
ar
X

iv
:2

20
6.

04
54

9v
1

 [
cs

.D
S]

 9
 J

un
 2

02
2

SPENCER’S THEOREM IN NEARLY INPUT-SPARSITY TIME

VISHESH JAIN, ASHWIN SAH, AND MEHTAAB SAWHNEY

Abstract. A celebrated theorem of Spencer states that for every set system S1, . . . , Sm ⊆ [n],

there is a coloring of the ground set with {±1} with discrepancy O(
√

n log(m/n+ 2)). We provide

an algorithm to find such a coloring in near input-sparsity time Õ(n+
∑m

i=1 |Si|). A key ingredient
in our work, which may be of independent interest, is a novel width reduction technique for solving
linear programs, not of covering/packing type, in near input-sparsity time using the multiplicative
weights update method.

1. Introduction

The celebrated ‘Six standard deviations suffice’ theorem of Spencer [22] says that there is a
universal constant C > 0 1 such that given a set system S1, . . . , Sm ⊆ [n] := {1, . . . , n}, there exists
a bi-coloring x := (x1, . . . , xn) ∈ {±1}n for which

max
i∈[m]

∣∣∣∣∣∣

∑

j∈Si

xj

∣∣∣∣∣∣
≤ C

√
n log(m/n + 2). (1.1)

The strength of this result is most readily apparent when m = n, in which case the right hand side
of (1.1) is O(

√
n) 2 whereas a basic application of the probabilistic method only gives the weaker

estimate O(
√
n log n).

Spencer’s proof of this result was non-algorithmic, based on the partial coloring technique of
Beck [8]. A different (but still, non-algorithmic) proof, based on convex geometry, was obtained
independently by Gluskin [16]. The problem of finding an x ∈ {±1}n, achieving the guarantee of
(1.1), in (probabilistic) polynomial time was first solved in a breakthrough work of Bansal [7], by
using a random walk guided by the solution to a semi-definite program (SDP) 3. A much simpler
random-walk based approach was later found by Lovett and Meka [20]. Subsequently, Rothvoss
[21] and Eldan and Singh [14] devised randomized polynomial-time algorithms, based on convex
geometry, which are also applicable to a generalization of Spencer’s result due to Giannopoulos [15].
Without resorting to fast matrix multiplication (and restricting ourselves here to m = Θ(n) for
ease of presentation), the fastest of these algorithms are those of Lovett–Meka and Eldan–Singh,

both running in time Õ(n3), where Õ hides polylogarithmic factors in n. Allowing fast matrix
multiplication, the running time of the algorithm of Eldan–Singh is dominated by the time to solve
(to sufficient accuracy) a linear program with n variables and Θ(n) constraints, for which the best-

known bound is Õ(nω) (where ω ≈ 2.37 is the current best matrix-multiplication exponent [2]) and

Õ(n2+1/18) even in the most optimistic case that the matrix-multiplication exponent is 2 and the
dual matrix-multiplication exponent is 1 [17].

Sah and Sawhney were supported by NSF Graduate Research Fellowship Program DGE-1745302. Sah was sup-
ported by the PD Soros Fellowship.

1In our notation, Spencer showed that C < 6/
√
log 3 suffices (when m = n), hence the name of the result.

2Hadamard set systems show that this is optimal up to the implicit constant, see [3, Theorem 13.4.1].
3Bansal’s algorithm admits a derandomization. Another deterministic algorithm for Spencer’s theorem was pro-

vided by Levy, Ramadas, and Rothvoss [18].

1

http://arxiv.org/abs/2206.04549v1

In the Workshop on Discrepancy Theory and Integer Programming in 2018 [13], devising discrep-
ancy minimization algorithms running in near input-sparsity time was suggested as one of the main
directions for future research, noting that such algorithms are not known for any of the major results
in discrepancy theory, including Spencer’s theorem, the Beck–Fiala theorem [9], or Banaszczyk’s
theorem [6]. In fact, all known algorithms for these problems (which produce a coloring with dis-
crepancy at most a universal constant factor more than the best-known existential bounds) employ
linear algebraic primitives such as solving a system of linear equations, which suffer from the matrix
multiplication bottleneck. We note here that there are recent online algorithms for discrepancy
minimization [4,19] which do not use any such operations and run in input-sparsity time. However,
these algorithms are only guaranteed to produce a coloring matching Banaszczyk’s bound up to a
polylogarithmic (as opposed to constant) factor. Moreover, in the setting of Spencer’s theorem, Ba-
naszczyk’s bound itself only corresponds to a discrepancy of O(

√
n log n), which is already attained

with high probability by a uniformly random coloring.
In this work, we initiate the study of optimal discrepancy minimization algorithms running in

near input-sparsity time, by providing such an algorithm for Spencer’s theorem.

Theorem 1.1. There exists an absolute constant C1.1 > 0 and a randomized algorithm Coloring
such that the following holds. On input a matrix A ∈ R

m×n such that ‖A‖1→∞ ≤ 1, Coloring(A)

runs in time Õ(nnz(A) + n) and with probability at least 1/2, outputs a vector v ∈ {±1}n such that

‖Av‖∞ ≤ C1.1
√

n log(m/n+ 2).

