yij for some i, j with ci 6= cj . Here we will use the randomness over ιci , ιcj .
As before, the vector v ∈ Fnq \ φ(F ) contributes to Yij if there are Πi,Πj ∈ Fr×sq of rank r for which

ιci(ΠiN(Π∗
iN)−1ι−1

ci (Γibv,i)) = ιcj(ΠjN(Π∗
jN)−1ι−1

cj (Γjbv,j)) (10.1)

and both sides are well-defined. Let Ii be the set of indices of rows of Πi that are in rowFq(Π
∗
i ) (the

row space), and similar for Ij. First suppose that (10.1) occurs in a case where either Ii = Ij = [r]
or Ii 6= Ij. If the former holds, then Πi = MiΠ

∗
i and Πj =MjΠ

∗
j for Mi,Mj ∈ GL(Frq) and similar

to earlier we find MiΓibv,i = MjΓjbv,j which cannot happen. If the latter holds then we can find
an element in one set but not the other. Without loss of generality let i∗ ∈ Ij \ Ii. Now inspect the
i∗th row element of the above (vector) equality. Let yi, yj be the i∗th rows of Πi,Πj respectively
and write yj = y′Π∗

j for y′ ∈ F1×r
q . Then (10.1) implies

ιci(yiN(Π∗
iN)−1ι−1

ci (Γibv,i)) = y′Γjbv,j ,

so yiN(Π∗
iN)−1Γiι

−1
ci (bv,i) = y′Γjι

−1
ci (bv,j). By the second bullet of Lemma 3.12 and yi /∈ rowFq(Π

∗
i )

(from i∗ /∈ Ii) we have that yiN(Π∗
iN)−1Γie1 ∈ L \ Fq, so y′ ∈ F1×r

q means that this yields a
nontrivial relation for ι−1

ci (v). In particular, given any choice of ι1, . . . , ιz we see that there is at
most 1 choice for v in this situation. Therefore in total these cases for Πi,Πj contribute Oq,s(1) to
Yij.

Now we can fix i, j,Πi,Πj such that the corresponding sets Ii,Ij satisfy I := Ii = Ij 6= [r].
Consider the random variable Z, the number of v ∈ Fnq \ φ(F ) satisfying (10.1) (and let Z be the
set of such v). It suffices to show

P[Z ≥ qn/z2] ≤ q−2n logn, (10.2)

since we can then take a union bound over i, j,Πi,Πj , add in the extra contribution of Oq,s(1) from
the other choices of Πi,Πj , and deduce the necessary bounds on Yij with very high probability,
which then imply the desired lower bound for Y and thus X whp (enough to take a union bound
over E,ψ, C, C1 and the π, x values at the end, as discussed earlier).

We show (10.2) via the method of moments. Technically, we cannot directly bound the moment
of Z, and instead will count certain special tuples of elements in Z, which bears similarity to e.g. the
deletion method of Rödl and Ruciński (see [20, 31]) used for upper tails of subgraph counts. Here,
though, we will impose certain linear-algebraic conditions rather than subgraph disjointness. Choose
some i∗ ∈ [r] \ I , which exists by the given conditions, and let yi, yj be the i∗th rows of Πi,Πj ,
respectively. We have for Π′

i = Γ−1
i Π∗

i and Π′
j = Γ−1

j Π∗
j (which have the same respective Fq-row

spaces) that
ιci(yiN(Π′

iN)−1ι−1
ci (bv,i)) = ιcj(yjN(Π′

jN)−1ι−1
cj (bv,j))

for v ∈ Z. Let f1, . . . , fdimF be a Fq-basis for φ(F ) 6 Fnq .
For 1 ≤ k ≤ n/8 let Zk be the (random) set of tuples (w1, . . . , wk) ∈ Z

k such that (f ′t,i :=

ι−1
ci (ft))t∈[dimF ], (w

′
t,i := ι−1

ci (wt))t∈[k], and (y′t,i := yiN(Π′
iN)−1ι−1

ci (bwt,i))t∈[k] are well-defined and
jointly Fq-linearly independent (note they are all elements ofK) and such that similar holds with i re-
placed by j. There are at most (|K|dimF+k)2 possible choices of these values f ′t,i, f

′
t,j, w

′
t,i, w

′
t,j , y

′
t,i, y

′
t,j

(note that f ′t,i for t ∈ [dimF ] and wt′,i determine y′t′,i for any t′ ∈ [k]). Furthermore, given such
fixed choices, let us consider the event that (a) ιci , ιcj actually map the vectors in this way, and (b)
ιci , ιcj make it so that w1, . . . , wk ∈ Z indeed holds. This is equivalent to

ιci(f
′
t,i) = ft = ιcj(f

′
t,j) for all t ∈ [dimF ],

ιci(w
′
t,i) = wt = ιcj (w

′
t,j) for all t ∈ [k],

ιci(y
′
t,i) = ιcj (y

′
t,j) for all t ∈ [k].
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The probability of this is at most ((1−1/n2)qn)−2 dimF−3k: here we are using Fq-linear independence
of the f ′t,i, w

′
t,i and similar for j, and also using that each next equation has probability at most

1/(qn − qe) ≤ ((1− 1/n2)qn)−1 of holding if e ≤ 2 dimF + 3k equations have been processed so far
since ιci , ιcj are uniformly random injective linear maps K →֒ Fnq . Therefore a union bound over
possible choices (w1, . . . , wk) ∈ (Fnq )

k and of choices f ′t,i, f
′
t,j , w

′
t,i, w

′
t,j , y

′
t,i, y

′
t,j yields

E|Zk| ≤ (qn)k|K|2 dimF+2k((1 − 1/n2)qn)−2 dimF−3k ≤ 2.

Now we provide a lower bound for |Zk| in terms of |Z|. We choose wt ∈ Z for 1 ≤ t ≤ k in
order, so that each new wt satisfies the following: w′

t,i is not in the L-span of (f ′t′,i)t′∈[dimF ] and

(w′
t′,i)t′∈[t−1] together, and the same for j. There are at least max(0, Z−2qℓ(dimF+t−1)) such choices

since there are at most (qℓ)dimF+t−1 elements in this L-span for i, and each of these potential values
of w′

t,i = ι−1
ci (wt) can correspond to at most 1 value of wt = v ∈ Z to rule out (and the same for

j). Call the collection of such tuples Gk. We see from this analysis that if Z ≥ 2qℓ(dimF+k) then
|Gk| ≥ (Z/2)k .

Finally, we claim that Gk ⊆ Zk. Given this, we deduce

E(Z/2)k1Z≥2qℓ(dimF+k) ≤ 2

and Markov’s inequality therefore shows P[Z ≥ qn/z2] ≤ 2(2z2/qn)k for any integer 1 ≤ k ≤ n/(2ℓ).
Thus (10.2) follows, so as discussed earlier the argument is finished.

Suppose the claim is false, i.e., Gk 6⊆ Zk, so that there is (w1, . . . , wk) ∈ Z
k constructed iteratively

as above such that (f ′t,i)t∈[dimF ], (w
′
t,i)t∈[k], and (y′t,i)t∈[k] are Fq-linearly dependent:

dimF
∑

t=1

αtf
′
t,i +

k
∑

t=1

(βtw
′
t,i + γty

′
t,i) = 0

for αt, βt, γt ∈ Fq (or similar for j, but the argument is symmetric in that case). Note that y′t,i =
yiN(Π′

iN)−1ι−1
ci (bwt,i) is an L-linear combination of w′

t,i = ι−1
ci (wt) and (f ′t,i = ι−1

ci (ft))t∈[dimF ]

(recalling that the “other parts” of the basis bv,i come from φ(F )). That is, we can write

y′t,i = ζtw
′
t,i +

dimF
∑

t′=1

ζt,t′f
′
t′,i

for ζt, ζt,t′ ∈ L. Plugging in, we find

dimF
∑

t=1

(

αt +

k
∑

t′=1

γt′ζt′,t

)

f ′t,i +

k
∑

t=1

(βt + γtζt)w
′
t,i = 0.

Furthermore, the condition i∗ ∈ [r] \ I implies that yi /∈ spanFq
(Π∗

i ) = spanFq
(Π′

i), so that
yiN(Π′

iN)−1 ∈ L1×r has all coordinates in L \Fq by the second bullet of Lemma 3.12. This implies
ζt ∈ L \ Fq. Now first suppose that not all the β, γ values are 0. Let t∗ be the largest index with
(βt∗ , γt∗) ∈ F2

q \ {(0, 0)}. Since ζt∗ ∈ L \ Fq, this means βt∗ + γt∗ζt∗ ∈ L
×. Dividing out by this

value, we easily see that w′
t∗,i is in the L-span of (f ′t,i)t∈[dimF ] and (w′

t,i)t∈[t∗−1], which contradicts
the definition of Gk. Therefore we must have βt = γt = 0 for all t ∈ [k]. We deduce

0 =
dimF
∑

t=1

αtf
′
t,i = ι−1

ci

( dimF
∑

t=1

αtft

)

.

This is a contradiction since (ft)t∈[dimF ] is Fq-linearly independent by definition. We are done. �

We now briefly deduce Proposition 10.2.
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Proof of Proposition 10.2. Let {v∗1 , . . . , v
∗
dimVec(H)} be the given basis for H whose last dimF values

span F . Consider Wt = spanFq
(F ∪{v∗1 , . . . , v

∗
t }) for t ∈ [vE ]. We will iteratively embed v∗t . To this

end, let Xt for 0 ≤ t ≤ vE be the number of injective linear embeddings φ∗ of Wt into Fnq which
agree with φ on F such that (a) the image is within

⋂

i∈ψ(H\H[F ])Ki, (b) for each R ∈ (H \H[F ])∩

Gr(Wt, r) we have φ∗(R) ∈ Gtem,ψ(R), (c) dimL spanL(ι
−1
ψ(R)(φ

∗(R ∩Wt))) = dimFq(R ∩Wt) for all
R ∈ H \H[F ], (d) ΠR = πψ(R)(R) and bφ∗(R) = φ∗(xR) for all R ∈ (H \H[F ])∩Gr(Wt, r), and (e)
for all t′ ∈ [t], φ∗(v∗t′) ∈

⋂

i∈Ct′
Ki. For i = 0 we have X0 = 1 by the given conditions.