Remark. To see that this recovers (1.1), we let the ith row of A be the indicator vector of Si and
note that ‖A‖1→∞ = maxi,j |ai,j | ≤ 1.

A pleasant feature of our algorithm (see Section 1.1 for an overview) is that it relies not on a new
approach to proving Spencer’s theorem, but rather on solving the linear-program of Eldan–Singh in
near-input sparsity time by leveraging certain key structural aspects, thereby raising the possibility
that the linear algebraic primitives involved in other algorithms for discrepancy minimization may
also be implemented much more efficiently. Moreover, during the course of our algorithm, we
develop a novel method for solving a certain class of linear-programs (to polylogarithmic relative
accuracy) in near-input sparsity time, which may be of independent interest as a rare instance of
“width reduction” for linear-programs not of covering/packing type.

1.1. Proof outline. We use the notation in (1.1). For simplicity, we consider the case m = n and∑n
i=1 |Si| = Θ(n2) which already contains most of the ideas; later, we will sketch the modifications

needed for the general case. For C > 0, we let

ΓC :=



x ∈ [−1, 1]n : max

i∈[m]

∣∣∣∣∣∣

∑

j∈Si

xj

∣∣∣∣∣∣
≤ C
√
n



 .

By a standard reduction (see Theorem 2.2), it suffices to devise an algorithm which runs in time

Õ(n2) and finds x ∈ ΓC such that x has at least n/C coordinates which are ±1.
Our starting point for doing this is the aforementioned theorem of Eldan–Singh [14] which shows

that there is an absolute constant C > 0 such that with high probability over the choice of a random
Gaussian vector g ∼ N (0, 1)⊗n,

x∗ := arg max
x∈ΓC

〈g, x〉

has n/C coordinates which are ±1. In particular, we can a find a point with the properties we want
by solving the above linear program. In fact, a slight modification of the argument in [21, Section 3]
shows that it suffices to solve the linear program to within relative accuracy 1/poly(n) and then

2

randomly round the approximate maximizer. However, solving the linear program to such small
relative error forces us to use high-precision methods for solving linear programs, such as cutting-
plane or interior-point methods, for which the matrix-multiplication bottleneck seems rather hard
to circumvent. Instead, we rely on first-order optimization methods.

Stability of the linear program: In order to use first-order methods in time Õ(n2), we need
to show that solving the linear program to within 1/poly(log n) relative accuracy (and then ran-
domly rounding the approximate solution) suffices. More concretely, we show (Proposition 2.3)
that all points achieving at least a (1 − c1/ log n)-factor of the optimum have Ω(n) coordinates
with absolute value at least 1− c2/ log n; these coordinates can then be randomly rounded to have
absolute value 1, while only incurring additional discrepancy O(

√
n). Our proof of this shares some

similarities to [14, 21], but ultimately relies on a different phenomenon: we use a supersaturation
version of Spencer’s theorem due to Spencer [22] as well as Gaussian concentration for Lipschitz

functions to show (Lemma 3.4) that the expected value of the linear program is (
√

2/π − δC)n,
where δC → 0 as n → ∞, which further enables us to show that the “derivative” of the map
C 7→ E[maxx∈ΓC

〈g, x〉] is sufficiently small, in a suitably averaged sense, for sufficiently large C
(Corollary 3.5). This gives us the desired conclusion since, for sufficiently large C, if there were a
point within at least a (1 − c1/ log n)-factor of E[maxx∈ΓC

〈g, x〉] with only sublinear coordinates
with absolute value at least 1− c2/ log n, then it turns out we could find a point x′ ∈ ΓC(1+c2/ logn)

with 〈g, x′〉−E[maxx∈ΓC(1+c2/ log n)
〈g, x〉] = Ω̃(n). However, by Gaussian concentration, this can only

happen with probability at most exp(−Ω̃(n)) in the choice of g.

The Multiplicative Weights Update (MWU) framework: Our task is now reduced to solving
the linear program, which we rewrite in a more convenient form as a feasibility/search problem: for
given C > 0, find x such that

x ∈ [−1, 1]n

−〈g/√n, x〉 ≤ −OPTC

Ax ≤ C
√
n · 1, (1.2)

where OPTC := maxx∈ΓC
〈g, x〉/√n 4 and A ∈ R

2n×n with rows A2i := 1Si , A2i+1 := −1Si .
In fact, by the stability of the linear program, it suffices to find x ∈ [−1, 1]n which satisfies the
remaining inequalities up to an additive term of order

√
n/ log n on the right hand side. By the

usual multiplicative weights update method for solving linear programs (see, e.g., [5]), this can
be done using iterations consisting of solving a single linear inequality over the unit cube: find
x′ ∈ [−1, 1]n s.t.