Given some t ≥ 1, we apply Lemma 10.3 with C = ψ(H \H[F ]) (clearly |C| ≤ |H| ≤ qrh) and C1
replaced by Ct to show that

Xt ≥ (τ/z)C
′

qnXt−1 − q
rh · (qℓ)rXt−1 ≥ (τ/z)C

′+1qnXt−1

where C ′ = C10.3(h, q, s). The subtracted term comes from guaranteeing (c) holds: for each of at
most qrh total R ∈ H \H[F ], there are at most (qℓ)r choices of embedding for v∗t that would cause
an unexpected L-linear dependence, which is the only way to ensure that dimL spanL(ι

−1
ψ(R)(φ

∗(R∩

Wt′))) does not grow by 1 between t′ = t− 1 and t′ = t in cases where R ∩Wt 6= R ∩Wt−1. The
second inequality is true as long as c = c10.2(h, q, s) is chosen small enough. The result follows by
taking C = h(C ′ + 1). �

11. Covering the remainder and absorbable decomposition

In this section we provide tools to go from the approximate decomposition provided by Proposition 9.3
to something of the form taken in by Proposition 8.3. To do this, we first provide a general lemma
which will be used multiple times to cover collections of r-spaces and convert given signed s-space
decompositions into ones with better properties, including certain disjointness conditions. The ap-
proach here uses a “disjoint random process”, as opposed to the application of the Lovász Local
Lemma in the proof of Proposition 8.3, since we need to provide intermediate guarantees such as
boundedness and field boundedness.

The precise details are quite technical, but at a high level we have some collection of inputs which
is bounded (Definition 5.1) and whose extension to L is bounded (similar to field boundedness) in
an appropriate sense. We seek to process them one at a time, flipping them randomly to some
extension into Gtem (which we additionally enforce is rainbow, for later application) which is in
some sense disjoint from what has happened so far. We wish to show this process will run to
completion and that it produces outcomes which are not too concentrated anywhere (which allows
extraction of various boundedness and field boundedness conditions when applied).

For ease of definition of the process, we make some definitions that will allow us to talk about the
extension of our r-spaces to L in a convenient way. We also introduce the notion of field disjointness.

Definition 11.1. Given the setup of Section 3.5 and Definition 6.2, for R ∈ Grq(n, r) let ind(R) ∈
[z] ∪ {∗} be either the unique index i ∈ [z] with R ∈ Gtem,i or ∗ if R /∈ Gtem. Let χ(R) = {R′ ∈
Gtem,i : spanL(ι

−1
i (R′)) 6 spanL(ι

−1
i (R))} if ind(R) = i otherwise let χ(R) = {R} if ind(R) = ∗.

We extend χ(R) =
⋃

R∈R χ(R) to sets in the obvious way, without multiplicity. Finally, a collection
R ⊆ Grq(n, r) is field disjoint with respect to the template if there are not distinct R1, R2 ∈ R with
R1 ∈ χ(R2). Similarly Φ ∈ ZGrq(n,r) is field disjoint with respect to the template if supp(Φ) is.

We briefly observe that field boundedness implies boundedness of χ.

Lemma 11.2. Given the setup of Definition 11.1, if R ⊆ Gtem is (θ, L)-field bounded, then χ(R)
is zθ-bounded.

Proof. Given Q ∈ Grq(n, r− 1), we wish to count spaces of χ(R) containing it. There are z choices
for possible template index i to use. If spanL(ι

−1
i (Q)) < r − 1 then any r-space R ∈ Grq(n, r)
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containing Q will not span r dimensions when pulled back via ι−1
i and extended to L, and hence

cannot be in Gtem,i. Therefore we may focus on cases where spanL(ι
−1
i (Q)) = r − 1, in which case

we can then apply the field boundedness condition (Definition 8.1) with Q∗ = spanL(Q). We are
using that Q 6 R′ for some R′ ∈ χ(R) and R ∈ Gtem,i implies spanL(ι

−1
i (Q)) 6 spanL(ι

−1
i (R)). �

Now we prove the master disjoint process lemma. We first detail the setup for the precise
statement, as it is somewhat involved.

Definition 11.3. Given Section 3.5 and Definition 6.2, consider a parameter θ and the following
data.

• An extension type: r-dimensional q-systemH and F 6 Vec(H) so that H\H[F ] is nonempty
and v = dimVec(H)− dimF ;
• An extension core: r-dimensional q-system H ′ on F such that for all R ∈ H \H[F ], there

is R′ ∈ H ′ so that R ∩ F 6 R′;
• A basis (v∗1 , . . . , v

∗
dimVec(H)} for Vec(H) so that the last dimF vectors span F

• An avoidance set : r-dimensional q-systemRinit ⊆ Grq(n, r) which is θ-bounded (Definition 5.1);
• A bounded list of roots: a sequence of injective linear maps φ1, . . . , φx : F →֒ Fnq such that

for every (r − 1)-space Q, #{t ∈ [x] : Q 6 R for some R ∈ φt(H ′)} ≤ θqn.
• A list of avoided color sets: for all t ∈ [x], sets Ct ⊆ [z] of size at most z1/2;
• A list of preparatory color sets: Ct,j ⊆ [z] of size at most h for all t ∈ [x], j ∈ [v];
• Extensions: Et := (φt, F,H);
• Potential allowed embeddings: H′

t := {φ∗ ∈ XEt(Gtem) : for all R ∈ H \ H[F ], φ∗(H) ⊆
Kind(φ∗(R)) and ind(φ∗(R)) /∈ Ct are distinct; φ∗(v∗j ) ∈

⋂

i∈Ct,j
Ki for all j ∈ [v]}.

Lemma 11.4. Given Section 3.5 and Definition 6.2, we have the following whp over the randomness
of the template, as long as h ≥ 1, C = C11.4(h, q, s) > 0, c = c11.4(h, q, s) > 0, q−cn ≤ τ ≤ c,
d ≥ d11.4(r), ℓ ≥ ℓ11.4(d, s), and n is large.

For any choice of data as in Definition 11.3 with dimVec(H) ≤ h and q−cn ≤ θ ≤ (τ/z)1/c, let
R0 := ∅ and then consider running the following random process for 1 ≤ t ≤ x:

• Let Ht = {φ
∗ ∈ H′

t : for all R ∈ H \H[F ], φ∗(R) /∈ Rinit ∪ χ(Rt−1)}.
• If |Ht| < (τ/z)Cqvn, we call the process failed, we set φ∗t = φ∗t+1 = · · · = φ∗x := ∗, a special

wildcard value, we set Rt = · · · = Rx := Rt−1, and we stop the iteration.
• Otherwise, we sample φ∗t ∼ Unif(Ht), let Rt := Rt−1∪φ

∗
t (H \H[F ]) as a set, and continue.

Then the random process has the property that it whp never fails, and furthermore for any F ⊆
Grq(n, r) we have P[|F ∩ χ(Rx)| ≥ θ

2/3|F|] ≤ exp(−θ|F|).

Remark. Note that the property that the random process whp never fails is only considering the
randomness of the random process, not the template. One should think that we condition on a
suitable outcome of the template, and almost all outcomes are such that these random processes
whp run to completion.

Proof. Whp the template satisfies Proposition 10.2 for h. Further, given a (dimF )-space F ′ 6 Fnq ,
Chernoff shows that with probability at least 1−exp(−Ωq,ℓ(z)) over the random injections ι1, . . . , ιz,
there are at least 2z1/2 many i ∈ [z] so that F ′ 6 Ki and dimL spanL(ι

−1
i (F ′)) = dimF . Taking a

union bound, whp this property holds for all (dimF )-spaces. We thus condition on such an outcome
and treat it as non-random. Additionally, note that the condition on the φt in Definition 11.3 implies
that if dimQ′ = u ∈ {0, 1, . . . , r − 1}, then

#{t ∈ [x] : Q′ 6 R for some R ∈ φt(H
′)} ≤ θq(r−u)n, (11.1)

since all such t have the property that there is an (r − 1)-space Q with Q > Q′ which is contained
in R for some R ∈ φt(H ′), and there are clearly at most q(r−u−1)n choices for Q containing Q′.
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Let C be large to be chosen later in terms of h, q, s. Note that

P[φ∗t = φ|φ∗1, . . . , φ
∗
t−1] ≤ (z/τ)Cq−vn (11.2)

for all t ∈ [x] and φ ∈ XEt(G) (recall G = Grq(n, r)) due to the fact that we stop the process if
failure occurs (and put ∗ everywhere after failure). Now consider any family F of r-spaces. Let us
consider the random variable X = XF := #{(R,R′) ∈ F × Rx : R ∈ χ(R

′)} ≥ |F ∩ χ(Rx)|. For
every R ∈ Grq(n, r) and t ∈ [x] let HR,t = {φ ∈ H′

t : R ∈ φ(H \H[F ])} and note that
[

s

r

]−1

q

X ≤
x

∑

t=1

(

∑

R∈χ(F)

1φ∗t∈HR,t

)

=:

x
∑

t=1

Xt.

The inequality is since R ∈ χ(R′) and R′ ∈ χ(R) are equivalent, and since every space in χ(F) can
come from at most

[s
r

]

q
spaces in F . Now, the right is a sum of nonnegative integer random variables

Xt, each of which is bounded by |H\H[F ]| ≤ qrh (given φ∗t , the only R ∈ F that can contribute 1 are
those with R ∈ φ∗t (H \H[F ])). Let Yt = 1Xt 6=0 and note Xt ≤ q

rhYt, so Y =
∑x

t=1 Yt ≥ q
−r(h+s)X.

Furthermore, (11.2) shows that

P[Yt = 1|φ∗1, . . . , φ
∗
t−1] ≤

∑

R∈χ(F)

|HR,t|(z/τ)
Cq−vn =: µt

for all t ∈ [x]. Let µ =
∑x

t=1 µt. Thus we can apply Lemma 3.9 with pt = min(µt, 1) and then
Lemma 3.7 to deduce

P[XF ≥ θ
2/3|F|] ≤ P[Y ≥ θ3/4|F|] ≤ exp(−Ω(θ3/4|F|)) ≤ exp(−θ|F|) (11.3)

as long as 2µ ≤ θ3/4|F|. We now turn to demonstrating this inequality in order to establish (11.3).
For fixed R ∈ χ(F) we have

x
∑

t=1

|HR,t| =
r−1
∑

u=0

∑

t∈[x]
dim(R∩φt(F ))=u

|HR,t| ≤
r−1
∑

u=0

(

∑

R0∈H\H[F ]
R′∈H′

dim(R0∩R′)=u

∑

t∈[x]
φt(R0∩R′)6R

#{φ ∈ H′
t : R = φ(R0)}

)

≤
r−1
∑

u=0

Oh,q,r(θq
(r−u)n) · Oq,s(q

(dimVec(H)−(dimF+r−u))n) ≤ Oh,q,s(θq
vn). (11.4)

The equality follows since for every φ ∈ HR,t, we have R = φ(R0) for some R0 ∈ H \H[F ] and thus
R ∩ φt(F ) = φ(R0 ∩ F ) has some dimension u ≤ r − 1 (recall φ ∈ HR,t ⊆ H′

t implies φ, φt agree
on F ). The first inequality of (11.4) follows since in such a situation, there furthermore is R′ ∈ H ′

with R0 ∩ F 6 R′ by the given conditions. Since R′ 6 F this implies R0 ∩ F = R0 ∩ R
′ hence

dim(R0 ∩R
′) = u and φt(R0 ∩R

′) = φt(R0 ∩ F ) 6 R.
Finally, the inequality in the second line of (11.4) is proven by noting there are at most Oh,q,r(1) ·

θq(r−u)n terms in the inner double sum by counting ways to choose R0, R
′ and then by (11.1) applied

to Q′ = φt(R0 ∩ R
′). Then note that #{φ ∈ H′

t : R = φ(R0)} = Oq,r(q
(dimVec(H)−(dimF+r−u))n)

since this is bounded by the number of extensions φ ∈ XEt(G) which map R0 to R (up to some
permutation which has Oq,r(1) choices), and then the remaining number of free dimensions to embed
is dimVec(H)−(dimF+r−u) since dim spanFq

(R0∪F ) = dimF+r−dim(R0∩F ) = dimF+r−u.
Now summing (11.4) over R ∈ χ(F) and the definition of µt shows that µ ≤ Oh,q,s(1)·θ(z/τ)C |χ(F)|,

which demonstrates the desired inequality 2µ ≤ θ3/4|F| as long as 1/c ≥ 4C +1 is chosen appropri-
ately and n is large. We are using |χ(F)| ≤

[s
r

]

q
|F|. Thus (11.3) indeed holds. This demonstrates

the last part of the lemma.
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Next we claim that the process does not fail whp, which will finish. Fix some t ∈ [x], and consider
the event Et that |Ht| ≤ (τ/z)Cqvn. Note that Proposition 10.2 shows

H′
t =

{

φ∗ ∈ XEt(Gtem) :
∀R ∈ H \H[F ], φ∗(H) ⊆ Kind(φ∗(R)) and ind(φ∗(R)) /∈ Ct are distinct;

φ∗(v∗j ) ∈
⋂

i∈Ct,j
Ki for all j ∈ [v]

}

satisfies |H′
t| ≥ (τ/z)C/2qvn if C was chosen appropriately large in terms of h, q, r. Indeed, the

(dimF )-space φt(F ) is in at least 2z1/2 many Ki with dimL spanL(ι
−1
i (φt(F ))) = dimF and thus

we assign distinct such i /∈ Ct to all of H \ H[F ] to construct the coloring function ψ (recall
|Ct| ≤ z1/2). The condition |ψ−1(i)| ≤ 1 ≤

[s
r

]

q
is trivial, while 10.2(a,b) follow from the condition

on the i ∈ range(ψ) (note that if an r-space R in K extends to r dimensions over L, then every
Fq-subspace of R of dimension u extends to u dimensions over L). Also, we can choose the πi, xR
arbitrarily as discussed in the remark following Proposition 10.2. Finally, we let the basis for Vec(H)
in Proposition 10.2 be the same as the one we are given, and let Cj = Ct,j for j ∈ [vEt ] = [v].

Thus the event Et implies that |H′
t \ Ht| ≥ ((τ/z)C/2 − (τ/z)C )qvn. But

H′
t \ Ht ⊆

⋃

R∈H\H[F ]

({φ∗ ∈ XEt(G) : φ
∗(R) ∈ Rinit} ∪ {φ

∗ ∈ XEt(G) : φ
∗(R) ∈ χ(Rx)}).

Given R ∈ H \H[F ] with dim(R∩F ) = u ∈ {0, . . . , r− 1}, the size of the first set within the union
is bounded by θq(r−u)n · Oq,r(q(dimVec(H)−(dimF+r−u))n) = Oq,r(θq

vn) due to a similar argument to
the proof of the second inequality of (11.4): choose φ∗(R) ∈ Rinit which contains the fixed u-space
φ∗(R ∩ F ) = φt(R ∩ F ), leading to θq(r−u)n possibilities due to the θ-boundedness (Definition 5.1)
of Rinit, and then consider the number of ways to extend to all of Vec(H) given the map on
spanFq

(F ∪R). And if χ(Rx) were θ2/3-bounded then we would obtain a similar bound on the size
of the second set, which would ultimately show

|H′
t \ Ht| ≤ Oh,q,r(θ

2/3qvn) ≤ (τ/z)Cqvn

as long as 1/c ≥ 2C + 1 is chosen appropriately. This contradicts Et!
Therefore Et implies that χ(Rx) is not θ2/3-bounded, i.e., there is some (r − 1)-space Q so that

with FQ = {R ∈ Grq(n, r) : R > Q} we have XFQ
> θ2/3qn ≥ θ2/3|FQ|. But using (11.3) on at

most q(r−1)n possible families FQ (of size Θq,r(q
n) each), recalling XF ≥ |F ∩ χ(Rx)|, and taking

a union bound, we see that P[Et] ≤ q−3rn, say. Finally, note that (11.1) implies that x ≤ q2rn so
taking a union bound over all t finishes the proof. �

Given Lemma 11.4, we establish Lemma 11.5 which shows that we can cover all of the leftover
coming from Proposition 9.3 disjointly by s-spaces in a way that only touches template r-spaces;
this will allow us to focus on a “spill” within the template in the proof of Theorem 1.2. Additionally,
we can guarantee that the spillover is field bounded and field disjoint.

Lemma 11.5. Given the setup of Section 3.5 and Definition 6.2, we have the following as long as
c = c11.5(q, s) > 0, q−cn ≤ τ ≤ c, d ≥ d11.5(r), ℓ ≥ ℓ11.5(d, s), and n is large. Whp over the
randomness of the template, for any r-dimensional q-system R on V with R ∩ Gtem = ∅ which is
θ-bounded (Definition 5.1) for some q−cn ≤ θ ≤ (τ/z)1/c there is an s-dimensional q-system S such

that ‖∂s,rS‖∞ ≤ 1 and ∂s,rS = R ∪R′ where R′ ⊆ Gtem and R′ is field disjoint and (θ1/2, L)-field
bounded with respect to the template.

Proof. Let R = {R1, . . . , R|R|} be an arbitrary ordering of the r-spaces. We run the process in
Lemma 11.4 with the following choices:

• H is the set of all r-spaces in Fsq, F 6 Fsq has dimension r, and H ′ = {F};
• Rinit = ∅;
• x = |R| and φt is an arbitrary linear injection such that φt(F ) = Rt for t ∈ [|R|];
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• The basis v∗ is arbitrary and all color sets Ct, Ct,j are empty.

The θ-boundedness of R implies the boundedness of the roots in Definition 11.3, so the conclusions
apply. Namely, this process does not fail whp and for any F ⊆ Grq(n, r) we have P[|F ∩ Rx| ≥

θ2/3|F|] ≤ exp(−θ|F|).
Let St be the random s-space φ∗t (Vec(H)) that results and let S = {S1, . . . , S|R|}, ignoring

wildcard values. We see that when the process does not fail, ∂s,rS is a set of r-spaces (using the
disjointness inherent to the process) and ∂s,rS = R ∪ R′ (using R ∩ Gtem = ∅) where R′ ⊆ Gtem,
and in fact R′ = Rx. Thus (θ1/2, L)-field boundedness of R′ occurs whp due to considering a
union bound over at most zq(r−1)n sets F of the following form: take every possible i ∈ [z] and
(r − 1)-space Q∗ over L and consider F which is the collection of r-spaces which contribute to Q∗

in Definition 8.1, then augment F so it has size ⌊θ−1/6qn⌋.
Finally, to demonstrate field disjointness, note that the definition of the process in Lemma 11.4

makes each new embedding have its new r-spaces at each time t avoid χ of the previous new r-spaces.
Furthermore, at each time t the new r-spaces are mutually field disjoint since they are involved in
different template indices. We are done. �

The next result shows that the spill, an r-dimensional q-system, can be integrally decomposed via
s-spaces which are supported on Gtem and are rainbow (the constituent r-spaces are all in different
parts Gtem,i of the template) in a way that is field bounded. Furthermore, we ensure every r-space
occurs at most once in the positive and negative parts of the integral decomposition. We also ensure
that the r-spaces in the positive part are field disjoint (assuming the spillover is field disjoint).

Lemma 11.6. Given the setup of Section 3.5 and Definition 6.2, we have the following as long
as c = c11.6(q, s) > 0, q−cn ≤ τ ≤ c, d ≥ d11.6(r), ℓ ≥ ℓ11.6(d, s), and n is large. Whp over
the randomness of the template, for any (set) R ⊆ Gtem which is field disjoint and (θ, L)-field

bounded for some q−cn ≤ θ ≤ (τ/z)1/c such that R ∈ L = ∂s,rZ
Grq(n,s) (treated as a vector), there

is Φ ∈ ZGrq(n,s) such that:

• R = ∂s,rΦ and ‖∂s,rΦ
+‖∞ ≤ 1;

• ∂s,rΦ
± are (θ1/4, L)-field bounded;

• For every S ∈ supp(Φ) there are distinct iR ∈ [z] such that R ∈ Gtem,iR for all R ∈ Gr(S, r).
• ∂s,rΦ

± are field disjoint.

Remark. The proof uses a subspace exchange process quite similar to Proposition 5.12, but we must
guarantee a disjointness condition that requires use of Lemma 11.4.

Proof. Let k = k4.1(s) and let Υ,Υ′ be the s-dimensional q-systems on Fkq coming from Proposition 4.1.
By Lemma 8.2 and then Theorem 5.2 we can write

R = ∂s,rΦ0

with ∂s,rΦ
±
0 being C5.2(q, s)zθ-bounded. Our goal is to massage Φ0 into a new signed collection Φ

where every r-space appears at most once in the positive and negative parts ∂s,rΦ± and we have
the necessary boundedness. A priori, though, ∂s,rΦ0 could involve massive cancellation on certain
r-spaces (although the boundedness of Φ0 helps limit this somewhat). We will first “preprocess” this
collection using Lemma 11.4 to make these conditions “hold outside ∂s,rΦ

+
0 ” in some sense. Then

we will essentially go through “cancelling pairs” one by one and fix them via a random embedding
of a finite structure coming from Proposition 4.1 (similar to the proof of Proposition 5.12, but using
Lemma 11.4). These can be thought of as “splitting” and “elimination” in the context of [23].