−ρ0〈g/
√
n, x′〉+

2n∑

i=1

ρi〈Ai, x
′〉 ≤ −ρ0OPTC +(1− ρ0)C

√
n+
√
n/ log n, (1.3)

where ρ0, ρ1, . . . , ρ2n is a given probability distribution on [2n + 1] (corresponding to the “weights
of the experts” in the MWU framework). Note that such an x, if it exists, can be found in time

O(n2) using a greedy coordinate-by-coordinate strategy. Therefore, if Õ(1) iterations of MWU were
sufficient, then we would be done

4We do not know OPTC a priori ; however, by using a standard binary search procedure, we may assume access
to a sufficiently good approximation, and we will ignore the distinction in this sketch.

3

The number of iterations required by MWU to give a solution with the required accuracy is

Õ(w2/n), where w is the “width” of the procedure measuring the maximum violation of any con-
straint by the intermediate solutions x′. In our case, it is easy to see that

w = O(
√
n) + max

x′
〈g/√n, x′〉+max

x′
max
i∈[2n]

|〈Ai, x
′〉| = O(

√
n) + max

x′
max
i∈[2n]

|〈Ai, x
′〉|,

where x′ ranges over the solutions to the single linear inequality output by different iterations of
MWU and where we have used that maxx′∈[−1,1]n |〈g/

√
n, x′〉| = O(

√
n) as long as ‖g‖2 = O(

√
n),

which holds except with exponentially small probability over the choice of g. Therefore, if it were
the case that

max
x′

max
i∈[2n]

|〈Ai, x
′〉| = Õ(

√
n),

then Õ(w2/n) = Õ(1), as required. Unfortunately, with the greedy coordinate-by-coordinate strat-
egy for solving the single linear inequality on the cube, the width could potentially be of order n, so

that Õ(w2/n) = Õ(n) and we get a total running time of Õ(n3), as for previously known algorithms.

Width reduction: To overcome this obstacle, we develop a novel “width reduction” technique (see

the proof that Proposition 4.2 implies Proposition 4.1), which guarantees that the width is Õ(1)

while blowing up the cost of each iteration by a factor of at most Õ(1). In the optimization literature,
width reduction techniques have been famously used to solve non-negative linear programs in near
input-sparsity time (see, e.g., [1, Table 1]). However, our linear program is not of this form and
our technique is completely different. In each iteration, instead of considering the simple linear
inequality mentioned earlier, consider the following convex program: find x′ ∈ [−1, 1]n minimizing

−ρ0〈g/
√
n, x′〉+

2n∑

i=1

ρi〈Ai, x
′〉+ 1

poly(log n)
‖Ax′‖∞,

possibly up to an additive error of
√
n/(2 log n). This program has a few crucial properties:

• By the feasibility of (1.2), it follows that the optimum value is at most the right hand side
of (1.3). Let x′ denote the (approximate) solution returned by the convex program. If

‖Ax′‖∞ = Õ(
√
n), then the point x′ is a solution to (1.3) with width Õ(

√
n), which suffices

for our purpose.
• By testing at x′ = 0, we see that the optimum value is always non-positive. In particular,

any minimizer x′ ∈ [−1, 1]n satisfies

2n∑

i=1

ρi〈Ai, x
′〉+ 1

poly(log n)
‖Ax′‖∞ ≤ ‖g‖2.

Therefore, assuming ‖g‖2 = O(
√
n), if the minimizer x′ satisfies ‖Ax′‖∞ ≫

√
n poly(log n)

then it must be that
2n∑

i=1

ρi〈Ai, x
′〉 ≪ −√n poly(log n),

in which case x′′ = Õ(x′/‖Ax′‖∞) is readily seen to satisfy (1.3) with width Õ(1).
• The program can be written as a linear min-max program (or ℓ∞–ℓ1 matrix game):

min
x′∈[−1,1]n

max
y∈∆2n+1

y0ρ0

(
〈g/√n, x′〉+

2n∑

i=1

ρi〈Ai, x
′〉
)

+

2n∑

i=1

yi〈Ai, x
′〉/poly(log n),

where ∆2n+1 ⊂ R
2n+1 denotes the unit simplex consisting of probability distributions on

[2n + 1], which one can try to solve using a saddle-point mirror descent scheme. At this
4

point, it is natural to think that the correct geometry on [−1, 1]n is given by the ∞-norm,

so that one runs into the usual problem of the lack of an Ω̃(1)-strongly convex mirror map
on [−1, 1]n. However, we can take advantage of the fact that ‖Ai‖2 = O(

√
n) in Spencer’s

problem (and that projecting onto [−1, 1]n with respect to the Euclidean norm is easy) by
viewing [−1, 1]n as a subset of the ℓ2 ball of radius

√
n and using the sublinear primal-dual

framework of Clarkson, Hazan, and Woodruff [12] to show that the linear min-max program

can indeed be solved to desired accuracy in time Õ(n2) (Proposition 5.1).

Running in near input-sparsity time: So far, we have assumed that m = n and
∑n

i=1 |Si| =
Õ(n2). The same discussion extends to handle the case of general m ≤ n2 5 under the additional as-

sumption that the set system is “dense” i.e.
∑m

i=1 |Si| = Õ(mn). To remove the density assumption,
we require a few additional ingredients.

• First, we isolate variables which appear in at most n/poly(log n) sets and color them using
the input-sparsity time online algorithm for Banaszcyzk’s theorem due to Alweiss, Liu, and
Sawhney [4] (Appendix A). As mentioned earlier, this algorithm loses a polylogarithmic
factor in the discrepancy guarantee, compared to Banaszczyk’s theorem. However, since
we are coloring only those variables which are in at most n/poly(log n) sets, such a loss is
acceptable.
• At this point, each of the n1 remaining variables appears in at least n/poly(log n) sets and

at most m sets. Once again, we may assume that m ≤ n2
1, else a uniformly random coloring

suffices. Let the total number of non-zero entries in this restricted incidence matrix be N ,
so that n1n/poly(log n) ≤ N ≤ n1m. We isolate the at most n1/ log n variables which are
present in at least (log n) · N/n1 sets and color them uniformly at random. Note that a
uniformly random coloring loses a factor of

√
log n1 compared to Spencer’s bound, but this

again acceptable, since we are only coloring at most n1/ log n variables.
• Finally, all the remaining variables have the property of being present in at most k =
(log n) · N/n1 sets each and a careful implementation of [12] using a suitable (but fairly
simple) data structure shows that the linear min-max program, restricted to such variables,

can be solved in time Õ(kn1 + n2
1) = Õ(N) = Õ(

∑m
i=1 |Si|), as desired.

2. Preliminary reductions

In this section, we formally record a couple of preliminary reductions, which allow us to deduce
Theorem 1.1 from a similar statement about appropriate ‘partial colorings’ for input matrices A

with Ω̃(n2) non-zero entries.
First, by using an input-sparsity time online algorithm for the Komlós conjecture (with polylog-

arithmic losses) due to Alweiss, Liu, and the third author [4] (with an alternate proof by Liu and
the last two authors [19]) on those variables which appear in O(n/(log n)2) sets, it suffices to prove
Theorem 1.1 with an extra additive n2 in the running time.

Theorem 2.1. There exists an absolute constant C2.1 > 0 and a randomized algorithm Dense-Coloring
such that the following holds. On input a matrix A ∈ R

m×n such that ‖A‖1→∞ ≤ 1, Dense-Coloring(A)

runs in time Õ(nnz(A)+n2) and with probability at least 1/2, outputs a vector v ∈ {±1}n such that

‖Av‖∞ ≤ C2.1
√

n log(m/n+ 2).

The proof that Theorem 2.1 implies Theorem 1.1 is presented in Appendix A.
Next, in order to prove Theorem 2.1, it suffices to prove the following statement about colorings

valued in [−1, 1]n with linearly many coordinates colored by ±1.
5If m ≥ n2, then a uniformly random coloring succeeds with high probability.

5

Theorem 2.2. There exists an absolute constant C2.2 > 0 and a randomized algorithm Partial-Coloring
such that the following holds. On input

• a diagonal matrix Λ ∈ R
n×n with ‖Λ‖1→∞ ≤ 1, and

• a matrix A ∈ R
m×n with ‖A‖1→∞ ≤ 1,

Partial-Coloring(A,Λ) runs in time Õ(nnz(A)+n2) and with probability at least 1/2 outputs a vector
v ∈ [−1, 1]n such that

• ∑i∈[n] 1|vi|=1 ≥ C−1
2.2 · n, and

• ‖AΛv‖∞ ≤ C2.2
√

n log(m/n+ 2).

The deduction of Theorem 2.1 from Theorem 2.2 is, by now, standard, and essentially identical
to that in Rothvoss [21]; we include the details in Appendix A for the sake of completeness.

Theorem 2.2 follows from the following pair of propositions.

Proposition 2.3. There exist absolute constants C2.3, η2.3 > 0 such that the following holds.
Given A ∈ R

m×n such that ‖A‖1→∞ ≤ 1, independently sample g ∼ N (0, 1)⊗n and CAlg ∼
Unif([C2.3, 2C2.3]), and let

ΓA,CAlg
:= {x ∈ R

n : ‖Ax‖∞ ≤ CAlg

√
n log(m/n + 2) ∧ ‖x‖∞ ≤ 1}.

Then the following hold:

• with probability at least 1− exp(−Ω(n)), we have that

‖g‖2 ≤ 2
√
n,

• with probability at least 4/5, for any x ∈ ΓA,CAlg
such that

〈g, x〉/√n ≥ sup
y∈ΓA,CAlg

〈g, y〉/√n− εη2.3
√
n,

we have that ∑

j∈[n]
1|xj |≥1−ε ≥ η2.3n,

where ε = 1/ log n.

Proposition 2.4. For any C ≤ √log n/3 and n ≥ 100, there exists a randomized algorithm Solve
such that the following holds. On input

• a matrix A ∈ R
m×n with m ≤ n2, ‖A‖1→∞ ≤ 1, and maxi∈[n] | supp(Aei)| ≤ k, and

• a vector v ∈ R
n such that ‖v‖2 ≤ 2

√
n,

Solve(A, v) runs in time Õ(kn+ n2) and with probability at least 99/100, outputs

z ∈ ΓA,C := {x : ‖x‖∞ ≤ 1 ∧ ‖Ax‖∞ ≤ C
√
n log(m/n + 2)}

such that

〈v, z〉/√n ≥ sup
y∈ΓA,C

〈v, y〉/√n− ε
√
n,

where ε = 1/(log n)2.