Let (St)1≤t≤y′ be an arbitrary ordering of the positive s-spaces in Φ0 with multiplicity, and
(St)y′+1≤t≤y be an arbitrary ordering of the negative s-spaces. We run the process in Lemma 11.4
with the following choices:
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• H = H(1) is the set of all r-spaces contained in s-spaces of Υ (with Vec(H(1)) = Fkq ),

F = F (1) is some fixed s-space in Υ, and H ′ = H(1)′ = Gr(F, r);

• Rinit = R
(1)
init = χ(R) ∪

⋃y
t=1 Gr(St, r);

• x = y and φt = φ
(1)
t is an arbitrary linear injection such that φ(1)t (F (1)) = St for t ∈ [y];

• Ct = {ind(R) : R ∈ Gr(St, r) ∩Gtem};
• The basis v∗ is arbitrary and all color sets Ct,j are empty;
• θ is replaced by (2C5.2 + 1)zθ.

Since ∂s,rΦ
±
0 are C5.2zθ-bounded and since R is (θ, L)-field bounded hence χ(R) is zθ-bounded by

Lemma 11.2, we obtain the necessary condition on Rinit as well as the boundedness of the roots in
Definition 11.3, so the conclusions apply to the random output φ∗1, . . . , φ

∗
y. In particular, whp it

runs to completion. Write R∗
y for the value of Rx produced by the process (recall we set x = y in

this application of Lemma 11.4).
Given the definitions of H(1), F (1) above, let F1, . . . , Fa for a =

[s
r

]

q
be the s-spaces in Υ′ with

dim(Fi ∩ F
(1)) = r (there are precisely a of them by Proposition 4.1). If the process runs to

completion we have, writing sgnt = 1 for t ∈ [y′] and −1 for y′ + 1 ≤ t ≤ y,

R = ∂s,rΦ0 =

y
∑

t=1

sgnt∂s,reSt =

y′
∑

t=1

sgnt∂s,r

(

∑

S∈φ∗t (Υ
′)

eS −
∑

S∈φ∗t (Υ\{F})

eS

)

= ∂s,r

y
∑

t=1

a
∑

j=1

sgnteφ∗t (Fj) + ∂s,r

( y
∑

t=1

∑

S∈φ∗t (Υ
′\{F1,...,Fa})

sgnteS −

y
∑

t=1

∑

S∈φ∗t (Υ\{F})

sgnteS

)

=: ∂s,rΦ1 + ∂s,rΦ2 (11.5)

by the third bullet of Proposition 4.1, where Φ1,Φ2 are defined in the obvious way. (This corresponds
to near and far cliques, respectively, in [23].) Due to the inherent disjointness of the random
process, all the s-spaces appearing in Φ2 are distinct and ‖∂s,rΦ

±
2 ‖∞ ≤ 1: an r-space can only

appear corresponding to at most one index t ∈ [y] by definition, and then it appears positively
and negatively each at most once by the first bullet of Proposition 4.1. Additionally, we see that

Φ1 ∈ {−1, 0, 1}
Grq(n,s) and in fact ∂s,rΦ

±
1 ∈ {0,±1}

G\R
(1)
init × ZR

(1)
init by a similar argument (recall

G = Grq(n, r)). Finally, note that supp(∂s,rΦ
±
2 ) ⊆ G \R

(1)
init by definition. This implies (∂s,rΦ1)R =

1R∈R for all R ∈ R(1)
init.

Now consider pairs of R ∈ R(1)
init and S ∈ supp(Φ1) where R 6 S. For each S, there is exactly one

valid value of R by inspection of the definition of the process above (namely, note that S = φ∗t (Fj) for

some t, j and then R = φ∗t (Fj ∩F
(1)) is its only r-space in R(1)

init). Combined with (∂s,rΦ1)R = 1R∈R

and Φ1 ∈ {−1, 0, 1}
Grq(n,s), we see that we can find a partial matching of the s-spaces in supp(Φ1)

so that every space is paired with one of the opposite sign and for each R ∈ R(1)
init all but one of the

s-spaces containing it are paired up. (There will be precisely 1 unpaired s-space of positive sign in
Φ1 exactly for those R ∈ R.)

Let ((St,1, St,2))1≤t≤y′′ be an arbitrary ordering of these pairs, where St,1 has positive sign and
St,2 has negative sign in Φ1. Additionally, note that dim(St,1 ∩ St,2) = r and the intersection is an

r-space of R(1)
init due to the following argument: if the intersection has larger dimension then there

is an r-space shared between St,1, St,2 other than the R ∈ R(1)
init that they share. By the definition

of the process above, this violates either disjointness from R(1)
init or disjointness from each other.

Let the remaining signed s-spaces in Φ1 ∈ {−1, 0, 1}
Grq(n,s) be (S+

k )k∈P , and note they all have a
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positive sign in Φ1 (by the above parenthetical). Note we can now write

Φ1 =
∑

k∈P

eS+
k
+

y′′
∑

t=1

(eSt,1 − eSt,2). (11.6)

We now run the process in Lemma 11.4 with the following choices:

• H = H(2) is obtained by gluing two copies of the construction in Proposition 4.1 along
an s-space S0 in the two copies of Υ, and then considering all r-spaces contained within
(and Vec(H(2)) = F2k−s

q ). Let Υ1,Υ
′
1 be the s-spaces for one copy and Υ2,Υ

′
2 for the

other (so Υ1 ∩ Υ2 = {S0}). Let R0 6 S0 be an r-space and S1 be the unique space
of Υ′

1 with S1 ∩ S0 = R0 and S2 be the unique space of Υ′
2 with S2 ∩ S0 = R0. Let

F = F (2) = spanFq
(S1 ∪ S2) and H ′ = H(2)′ = Gr(S1, r) ∪Gr(S2, r);

• Rinit = R
(2)
init = R

(1)
init ∪ χ(R

∗
y);

• x = y′′ and φt = φ
(2)
t is an arbitrary linear injection such that φ(2)t (S1) = St,1 and φ(2)t (S2) =

St,2.
• Ct = {ind(R) : R ∈ (Gr(St,1, r) ∪Gr(St,2, r)) ∩Gtem};
• The basis v∗ is arbitrary and all color sets Ct,j are empty.
• θ is replaced by θ1/2.

The necessary condition on Rinit = R
(2)
init as well as the boundedness of the roots in Definition 11.3

are nontrivial. They both are derived from the following argument: considering various F = FQ =
{R ∈ Grq(n, r) : R > Q} for Q ∈ Grq(n, r − 1) and similarly defined sets over L and taking a
union bound (using the last property of Lemma 11.4) shows that whp everything involved with the
output of the first process thus ends up being say O(z(zθ)2/3)-bounded. For instance, using this
argument and applying Lemma 11.2, we see that whp χ(R∗

y) is O(z(zθ)2/3)-bounded. Furthermore,
this boundedness includes not only the “new r-spaces” (which go by the name Rx in the previous

application of Lemma 11.4) but also the “original r-spaces” (R(1)
init), using the boundedness condition

that allowed us our first application of Lemma 11.4. The total boundedness parameter is at most
θ1/2 if c is chosen appropriately small, as desired.

So whp over the randomness of outcomes of the first process, we are allowed to run the second
process and the conclusions of Lemma 11.4 apply to the random output φ∗′1 , . . . , φ

∗′
x . In particular,

the process runs to completion whp. Now (11.5) and (11.6) together give

R =
∑

i∈P+

∂s,reS+
t
+

y′′
∑

i=1

∂s,r(eSt,1 − eSt,2) + ∂s,rΦ2. (11.7)

Note that for i ∈ [y′′],

∂s,r(eSt,1 − eSt,2) = ∂s,r

(

∑

S∈φ∗′i (Υ1\{S0})

eS −
∑

S∈φ∗′i (Υ2\{S0})

eS −
∑

S∈φ∗′i (Υ′

1\{S1})

eS +
∑

S∈φ∗′i (Υ′

2\{S2})

eS

)

(11.8)
since φ∗′i (Sj) = Si,j for j ∈ {1, 2} and by Proposition 4.1. We also cancelled the common eS0 in
Υ1,Υ2.

Plugging (11.8) into (11.7) for all t ∈ [y′′] yields a linear combination for R in terms of ∂s,reS
for various s-spaces S, call it R = ∂s,rΦ3. Furthermore, inspection of the definition of the second

random process shows that ‖∂s,rΦ
+
3 ‖∞ ≤ 1: on R(1)

init (i.e., for the eS+
i

terms) it is true due to the
pairing of cancelling r-spaces and for the rest we use disjointness. Here we are using in a key way
that we cancelled the s-space S0, for which having two copies of φ∗′i (S0) would introduce a violation

along the r-space φ∗′t (R0) = φ
(2)
t (S1 ∩S2) = St,1 ∩St,2 ∈ R

(1)
init. Also, we are implicitly using that all
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of the s-spaces in Υj \{S0},Υ
′
j \{Sj} for j ∈ {1, 2} (those appearing on the right side of (11.8)) have

constituent r-spaces which are contained in F (2) only if they are in the set Gr(S1, r) ∪ Gr(S2, r).
This can be seen since we are gluing two copies of the construction in Proposition 4.1 along an
s-space and otherwise linearly disjointly.

Additionally, for every S ∈ supp(Φ3) we have distinct iR ∈ [z] such that R ∈ Gtem,iR for all
R ∈ Gr(S, r) due to the definition of the two random processes used. In particular, one uses that
the values of H,F considered are such that every s-space used to define H which is not contained
in F intersects F in dimension at most r. Thus every s-space is assigned “new distinct colors”
except one fixed color which is explicitly avoided by the new colors. Furthermore, every s-space is
processed by at least one of the two processes so this applies to all s-spaces.

Next, we show (θ1/4, L)-field boundedness of ∂s,rΦ
±
3 . With this in hand we will see that taking

Φ = Φ3 finishes the proof. For this, note that all r-spaces of ∂s,rΦ
+
3 outside of R are introduced

by one of the two disjoint random processes, and so we can apply the last property of Lemma 11.4
to various F similar to the end of the proof of Lemma 11.5 and take a union bound (note θ is
replaced by θ1/2). Combining with the given (θ, L)-field boundedness of R, we obtain the desired
field boundedness.