Remark. Since 0 ∈ ΓA,C ⊆ {y : ‖y‖2 ≤
√
n}, we have

0 ≤ sup
y∈ΓA,C

〈v, y〉/√n ≤ sup
‖y‖2≤

√
n

〈v, y〉/√n ≤ 2
√
n. (2.1)

We conclude this section by showing how to deduce Theorem 2.2 from the above propositions.
6

Proof of Theorem 2.2. By replacing A by AΛ (which can be computed in time O(nnz(A) + n) and
satisfies the same guarantee ‖AΛ‖1→∞ ≤ 1), it suffices to consider the case when Λ = In. We
may also assume that m ≤ n2 since if m > n2, a direct application of Bernstein’s concentration
inequality and the union bound shows that a uniformly random assignment v ∼ {±1}n satisfies the
conclusion of Theorem 2.2 with high probability.

Now, given A ∈ R
m×n with ‖A‖1→∞ ≤ 1 and Λ = In, define

CHeavy := {i : supp(Aei) ≥ (log n) nnz(A)/n}.
We decompose A into A1 and A2 with columns indexed by CHeavy and [n] \ CHeavy respectively.

Note that A1 ∈ R
m×CHeavy , and by Markov’s inequality, |CHeavy| ≤ n/ log n. Therefore, by

Bernstein’s inequality and a union bound, a uniformly random v1 ∈ {±1}CHeavy satisfies ‖A1v1‖∞ ≤
C
√
n with probability at least 9/10, for a sufficiently large absolute constant C > 0.

Thus it suffices to find a suitable coloring for A2 ∈ R
m×([n]\CHeavy). By Propositions 2.3 and 2.4,

in time Õ(n · ((log n) nnz(A)/n) + n2) = Õ(nnz(A) + n2) and with probability at least 3/4, we can

find v′2 ∈ [−1, 1][n]\CHeavy such that

• ‖A2v
′
2‖∞ ≤ 2C2.3

√
n log(2m/n+ 2), and

• T := {j : |(v′2)j | ≥ 1− 2/ log n} satisfies |T | ≥ η2.3n/2.

Let v2 be the random vector obtained from v′2 by randomly rounding each coordinate in T
independently to {±1} in a manner such that E[(v2)j] = (v′2)j for all j ∈ [T]. Then, by Bernstein’s
inequality and the union bound, it follows that with high probability,

• ‖A2v2‖∞ ≤ 4C2.3
√
n log(2m/n+ 2), and

• T := {j : |(v2)j | = 1} satisfies |T | ≥ η2.3n/4,

so that v = (v1, v2) can be obtained in time Õ(nnz(A) + n2), and with probability at least 1/2,
satisfies the conclusion of Theorem 2.2. �

3. Stability of the linear program

The goal of this section is to prove Proposition 2.3, which states that the linear program of Eldan
and Singh [14] is logarithmically stable, in the sense that all points with objective value within a
(1 − c1/ log n)-factor of the optimum have linearly many coordinates with absolute value at least
1− c2/ log n.

As in the statement of the lemma, fix a matrix A ∈ R
m×n such that ‖A‖1→∞ ≤ 1, and for C > 0,

define

ΓA,C := {x ∈ R
n : ‖Ax‖∞ ≤ C

√
n log(m/n+ 2) ∧ ‖x‖∞ ≤ 1}.

Furthermore, define

OPTA(C) := Eg∼N (0,In)

[
max

y∈ΓA,C

〈g, y〉
]
/
√
n. (3.1)

Our proof of Proposition 2.3 requires a few ingredients. First, we record a trivial upper bound
on OPTA(C).

Lemma 3.1. Fix A ∈ R
m×n such that ‖A‖1→∞ ≤ 1. For any C > 0,

OPTA(C) ≤
√

2n/π.

Proof. Since ΓA,C ⊆ [−1, 1]n, we have

OPTA(C) ≤ Eg∼N (0,In)

[
max

‖y‖∞≤1
〈g, y〉

]
/
√
n =
√
nEg∼N (0,1)[|g|] =

√
2n/π. �

Next, we record a consequence of Spencer’s proof of Spencer’s Theorem [22].
7

Lemma 3.2 ([22, Theorem 12]). Fix A ∈ R
m×n such that ‖A‖1→∞ ≤ 1 and let C > 0. There exists

a constant δC > 0 (depending only on C and independent of A) such that

|ΓA,C ∩ {±1}n| ≥ (2− δC)
n,

where δC → 0 as C →∞.

Remark. In [22, Theorem 12], the corresponding result is only stated for m = n. A trivial modifi-
cation of the proof however immediately gives the desired result.

We will also use concentration of Lipschitz functions with respect to the Gaussian measure.

Lemma 3.3 (see, e.g., [14, Theorem 2.2]). Let f : R
n → R be L-Lipschitz with respect to the

Euclidean norm. Then

Pg∼N (0,1)⊗n [|f(g) − E[f(g)]| ≥ t] ≤ 2 exp(−t2/(2L2)).

The previous two lemmas allow us to show that for sufficiently large C, the trivial upper bound
in Lemma 3.1 is close to sharp.

Lemma 3.4. Fix A ∈ R
m×n such that ‖A‖1→∞ ≤ 1 and let C > 0. There exists a constant δ′C > 0

(depending only on C and independent of A) such that

OPTA(C) ≥
√

2n/π − δ′C
√
n,

where δ′C → 0 as C →∞.

Proof. For g ∼ N (0, In), note that sgn(g) ∈ {±1}n is distributed uniformly on {±1}n. Furthermore
if sgn(g) ∈ ΓA,C , then

max
y∈ΓA,C

〈g, y〉 ≥ 〈g, sgn(g)〉 = ‖g‖1.

In particular,

P[max
y∈ΓA,C

〈g, y〉 − ‖g‖1 ≥ 0] ≥ P[sgn(g) ∈ ΓA,C] ≥ exp(−2δCn),

where δC is as in Lemma 3.2.
Hence, since g 7→ maxy∈ΓA,C

〈g, y〉/√n − ‖g‖1/
√
n is 2-Lipschitz with respect to the Euclidean

norm, it follows from Lemma 3.3 that we must have

E[max
y∈ΓA,C

〈g, y〉/√n− ‖g‖1/
√
n] ≥ −8(δC)1/2

√
n

for sufficiently large n. The desired result now follows by the linearity of expectation. �

As a corollary, we deduce the following stability result for OPTA(C) with respect to C.

Corollary 3.5. There exists an absolute constant c3.5 > 0 and a non-increasing function C3.5 :
[0, 1]→ R

>0 for which the following holds. For any 0 ≤ ε ≤ c3.5, δ ∈ [0, 1], and C ≥ C3.5(δ),

PC′∼Unif[C,2C][OptA(C
′ + C · ε)−OptA(C

′) ≤ δ · ε√n] ≥ 5/6.

Remark. It is an interesting problem in convex geometry to determine whether the Lipschitz constant
of C 7→ OptA(exp(C)) is sufficiently small for all C sufficiently large; our proof of Corollary 3.5 shows
that this is true in an appropriate averaged sense.

Proof. For 0 ≤ i ≤ ⌊1/(9ε)⌋, consider xi := C +C · i · (9ε). Note that for C ′ ∈ [C +9iCε,C + (9i+
8)Cε], we have that OPTA(C

′ + ε)−OPTA(C
′) ≤ OPTA(xi+1)−OPTA(xi). Moreover,

OptA(C + ⌊1/(9ε)⌋ · (9ε)) −OptA(C) =

⌊1/(9ε)⌋−1∑

i=0

OptA(xi+1)−OptA(xi)

8

≥ δ · ε√n ·#{i : OptA(xi+1)−OptA(xi) ≥ δ · ε√n}.
By Lemma 3.4, the left hand side is at most δ′C

√
n, so that

#{i : OptA(xi+1)−OptA(xi) ≥ δ · ε√n} ≤ δ′Cδ
−1ε−1.

Therefore,

PC′∼Unif[C,2C][OptA(C
′ + C · ε)−OptA(C

′)] ≤ δ · ε√n]
≥ (8ε) · (⌊1/(9ε)⌋ −#{i : OptA(xi+1)−OptA(xi) ≥ δ · ε√n})
≥ (8ε) · ⌊1/(9ε)⌋ − 8δ′Cδ

−1 ≥ 5/6,

provided ε is small and C3.5(δ) is chosen so that δ′C3.5
is sufficiently small compared to δ. �

We are now in position to prove Proposition 2.3.

Proof of Proposition 2.3. The first bullet point follows immediately from Lemma 3.3, upon noting
that E[‖g‖2] ≤ (E[‖g‖22])1/2 =

√
n and that g 7→ ‖g‖2 is a 1-Lipschitz function of the Euclidean

norm.
We proceed to the proof of the second bullet point. Recall that ε = 1/ log n and let η be a

sufficiently small constant to be chosen later. Given η, we choose C sufficiently large (according to
Corollary 3.5) so that CAlg satisfies OptA(CAlg +CAlgε)−OptA(CAlg) ≤ εη

√
n with probability at

least 5/6. For the remainder of the proof, we fix C,CAlg satisfying this guarantee. Consider the
random quantity

min
|S|=(1−η)n

max
y∈ΓA,CAlg

supp(y)∈S

〈g, y〉/√n.

For a fixed S, we have that

g 7→ max
y∈ΓA,CAlg

supp(y)∈S

〈g, y〉/√n

is 1-Lipschitz with respect to the Euclidean norm, and since C is sufficiently large, we have by
Lemma 3.4 that

E


 max
y∈ΓA,CAlg

supp(y)∈S

〈g, y〉/√n


 ≥

√
n/2.