Finally, we show field disjointness. Again, every constituent r-space of ∂s,rΦ
±
3 outside of R

is introduced by one of the two disjoint random processes. Since the processes create rainbow
embeddings, we know that the r-spaces introduced at a specific time t are field disjoint, and the
definition of each random process shows they do not interfere across times. Furthermore, since the
second random process excludes use of χ(R∗

y), we see that the new r-spaces of the two processes

are field disjoint as well. The fact χ(R) ⊆ R(1)
init ⊆ R

(2)
init means nothing interferes with the r-spaces

in R either. We are done. �

We will want to turn this into a monochromatic decomposition, among other things, but to do so
we will need to first slightly massage the output of Lemma 11.6. Specifically, we need every s-space
S used to be rainbow in the template and additionally have the property that it is contained within
⋂

i∈I Ki where I = {ind(R) : R ∈ Gr(S, r)}.

Lemma 11.7. Given the setup of Section 3.5 and Definition 6.2, we have the following as long
as c = c11.7(q, s) > 0, q−cn ≤ τ ≤ c, d ≥ d11.7(r), ℓ ≥ ℓ11.7(d, s), and n is large. Whp over
the randomness of the template, for any (set) R ⊆ Gtem which is field disjoint and (θ, L)-field

bounded for some q−cn ≤ θ ≤ (τ/z)1/c such that R ∈ L = ∂s,rZ
Grq(n,s) (treated as a vector), there

is Φ ∈ ZGrq(n,s) such that

• R = ∂s,rΦ and ‖∂s,rΦ
+‖∞ ≤ 1;

• ∂s,rΦ
± are (θ1/8, L)-field bounded;

• For every S ∈ supp(Φ) there are distinct iR ∈ [z] such that R ∈ Gtem,iR for all R ∈ Gr(S, r),
and furthermore S 6

⋂

R∈Gr(S,r)KiR .

• ∂s,rΦ
± are field disjoint.

Proof. First apply Lemma 11.6 to obtain some Φ0 with

R = ∂s,rΦ0

so that ‖∂s,rΦ+‖∞ ≤ 1, ∂s,rΦ± are (θ1/4, L)-field bounded, and for every S ∈ supp(Φ) there are
distinct iR ∈ [z] such that R ∈ Gtem,iR for all R ∈ Gr(S, r). Also, ∂s,rΦ

+
0 is field disjoint. Our goal

is to massage this to further guarantee the one added condition.
To this end, we consider another disjoint process governed by Lemma 11.4. Let {S1, . . . , Sy′} be

the positive s-spaces in Φ0 and {Sy′+1, . . . , Sy} be the negative s-spaces.
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• H is obtained by the following process. Take one copy of the construction in Proposition 4.1,
call its s-spaces Υ0,Υ

′
0. Then let F be an s-space in Υ0, and Fj for j ≤

[

s
r

]

q
be the s-spaces in

Υ′
0 intersecting F in r dimensions. Then glue

[s
r

]

q
additional copies of the construction from

Proposition 4.1, call the s-spaces Υj ,Υ
′
j, linearly disjointly along each Fj so that Fj ∈ Υj.

Let F ′
j be the unique s-space in Υ′

j which contains F∩Fj. (This is similar to the construction
used in the proof of Lemma 5.9.)
• Rinit = χ(supp(∂s,r(Φ

+
0 )) ∪ supp(∂s,r(Φ

−
0 )));

• x = y and φt is an arbitrary linear injection such that φt(F ) = St.
• Ct = {ind(R) : R ∈ Gr(St, r)};
• The basis v∗ is constructed in the following manner: start with a basis for F , then in order

of 1 ≤ j ≤
[

s
r

]

q
extend to a basis for the span of F ′

j . This is equivalent to extending from

F ∩ Fj of dimension r to F ′
j of dimension s, and the linear disjointness shows that these do

not interfere with each other. Then extend this arbitrarily to a basis of Vec(H).
• Ct,j is defined as follows: if v∗j was constructed in the process of spanning some F ′

i , then
Ct,j = {ind(φt(F ∩ Fi))}. Otherwise, Ct,j = ∅.
• θ is replaced by 2zθ1/4.

By Lemma 11.2 we know that χ(∂s,rΦ
±
0 ) are zθ1/4-bounded hence whp the process runs to com-

pletion. Similar to prior analyses, we see that the “new spaces” produced by the output are whp
(θ1/8/2, L)-field bounded, say, so the new decomposition we will obtain will ultimately be (θ1/8, L)-
field bounded.

We briefly describe, but do not fully write out, what the new decomposition Φ will be. Every
s-space showing up in some ∂s,reSt will be replaced by the following process: first replace this with
the sum of s-spaces coming from Υ′

0 minus those coming from Υ0 other than St; then for each
space of Υ′

0 which intersects St in r dimensions, which corresponds to some Υj ,Υ
′
j, we subsequently

similarly replace it using Υ′
j and Υj. This yields a sum and difference of s-spaces, and we check that

the necessary conditions on the ∞-norm, field disjointness, etc., are preserved (using disjointness of
the process, similar to the analyses in the proof of Lemma 11.6).

Finally, we consider the additional property that needs to be guaranteed. Similar to prior analyses,
each new space will be rainbow by definition, but we need the additional property that if S ∈
supp(Φ), we have S 6

⋂

R∈Gr(S,r)KiR if we write iR = ind(R) for each R 6 S.
The key point is that the Ct,j will guarantee this for us. First note that the definition of Ht in

Lemma 11.4 shows that φ∗(H) ⊆ Kind(R) for each R ∈ H \H[F ], which guarantees this property for
almost all the s-spaces generated. However, for the s-spaces S which are introduced and intersect St
in r dimensions, we are precisely missing the property that S 6 Kind(S∩St). For such S we can write
S = φ∗t (F

′
i ) for some 1 ≤ i ≤

[s
r

]

q
. This is where the property from the Ct,j comes in: it provides the

missing color which is ind(φt(F ∩ Fi)). Note that φt(F ∩ Fi) = φ∗t (F ∩ Fi) = φ∗t (F ∩ F
′
i ) = St ∩ S.

Since by definition F ′
i is spanned by F ∩Fi and the v∗j which were assigned this color in Ct,j , we see

that the image of F ′
i under φ∗t , which is S, is fully contained in Kind(S∩St) as required. �

The final result of this section shows that an output of the previous lemma can be transformed
so that every s-space is monochromatic (the constituent r-spaces are all in the same part of the
template Gtem,i) and in fact configuration compatible (Definition 7.3). Furthermore, we ensure that
the sets of s-spaces are field bounded now (as opposed to just the underlying r-spaces). This will
put us in position to apply Proposition 8.3.

Proposition 11.8. Given the setup of Section 3.5 and Definition 6.2, we have the following as long
as c = c11.8(q, s) > 0, q−cn ≤ τ ≤ c, d ≥ d11.8(r), ℓ ≥ ℓ11.8(d, s), and n is large. Whp over the

randomness of the template, for any Φ ∈ ZGrq(n,s) such that
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• ∂s,rΦ, ∂s,rΦ
+ ∈ {0, 1}Grq(n,r) (and supp(∂s,rΦ) ⊆ Gtem);

• ∂s,rΦ
± are (θ, L)-field bounded for some q−cn ≤ θ ≤ (τ/z)1/c;

• For every S ∈ supp(Φ) there are distinct iR ∈ [z] such that R ∈ Gtem,iR for all R ∈ Gr(S, r),
and furthermore S 6

⋂

R∈Gr(S,r)KiR ;

• ∂s,rΦ
± are field disjoint;

there are S1,S2 ⊆ Grq(n, s) with ∂s,rΦ = ∂s,r(S1−S2) such that ‖∂s,rS1‖∞ ≤ 1, S1 is (θ1/2, L)-field

bounded, and for each S ∈ S1 there is i ∈ [z] such that (a) dimL spanL(ι
−1
i (S)) = s and (b) there is

an Fq-basis b ∈ K
s
i of S so that for every Π ∈ Redr×sq , we have for R = spanFq

(Πb) that ΠR = Π,

bR = Πb, and R ∈ Gtem,i. Additionally, we guarantee that for i ∈ [z] and distinct S1, S2 ∈ S1[Gtem,i],

we have dimL(spanL(ι
−1
i (S1)) ∩ spanL(ι

−1
i (S2))) < r.

Remark. Note that our additional guarantee is slightly stronger than field boundedness, involving
s-spaces, which is what is needed to apply Proposition 8.3.

Proof. We run a disjoint random process similar to Lemma 11.4, but instead of making the new
s-spaces rainbow, we make them monochromatic. Additionally, we enforce configuration compat-
ibility (Definition 7.3). Let k = k4.1(s). Whp the template satisfies Proposition 10.2 for h = k.
Further, given an s-space F 6 Fnq , Chernoff shows that with probability at least 1− exp(−Ωq,ℓ(z))

over the random injections ι1, . . . , ιz, there are at least 2z1/2 many i ∈ [z] so that F 6 Ki and
dimL spanL(ι

−1
i (F )) = dimF . Taking a union bound, whp this property holds for all s-spaces. We

thus condition on such an outcome and treat it as non-random.
LetRinit = supp(∂s,rΦ

+). Let Φ+ ∈ {0, 1}Grq(n,s) be supported on the set {S1, . . . , Sy} with bases
β(1), . . . , β(y) ∈ V s. By the condition in the third bullet, for each t ∈ [y] and Π ∈ Redr×sq the r-space
Rt,Π := spanFq

(Πβ(t)) is in some Gtem,it,Π , the it,Π are distinct for fixed t, and St 6
⋂

Π∈Redr×s
q

Kit,Π .

Let It = {it,Π : Π ∈ Redr×sq }. Additionally, by the condition we assume on the random injections,
there is a set Ct ⊆ [z] of size at least z1/2 which is disjoint from It such that St 6 Ki and
dimL spanL(ι

−1
i (St)) = s for all i ∈ Ct.

LetH be the set of all r-spaces contained in s-spaces of Υ (with Vec(H) = Fkq ) as in Proposition 4.1.
Let F be an arbitrary s-space in Υ with basis β ∈ F s. Then for Π ∈ Redr×sq let FΠ be the unique
s-space in Υ′ intersecting F in RΠ := spanFq

(Πβ). Let F be the set of s-spaces in Υ′ other than the
FΠ. For S ∈ F let xS ∈ Vec(H)s be a basis of S. Finally let {v∗1 , . . . , v

∗
k} be an Fq-basis of Vec(H)

such that v∗j = βj for j ∈ [s] form our basis for F .