Therefore, by Lemma 3.3 and a union bound over the
(n
ηn

)
≤ 2n/100 choices for S, it follows that

with probability at least 1− exp(−Ω(n)) over the choice of g,

min
|S|=(1−η)n

max
y∈ΓA,CAlg

supp(y)∈S

〈g, y〉 ≥ √n/4. (3.2)

Moreover, by our choice of CAlg and Lemma 3.3, we have that

P

[
max

y′∈ΓA,CAlg+CAlgε

〈g, y′〉/√n− max
y∈ΓA,CAlg

〈g, y〉/√n < ε
√
n/8

]
≥ 1− exp(−Ω(ε2n)). (3.3)

To conclude the proof, we show that on the events appearing in (3.2) and (3.3) (which simulta-
neously hold with probability 1 − 2 exp(−Ω(ε2n)), and for η ≤ 1/16, there cannot exist a vector
x ∈ ΓA,CAlg

such that

〈g, x〉/√n− sup
y∈ΓA,CAlg

〈g, y〉/√n ≥ −εη√n and
∑

j∈[n]
1|xj |≥1−ε ≤ ηn.

9

Indeed, suppose for contradiction that such a vector x exists. Let S be the set of coordinates where
x has magnitude less than 1− ε. By (3.2), there exists z ∈ ΓA,CAlg

such that

〈g, z〉/√n ≥ √n/4.
Consider the vector z′ = x+ ε · z ∈ ΓA,CAlg+CAlgε. We have that

〈g, z′〉/√n− max
y∈ΓA,CAlg

〈g, y〉/√n ≥ ε
√
n/4− εη

√
n ≥ ε

√
n/8,

and hence,

max
y′∈ΓA,CAlg+CAlgε

〈g, y′〉/√n− max
y∈ΓA,CAlg

〈g, y〉/√n ≥ ε
√
n/8,

which cannot happen on the event appearing in (3.3). �

4. Reduction to a Minimax Problem

The remainder of this paper is devoted to establishing Proposition 2.4. Since we only need to
solve the linear program in Proposition 2.4 to (1 − 1/poly(log n))-relative error, it is natural to
consider a first-order method for solving linear programs, such as using the multiplicative weights
update (MWU) method (see [5] for an excellent introduction). Unfortunately, one immediately runs
into the issue that the so-called width of the linear program can potentially by Θ(n), so that the

MWU-based solver takes time Õ(n3). To overcome this obstacle, we introduce a novel method of
‘width reduction’, which takes advantage of the structure of our linear program.

In the next section, we will show how to implement the following key subroutine which, combined
with the standard MWU approach, proves Proposition 2.4.

Proposition 4.1. For any C ≤ √log n/3 and n ≥ 100, there exists a randomized algorithm
Regularized-Solve for which the following holds. On input:

• a matrix A ∈ R
m×n with m ≤ n2, ‖A‖1→∞ ≤ 1, and maxi∈[n] | supp(Aei)| ≤ k,

• ρ0 ∈ R
≥0, ρ+, ρ− ∈ (R≥0)m with ρ0 + ‖ρ+‖1 + ‖ρ−‖1 = 1,

• v ∈ R
n with ‖v‖2 ≤ 2

√
n,

• Λ ∈ [0, 2
√
n],

Regularized-Solve(A, ρ0, ρ+, ρ−, v,Λ) runs in time Õ(kn+n2), and with probability at least 1−1/√n,
outputs either:

• a certificate that the program

supx∈ΓA,C
〈x, v〉 ≥ Λ

√
n

is not feasible, where

ΓA,C := {x ∈ R
n : ‖x‖∞ ≤ 1 ∧ ‖Ax‖∞ ≤ C

√
n log(m/n + 2)}, or

• a point x ∈ [−1, 1]n satisfying ‖Ax‖∞ ≤ 10
√
n(log n)4 and

−ρ0vTx/
√
n+ ρT+Ax− ρT−Ax

≤ −ρ0Λ+ (C
√

n log(m/n+ 2))(‖ρ+‖1 + ‖ρ−‖1) +
√
n/(log n)3

Remark. Note that it is easy to compute argminx∈[−1,1]n −ρ0vTx+ ρT+Ax− ρT−Ax, which coincides

with − sgn(−ρ0vT /
√
n+ρT+A−ρT−A), in time O(nnz(A)+n). The content of this proposition is that

we can efficiently find an approximate optimizer x with ‖Ax‖∞ = Õ(
√
n), which is best possible up

to logarithmic factors.
10

Proof of Proposition 2.4 given Proposition 4.1. We use the notation in [5, Section 3.3]. For conve-

nience of notation, let Cm,n := C
√
n log(m/n+ 2). In order to prove Proposition 2.4, it suffices to

solve the feasibility program

∃?x ∈ [−1, 1]n :
vTx√
n
≥ Λ; Ax ≥ −Cm,n1; −Ax ≥ −Cm,n1,

where Λ := supy∈ΓA,C
〈v, y〉/√n 6, up to an additive error of ε =

√
n/(log n)3 on the right hand

side for each of the three inequalities. Indeed, given such a point x, it is readily seen that z :=
(1− 1/(log n)3) · x satisfies the conclusion of Proposition 2.4.