For each t ∈ [y] we choose an arbitrary linear injection φt : F → V satisfying φt(β) = β(t).
Let Et := (φt, F,H) be an extension. Additionally, construct ψt : H \ H[F ] → Ct ∪ It ⊆ [z] with
the following property: for Π ∈ Redr×sq and R ∈ Gr(FΠ, r) \ {RΠ} we have ψt(R) = it,Π and
for R ∈ Gr(S, r) with S ∈ F we have ψt(R) = it,S where the it,S ∈ Ct take on distinct values
as S ∈ F varies. Thus all values of ψt are distinct modulo the information of which S ∈ Υ′ an
r-space R ∈ H \H[F ] is contained in. Also, every color class has size at most

[s
r

]

q
. Furthermore,

this is constructed in a way such that if we hypothetically perform a flip of this type transforming
∂s,reSt into an analogous sum, we will obtain monochromatic s-spaces for the terms with positive
coefficients (coming from Υ′). For convenience write it,S = it,Π in the case S = FΠ.

Finally, write bt,Π = bRt,Π
and Πt,Π = ΠRt,Π

and consider a basis xt,Π ∈ Vec(H)s of FΠ such that
Πt,Πxt,Π spans RΠ and furthermore φt(Πt,Πxt,Π) = bt,Π (which trivially can be seen to exist since
Πt,Π ∈ Fr×sq has rank r).

We now run the following process after setting R0 := ∅ and S0 := ∅. The constant C will be
chosen suitably later.

• Let Et := (φt, F,H) be an extension and H′
t be the set of φ∗ ∈ XEt(Gtem) such that (a)

φ∗(R) ∈ Gtem,ψt(R) for all R ∈ H (equivalently, ind(φ∗(R)) = ψt(R)), (b) for every S ∈
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φt(Υ
′) we have dimL spanL(ι

−1
it,S

(S)) = s, (c) for every Π ∈ Redr×sq and S = φ∗(FΠ) and any

Π′ ∈ Redr×sq we have for R = spanFq
(Π′xt,Π) that bφ∗(R) = φ∗(Π′xt,Π) and Πφ∗(R) = Π′, (d)

for every S ∈ φ∗(F) and Π ∈ Redr×sq we have for R = spanFq
(ΠxS) that bφ∗(R) = φ∗(ΠxS)

and Πφ∗(R) = Π, and (e) for all S ∈ Υ′ and i = it,S , we have φ∗(Vec(H)) 6 Ki and
dimL spanL(ι

−1
i (φ∗(Vec(H)))) − dimL spanL(ι

−1
i (φt(F ))) = k − s.

• Let Ht be the set of φ∗ ∈ H′
t such that (i) for all R ∈ H \H[F ], we have φ∗(R) /∈ Rinit∪Rt−1,

(ii) for all S ∈ Υ′ and S′ ∈ St−1, if φ∗(S), S′ ∈ Grq(n, s)[Gtem,i] for some i ∈ [z] then
dimL(spanL(ι

−1
i (φ∗(S))) ∩ spanL(ι

−1
i (S′))) < r, and (iii) for all S ∈ Υ′ and R ∈ Rinit,

if Gr(φ∗(S), r) ∪ {R} ⊆ Gtem,i for some i ∈ [z] then spanL(ι
−1
i (R)) is not contained in

spanL(ι
−1
i (φ∗(S))) unless R = φt(F ∩ S). (We remark that by (a) of the previous bullet,

it suffices to consider i = it,S in (i,iii); additionally, (iii) functions similarly to the role of
applying χ to Rinit in Lemma 11.4.)
• If |Ht| < (τ/z)Cqvn, where v = dimVec(H) − dimF = vEt , we call the process failed, let
φ∗t = φ∗t+1 = · · · = φ∗y := ∗, a special wildcard value, let Rt = · · · = Ry := Rt−1, let
St = · · · = Sy := St−1, and stop the iteration.
• Otherwise, we sample φ∗t ∼ Unif(Ht), let Rt := Rt−1 ∪ φ

∗
t (H \ H[F ]) as a set, let St :=

St−1 ∪ φ
∗
t (Υ

′), and continue.

As an important point, note that in condition (c) above for the definition of H′
t, the case Π′ = Πt,Π

implies R = RΠ 6 F hence φ∗(R) = φt(R) 6 St, so it really is a condition about the base space.
But bφt(R) = bRt,Π

= φt(Πt,Πxt,Π) by definition, and similarly Πφ∗(R) = Πt,Π, so the condition is
actually redundant. Thus, furthermore note that by Proposition 10.2, for all t ∈ [y] we have

|H′
t| ≥ (τ/z)C/2qvn (11.9)

if C is chosen appropriately. To verify Proposition 10.2 is even applicable, we must make sure that
St is in the intersection of various fields Ki coming from the defined coloring function ψt (condition
10.2(a)). For the range elements it,S coming from r-spaces in some S ∈ F this is by definition
of Ct, but for those of the form it,Π for Π ∈ Redr×sq we are using the third bullet point of the
given conditions, which implies St 6

⋂

Π∈Redr×s
q

Kit,Π (this is the reason for the extra Lemma 11.7).

Additionally notice that conditions (a,c,d,e) in the definition of H′
t fit within the framework of

Proposition 10.2, other than the condition on difference of dimensions in (e). Furthermore, that
part of (e) as well as condition (b) have Oℓ,q,s(q(v−1)n) violations: for (e), choose the L-dependence
between v∗s+1, . . . , v

∗
k and {β1, . . . , βs} (after appropriate ι−1φ∗; this nontrivially involves the former

list) which causes the difference in dimensions to collapse and then count choices of v− 1 remaining
free parameters (also, (b) is implied by (e)). A similar argument where we use that L-degeneracies
occur infrequently is performed in the deduction of Proposition 10.2 from Lemma 10.3.

Finally, we verify that 10.2(b) holds. Recall that the sets Ct are also such that dimL spanL(ι
−1
i (St)) =

s for all i ∈ Ct, which implies that every Fq-subspace of St of dimension u will extend to u dimen-
sions over L with respect to such ιi. Thus the condition is easily verified for R ∈ H \H[F ] so that
ψt(R) ∈ Ct. The other possibility is ψt(R) = it,Π for some Π ∈ Redr×sq , in which case we must
have R 6 FΠ hence R ∩ F ⊆ R ∩ FΠ ∩ F 6 R ∩ RΠ (the last inclusion by the second bullet of
Proposition 4.1). But we have Rt,Π ∈ Gtem,it,Π, which means dimL spanL(ι

−1
it,Π

(Rt,Π) = r. Along
with φt(RΠ) = Rt,Π, and a similar argument as above, this completes verification of 10.2(b) and
hence justifies (11.9).

The rest of the argument is now a similar Bernoulli comparison and Chernoff analysis as in the
proof of Lemma 11.4, with modifications due to certain conditions and desired outputs of the process
that are inherently s-dimensional in nature.
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Similarly to the proof of Lemma 11.4, for any F ⊆ Grq(n, r) if X(r)
F = #{(R,R′) ∈ F ×Ry : R ∈

χ(R′)} then

P[X
(r)
F ≥ θ2/3|F|] ≤ exp(−θ|F|). (11.10)

(Specifically, we similarly bound the expected probability that each step includes certain r-spaces
and use Lemmas 3.7 and 3.9.) Now we prove an analogous bound but in an s-dimensional sense.
We will then apply this to show that the process runs to completion whp, and that the necessary
field boundedness holds for the output.

Let F ⊆ Grq(n, s) be a collection of s-spaces. We say that F is unforced if for any r-space
R ∈ supp(∂s,rΦ

+), we have
F ∩ {S ∈ Grq(n, s) : S > R} = ∅, (11.11)

that is, no s-space of F contains any R ∈ supp(∂s,rΦ
+).

Let XF =
∑y

t=1Xt where Xt is the number of choices of S ∈ φ∗t (Υ
′) so that S ∈ F . If

Yt = 1Xt 6=0 we have Xt ≤ qskYt so Y =
∑y

t=1 Yt ≥ q−skX. For S ∈ Grq(n, s) and t ∈ [y] let
HS,t = {φ ∈ H

′
t : S ∈ φ(Υ

′)}. Defining

µt =
∑

S∈F

|HS,t|(z/τ)
Cq−vn

and µ =
∑y

t=1 µt, we can (similarly to the proof of Lemma 11.4) use Lemma 3.9 and Lemma 3.7 to
show

P[XF ≥ θ
2/3q(r−s)n|F|] ≤ exp(−θq(r−s)n|F|) for unforced F , (11.12)

as long as we can prove 2µ ≤ θ3/4q(r−s)n|F|. To establish this, note that for fixed S ∈ F we have
y

∑

t=1

|HS,t| =
r−1
∑

u=0

∑

t∈[y]
dim(S∩φt(F ))=u

|HS,t| ≤
r−1
∑

u=0

(

∑

S0∈Υ′

dim(S0∩F )=u

∑

t∈[y]
φt(S0∩F )6S

#{φ ∈ H′
t : S = φ(S0)}

)

≤
r−1
∑

u=0

Ok,q,s(zθq
(r−u)n) · Oq,s(q

(dimVec(H)−(dimF+s−u))n) ≤ Oq,s(zθq
(r−s+v)n). (11.13)

The equality and first inequality follow since for every φ ∈ HS,t, we have S = φ(S0) for some S0 ∈ Υ′

which intersects F in at most r dimensions by Proposition 4.1, call it u = dim(S0∩F ) ∈ {0, . . . , r},
and φt(S0 ∩ F ) 6 S easily follows. Additionally, the case u = r is ruled out by (11.11): if we have
such a situation then φt(S0∩F ) has dimension r and is inside supp(∂s,rΦ

+), but is contained within
some S ∈ F , violating the unforcedness condition.

The inequality in the second line of (11.13) is proven by seeing there are at most Ok,q,s(1) ·
zθq(r−u)n terms in the inner double sum by counting ways to choose S0 and then using (θ, L)-field
boundedness (hence zθ-boundedness from Lemma 8.2) of ∂s,r{S1, . . . , Sy} to count how many t ∈ [y]

satisfy φt(S0 ∩ F ) 6 S. Then note that #{φ ∈ H′
t : S = φ(S0)} = Oq,s(q

(dimVec(H)−(dimF+s−u))n)
since this is bounded by the number of extensions φ ∈ XEt(G) which map S0 to S (up to some
permutation which has Oq,s(1) choices), and then the remaining number of free dimensions to embed
is dimVec(H)−(dimF +s−u) since dim spanFq

(S0∪F ) = dimF +s−dim(S0∩F ) = dimF +s−u.

Now summing (11.13) over S ∈ F shows that µ ≤ Ok,q,s(1) · zθ(z/τ)
Cq(r−s)n|F|, which demon-

strates the desired inequality 2µ ≤ θ3/4|F| as long as 1/c ≥ 4C + 2 is chosen appropriately (using
θ ≤ (τ/z)1/c). Thus (11.12) indeed holds. Similarly, for arbitrary F ⊆ Grq(n, s) (not necessarily
unforced) we can derive

P[XF ≥ z
2q(r−s)n|F|] ≤ exp(−q(r−s)n|F|). (11.14)

Indeed, note that we sacrifice the ability to save a factor of θ by ruling out the case u = r in the
derivation of (11.13), but otherwise the proof is analogous. (We use just ‖∂s,rΦ+‖∞ ≤ 1.)
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Now we extract the field boundedness of Sy =
⋃y
t=1 φ

∗
t (Υ

′), taking a union bound over appropriate
choices of F using (11.12) and (11.14). Specifically, given an L-space Q∗ ∈ GrL(K, r − 1) and an
index i ∈ [z], we consider all s-spaces S 6 Ki 6 V such that (a) spanL(ι

−1
i (S)) contains Q∗, and (b)

S does not contain any r-space in supp(∂s,rΦ
+). This family has say at most θ2/3qn many s-spaces

from the union of the φ∗t (Υ
′) whp by (11.12) if c is small enough.

Then we additionally consider s-spaces S 6 Ki satisfying (a) and such that (b) fails. By (θ, L)-
field boundedness of ∂s,rΦ+, we see that there are at most say θq(r−u)n choices of R ∈ supp(∂s,rΦ

+)

so that dimL(spanL(ι
−1
i (R)) ∩Q∗) = u ∈ {0, . . . , r− 1}. The number of s-spaces satisfying (a) and

failing (b) with some fixed value u is then at most say z2 · zθq(r−u)n · q(r−s)nq(s−(2r−1−u))n whp: we
use (11.14) applied to the collection F of s-spaces S 6 Ki such that ι−1

i (S) contains Q∗ as well
as ι−1

i (R) for some such R, of which there are at most θq(r−u)n. Summing over u, we obtain a
contribution of at most rθz3qn ≤ θ2/3qn as well if c is small enough.

Summing, we obtain at most 2θ2/3qn ≤ θ1/2qn total s-spaces which contain Q∗ when extended
to L after pulling back with respect to ιi. We only need to take a union bound of size qOs(n) to run
this argument, so indeed whp we have the desired (θ1/2, L)-field boundedness of Sy, as desired.

Thus, in particular when we apply ∂s,reF =
∑

S∈Υ′ ∂s,reS−
∑

S∈Υ\{F} ∂s,reS (using the map φ∗t for
all t ∈ [y]) to the right side of ∂s,rΦ = ∂s,rΦ

++∂s,rΦ
−, we see that we obtain a signed decomposition

(there are no repetitions due to disjointness of the process and Proposition 4.1) where the positive
spaces S1 ⊆ Grq(n, s), which corresponds to everything coming from each φ∗t (Υ

′), satisfy all the
desired properties (as long as the process runs to completion whp, say, which will be shown below).
For instance, the conditions corresponding to configuration compatibility (Definition 7.3) come from
conditions (b), (c), and (d) on H′

t. One nontrivial verification is the final property regarding the
dimension of L intersections: the definition of the process, specifically the second bullet point which
defines Ht, ensures that any violating i ∈ [z] and S1, S2 ∈ S1[Gtem,i] must be introduced at the same
time step t, and the s-spaces introduced at the same time t must satisfy this dimension intersection
property due to condition (e) in the first bullet point of the definition of the process (and since each
s-space in Υ′ is a different color).

Finally, to complete the argument we show that the process runs to completion whp. In the event
it fails at time t ∈ [y], call this Et, we have |H′

t \ Ht| ≥ ((τ/z)C/2 − (τ/z)C )qvn ≥ (τ/z)Cqvn by
(11.9). Furthermore,

H′
t \ Ht ⊆ B2 ∪ B3 ∪

⋃

R∈H\H[F ]

({φ∗ ∈ XEt(G) : φ
∗(R) ∈ Rinit} ∪ {φ

∗ ∈ XEt(G) : φ
∗(R) ∈ χ(Ry)})

where B2 is the set of φ∗ ∈ H′
t failing the condition (ii) from the second bullet point in the definition

of the process above and B3 is the set failing (iii).
Similarly to the proof of Lemma 11.4, using (11.10) we can bound the size of the third set

(the part other than B2 ∪ B3) by Oq,s(θ
2/3qvn) ≤ (τ/z)Cqvn/3, say under an event that holds

whp. Thus it remains to understand embeddings φ∗ ∈ B2 ∪ B3. For φ∗ ∈ B2 \ B3, there exist
S ∈ Υ′, S′ ∈ St−1 ⊆ Sy, and i = it,S ∈ [z], witnessing the failure of (ii). This implies the
existence of an L-space R∗ of dimension r with R∗ 6 spanL(ι

−1
i (φ∗(S))) ∩ spanL(ι

−1
i (S′)). Let

Q∗ := R∗ ∩ spanL(ι
−1
i (φt(F ) ∩Ki)) in this situation and dimL(Q

∗) = u ∈ {0, . . . , r}. We have

Q∗ 6 spanL(ι
−1
i (φt(F ) ∩Ki)), spanL(ι

−1
i (φ∗(S))), spanL(ι

−1
i (S′)).

By (e) of the definition of H′
t, we see that the first two of these spaces have intersection W ∗ :=

spanL(ι
−1
i (φt(F ) ∩ φ

∗(S) ∩Ki)) = spanL(ι
−1
i (φt(F ∩ S))), whose dimension we call d. So u ≤ d as

a consequence of Q∗ 6W ∗.
Now suppose u < r. There are at most r(r + 1)z ways to choose u, d, i, and given u, d, i there

are Oℓ,q,s(1) ways to choose Q∗ since it is inside ι−1
i (φt(F ) ∩ Ki). Then given Q∗, the number of
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choices of S′ ∈ Sy satisfying S′ ∈ Grq(n, s)[Gtem,i] andQ∗ 6 spanL(ι
−1
i (S′)) is at most θ1/2q(r−u)n by

(θ1/2, L)-field boundedness of Sy (which holds whp) and u ≤ r−1. Then after choosing S′ ∈ Sy there
are Oℓ,q,s(1) choices for R∗. There are Oq,s(1) choices for S ∈ Υ′. Now, we know spanL(ι

−1
i (φ∗(S)))

contains R∗ of dimension r and contains W ∗ = spanL(ι
−1
i (φt(F ∩ S))) of dimension d. These L-

spaces R∗,W ∗ both contain Q∗ and in fact intersect precisely in Q∗. Thus the L-span of their union
has dimension r+ d− u. Therefore there are at most q(s−(r+d−u))n choices for φ∗(S) now, and then
at most q(k−(2s−dim(F∩S)))n = q(v−s+dim(F∩S))n choices to complete the embedding. Overall, there
are at most Oℓ,q,s(zθ1/2q(r−u)nq(s−(r+d−u))nq(v−s+dim(F∩S))n) ≤ θ1/3qvn/3 total choices, using that
dim(F ∩S) = d. The fact dim(F ∩S) = d is nontrivial: note that φt(F ∩S) extends to dim(F ∩S)
dimensions over L with respect to any index i ∈ Ct by definition of Ct, and for cases where i = it,Π
we have S = FΠ and φt(F ∩ S) = R with R ∈ Gtem,it,Π , so the L-extension with respect to it,Π
again has full dimension.

Now suppose u = r. This means Q∗ = R∗ has L-dimension r. Recalling that Q∗ 6 W ∗, we see
that Q∗ = W ∗ and dim(F ∩ S) = r hence spanL(ι

−1
i (φt(F ∩ S))) 6 spanL(ι

−1
i (S′)). But then we

deduce S = FΠ, i = it,Π, and φt(F ∩ S) = R for R ∈ Gtem,i ∩ Rinit. This condition then violates
(iii) regarding possible interactions between S′ ∈ φ∗(Υ′) for φ∗ ∈ H′

u for all u ∈ [y] and Rinit. So
there are no choices in this scenario, recalling we were considering φ∗ ∈ B2 \ B3.

Finally, consider φ∗ ∈ B3. Let S ∈ Υ′ and R ∈ Rinit ∩ Gtem,i be the violators, and let R∗ =

spanL(ι
−1
i (R)) and Q∗ = R∗ ∩ spanL(ι

−1
i (φt(F )∩Ki)) with dimL(Q

∗) = u. By violation of (iii), we
have spanL(ι

−1
i (R)) 6 spanL(ι

−1
i (φ∗(S))). A similar argument to above, but using the deterministic

fact that the r-dimensional q-system Rinit is (θ, L)-field bounded (instead of the random event that
Sy is (θ1/2, L)-field bounded) shows that we have a contribution of at most θ1/3qvn/3 possibilities,
unless u = r. In the case u = r we have Q∗ = R∗ and then we deduce

spanL(ι
−1
i (R)) = R∗ = Q∗ = R∗ ∩ spanL(ι

−1
i (φt(F ) ∩Ki))

6 spanL(ι
−1
i (φt(F ) ∩Ki)) ∩ spanL(ι

−1
i (φ∗(S))),

the last containment from the above violation of (iii). Recall

spanL(ι
−1
i (φt(F ) ∩Ki)) ∩ spanL(ι

−1
i (φ∗(S))) = spanL(ι

−1
i (φt(F ∩ S)))

due to (e) in the definition of the process (see e.g. the discussion involving W ∗ above). Thus
spanL(ι

−1
i (R)) 6 spanL(ι

−1
i (φt(F ∩ S))). This means dim(F ∩ S) = r so say S = FΠ and then we

have for R′ = φt(F ∩ S) ∈ Rinit that spanL(ι
−1
i (R)) 6 spanL(ι

−1
i (R′)). Furthermore, the violation

of (iii) guarantees that R′ 6= R and R,R′ ∈ Gr(φ∗(S), r)∪{R} ⊆ Gtem,i. That is, R,R′ are distinct,
in the same part of the template, and satisfy spanL(ι

−1
i (R)) 6 spanL(ι

−1
i (R′)). Thus, this violates

field disjointness of ∂s,rΦ+.
Overall, this shows |H′

t \ Ht| ≤ θ1/3qvn given the event that Sy is (θ1/2, L)-field bounded. For c
chosen small enough so that 1/c ≥ 3C + 1, this precludes Et which implies |H′

t \ Ht| ≥ (τ/z)Cqvn

as shown earlier. That is, under (θ1/2, L)-field boundedness of Sy (which holds whp) we have that
the process runs to completion. We are done. �

12. Final proof and counting

Finally, we put together the pieces to demonstrate Theorem 1.2.

Proof of Theorem 1.2. We are given s > r ≥ 1 and n satisfying various divisibility conditions from
Theorem 1.2 (see (3.1)). We will ultimately choose parameters in the following way:

q, s≪ d≪ ℓ≪ 1/η ≪ 1/ζ ≪ n.
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Consider the setup Section 3.5 and let J =
∑

R∈Gr(V,r) eR (by abuse we can think of J as just

being the r-system G = Gr(V, r)). By Theorem 3.6 we have J ∈ L = ∂s,rZ
Grq(n,s) due to the given

divisibility constraints on n. Choose d large in terms of s, and then ℓ large in terms of d, s so
that various lemmas go through and so that there exist some N = Ntem, x

∗ = x∗abs as defined in
Section 3.5 which are appropriately jointly generic (this follows similarly to the start of the proof
of Lemma 3.12). Also, let τ = q−ζn (τ is taken to be exponentially small in n specifically in order
to prove Corollary 1.3). In particular, by Lemma 6.3 we obtain Stem, an s-space covering of the
template r-spaces by Definition 6.2.

First apply Proposition 9.3 to obtain η depending only on q, s (not ζ) and to obtain Sapprox
where Φ0 = Stem ∪ Sapprox covers some collection of r-spaces exactly once and leaves a remainder
J1 = J − ∂s,rΦ0 ∈ {0, 1}

Grq(n,r) which is q−ηn-bounded with supp(J1) ∩Gtem = ∅.
Next apply Lemma 11.5 on R = J1 and θ = q−ηn. We obtain Φ1 ∈ {0, 1}

Grq(n,s) which covers
some collection of r-spaces exactly once, including all of J1, and the remainder J2 = ∂s,rΦ1 − J1
has support within Gtem and is (q−ηn/2, L)-field bounded. This in particular shows that J2 =
∂s,r(Φ0 + Φ1)− J is a set of r-spaces, which we think of as the “spill”, which we additionally know
is field disjoint.

Now apply Lemma 11.7 to R = J2 and θ = q−ηn/2, to obtain some Φ2 with J2 = ∂s,rΦ2 and
satisfying various additional properties including that ∂s,rΦ

±
2 are field disjoint and (q−ηn/16, L)-

field bounded. Then apply Proposition 11.8 to Φ = Φ2 and θ = q−ηn/16 (which is valid due to
aforementioned additional properties) to find Φ3,Φ4 ∈ {0, 1}

Grq(n,s) (coming from S1,S2) with
∂s,r(Φ3 − Φ4) = ∂s,rΦ2 = J2 and such that:

• ‖∂s,rΦ3‖∞ ≤ 1;
• Φ3 is (q−ηn/32, L)-field bounded;
• For each S ∈ supp(Φ3) there is i ∈ [z] such that (a) dimL spanL(ι

−1
i (S)) = s and (b) there

is an Fq-basis b ∈ Ks
i of S so that for every Π ∈ Redr×sq , we have for R = spanFq

(Πb) that
ΠR = Π, bR = Πb, and R ∈ Gtem,i;
• For i ∈ [z] and distinct S1, S2 ∈ S1[Gtem,i], dimL(spanL(ι

−1
i (S1)) ∩ spanL(ι

−1
i (S2))) < r.

Finally by Proposition 8.3 applied to Φ = Φ3 and θ = q−ηn/32 (note θ is much smaller than τ) we
can find Φ5,Φ6 ∈ {0, 1}

Grq(n,s) with supp(Φ6) ⊆ Stem and ∂s,rΦ3 = ∂s,r(Φ6 − Φ5). Here condition
8.3(c) comes directly from the fourth bullet point above. Putting everything together, we have

J = ∂s,rΦ0 + J1 = ∂s,r(Φ0 +Φ1)− J2

= ∂s,r(Φ0 +Φ1)− ∂s,r(Φ3 − Φ4) = ∂s,r(Φ0 +Φ1 +Φ4)− ∂s,rΦ3

= ∂s,r(Φ0 +Φ1 +Φ4 +Φ5 − Φ6) = ∂s,r((Φ0 − Φ6) + Φ1 +Φ4 +Φ5).

Finally, Φ0 contains Stem and Φ6 is contained in Stem so each of Φ0 − Φ6,Φ1,Φ4,Φ5 ∈ Z
Grq(n,s)
≥0 .

This implies that they indeed form a (n, s, r)q-design and we are done. �

We briefly explain how to extract the counting result Corollary 1.3 from the proof given.

Proof sketch of Corollary 1.3. For the lower bound, consider the proof of Theorem 1.2. Note that
after planting the template and applying Lemma 9.1, we applied results of Ehard, Glock, and Joos
[9] to extract a large approximate covering Sapprox and then proved that given such a suitably
bounded hypergraph matching that the remainder can be completed whp. The completed system,
furthermore, contained Sapprox as a subset (the only s-spaces that are potentially deleted in our
scheme are template s-spaces).
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In order to extract a suitable counting result, one can (e.g.) use a recent result of Glock, Joos,
Kim, Kühn, and Lichev [14, Theorem 3.5] which proves there are at least

(

(1− q−Ω(n))

[n−r
s−r

]

q

exp(
[s
r

]

q
− 1)

)[nr]q/[
s
r]q

matchings with properties as in Proposition 9.3. Our result then proves that almost all such match-
ings can be extended in an least 1 valid manner, and it is not hard to see that any final (n, s, r)q-
design thus constructed cannot be overcounted significantly: it can arise from at most

∑

j≤y

(

x
j

)

choices of Sapprox, where x =
[n
r

]

q
/
[s
r

]

q
and y ≤ q−Ω(n)

[n
r

]

q
.

For the upper bound, recall that an (n, s, r)q-design can also be thought of as a hypergraph match-
ing with vertex set Gr(V, r), where each S ∈ Gr(V, s) is thought of as a

[s
r

]

q
-uniform edge consisting

of its constituent r-subspaces. This is a regular hypergraph of degree d =
[n−r
s−r

]

q
= Θq,s(q

(s−r)n) and

has a codegree bound of q(s−r+1)n since any two distinct r-spaces have at most q(s−r−1)n extensions
to an s-space. The desired upper bound then follows directly from [28, Theorem 3.1]. (The q−Ω(n)

savings in the logarithm of the upper bound is an immediate consequence of making the proof in
[28] effective, so we omit the routine modification.) �

Finally, we sketch the necessary modifications in order to prove the case with general λ.

Proof sketch of Theorem 1.4. Let J = λ
∑

R∈Gr(V,r) eR. We define the template Stem exactly as in
the proof of Theorem 1.2. Note that the set of s-spaces within the template cover every r-space in
supp(∂s,rStem) exactly once.

The crucial difference when λ > 1 is that we now cover each r-space within supp(∂s,rStem) an
additional λ−1 times. In particular, we order the r-spaces in supp(∂s,rStem) and extend each r-space
R to an s-space S such that the remaining r-spaces in Gr(S, r) \ {R} are not within supp(∂s,rStem)
and are disjoint from the r-spaces used so far. This process is easily seen to run to completion via
an analysis completely analogous to Lemma 11.4 noting that the template itself is appropriately
bounded and each r-space has at least Ω(q(s−r)n) extensions. Let the set of s-spaces chosen at this
stage be denoted as S ′tem and notice that

J − ∂s,r(Stem ∪ S
′
tem) ∈ {λ− 1, λ}Gr(V,r)\Gtem .

Furthermore one can prove that for each (r−1)-space all but an η-fraction of extensions to an r-space
have coefficient λ in J −∂s,r(Stem ∪S ′tem), where η is some polynomial growth function of τ . Let J∗

1
be the subset of Gr(V, r)\Gtem where J−∂s,r(Stem∪S ′tem) has coefficient λ and J∗

2 = Gr(V, r)\Gtem.
The idea is to approximately cover J∗

2 a total of λ− 1 times and approximately cover J∗
1 one time.

However, these covers must also be disjoint.
We now perform this approximate covering. In order to do so, one can regularize the set of

s-spaces supported on J∗
1 and J∗

2 , respectively, by an easy alteration of the proof of Lemma 9.1. We
then apply the proof of Proposition 9.3 to J∗

1 such that the remainder is appropriately bounded. We
then consider λ− 1 copies of J∗

2 . Given what we have done to approximately cover the first j copies
of J∗

2 for some j ∈ {0, . . . , λ − 2}, we remove all s-spaces which have been used in approximately
covering J∗

1 as well as the previous copies of J∗
2 . Notice that the set of remaining s-spaces are still

appropriately regular. Again applying the proof of Proposition 9.3, we can ultimately find a set of
s-spaces Sapprox such that Φ0 = Stem ∪ S

′
tem ∪ Sapprox has the property that J1 = J − ∂s,r(Φ0) is

appropriately bounded and such that it is supported outside Gtem.
At this stage we cover down the remaining r-spaces (with appropriately multiplicity) in J1 into

the template in a disjoint manner and such that the spillover in the template is field bounded and
field disjoint. This follows exactly as in Lemma 11.5; this gives a set of s-spaces Φ2 such that
J2 = ∂s,rΦ2 − J1 ∈ {0, 1}

Gtem and is appropriately field-bounded and field-disjoint. At this point,
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the proof is identical to that of Theorem 1.2 and in particular we can find a decomposition of J2
into signed s-cliques Φ5 and Φ6 such that J2 = ∂s,r(Φ6 − Φ5) and Φ5,Φ6 ∈ {0, 1}

Grq(n,s) with
supp(Φ6) ⊆ Stem. The desired decomposition is then (Φ0 \ Φ6) ∪Φ2 ∪Φ5.

To see that this decomposition does not use a given s-space more than once, notice that Φ5,Stem
have all constituent r-spaces in Gtem and these r-spaces are disjoint (so they are distinct), each
s-space in S ′tem has exactly 1 r-space in Gtem (and they are distinct by construction), each s-space
in Sapprox has all r-spaces outside Gtem (and they are distinct by construction), and all s-spaces in
Φ2 have all but 1 r-space in Gtem. Thus we have disjointness within these groups, and counting
how many r-spaces lie in Gtem implies the different pieces use disjoint groups of s-spaces since
[s
r

]

q
≥

[2
1

]

2
= 3 so that

[s
r

]

q
− 1 > 1. �
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