For this feasibility program, we begin by noting that Proposition 4.1 provides an (ℓ, ρ)-bounded
Oracle, in the sense of [5, Definition 3.2], with ℓ = ρ = 20

√
n(log n)4, and with probability at

least 1− 1/
√
n. Indeed, the point x ∈ [−1, 1]n output by Proposition 4.1 satisfies

max
i∈[m]

|Aix− Cm,n| ≤ ‖Ax‖∞ +Cm,n ≤ 20
√
n(log n)4,

where the final inequality holds since m ≤ n2 and C ≤ √log n. Also,

|〈v, x〉/√n− Λ| ≤ Λ+ ‖v‖2‖x‖2/
√
n ≤ 4

√
n.

Therefore, by [5, Theorem 3.3], the MWU algorithm makes O(ℓρ(logm)/ε2) = Õ(1) calls to the
Oracle in Proposition 4.1, with an additional processing time of O(m) per call, and provided that
all the calls to the oracle succeed, either finds x ∈ [−1, 1]n solving the feasibility program to within
an additive error of ε on the right hand side for each of the three inequalities, or correctly concludes
that the system is infeasible. Since each call to the oracle succeeds with probability at least 1−1/√n,

it follows by a union bound that all calls succeed with probability at least 1− Õ(1)/
√
n. Moreover,

the total running time is Õ(m) + Õ(kn+ n2) = Õ(kn+ n2), where we have used that m ≤ n2. �

In the next section, we will show how to implement the algorithm Regularized-Solve. Our con-
struction crucially relies on the following reduction to solving a minimax program, whose solutions
can be transformed into low width solutions for the MWU algorithm by using the structure of our
linear program.

Proposition 4.2. There exists a randomized algorithm Optimize for which the following holds. On
input

• a matrix A ∈ R
m×n with m ≤ n2, ‖A‖1→∞ ≤ 1, and maxi∈[n] | supp(Aei)| ≤ k,

• ρ0 ∈ R
≥0, ρ+, ρ− ∈ (R≥0)m with ρ0 + ‖ρ+‖1 + ‖ρ−‖1 = 1,

• v ∈ R
n with ‖v‖2 ∈ [0, 2

√
n],

• δ ∈ (0, 1),

Optimize(A, ρ0, ρ+, ρ−, v, δ) runs in time Õ(kn+ n2), and with probability at least 1− 1/n, outputs
a point x′ ∈ [−1, 1]n such that

− ρ0v
Tx′/
√
n+ ρT+Ax

′ − ρT−Ax
′ + δ‖Ax′‖∞

≤ min
x∈[−1,1]n

−ρ0vTx/
√
n+ ρT+Ax− ρT−Ax+ δ‖Ax‖∞ +

√
n/(log n)4.

We conclude this section by showing how to transform x′ into a point satisfying the conclusion
of Proposition 4.1.

6The value of Λ is not known to us. However, by combining the discussion here with a standard binary search
routine, we can approximate Λ to within additive error

√
n/(log n)4 with probability 1 − on(1). The binary search

procedure only blows up the overall running time by a factor of O(log log n), since Λ ∈ [0, 2
√
n] by (2.1).

11

Proof of Proposition 4.1 given Proposition 4.2. Let δ = 1/(log n)4 and Cm,n := C
√

n log(m/n+ 2).
For ρ = (ρ0, ρ+, ρ−), define

OPTρ := min
x∈[−1,1]n

−ρ0vTx/
√
n+ ρT+Ax− ρT−Ax+ δ‖Ax‖∞. (4.1)

Note that OPTρ ≤ 0, since 0 ∈ [−1, 1]n. Under the assumption that the linear program

sup
x∈ΓA,C

〈x, v〉 ≥ Λ

is feasible, we have that

OPTρ ≤ −ρ0Λ+ (‖ρ+‖1 + ‖ρ−‖1)Cm,n + δCm,n

≤ −ρ0Λ+ (‖ρ+‖1 + ‖ρ−‖1)Cm,n + 2C
√
n/(log n)7/2, (4.2)

where we have used the value of δ and the assumption m ≤ n2.

Moreover, it follows from Proposition 4.2 that in time Õ(nk + n2) and with probability at least
1− 1/n, we can produce a vector x ∈ [−1, 1]n such that

−ρ0vTx/
√
n+ ρT+Ax− ρT−Ax+ δ‖Ax‖∞ ≤ OPTρ+

√
n/(log n)4.

To finish the proof, we show how to convert this x into a satisfying assignment for the second
bullet point of Proposition 2.4 (if the linear program is feasible) or to certify infeasibility otherwise.
Let τ := δ‖Ax‖∞, which can be computed in time O(nnz(A) + max(m,n)). We have the following
cases:

Case I: τ ≥ 10
√
n. We have

−ρ0vTx/
√
n+ ρT+Ax− ρT−Ax ≤ OPTρ+

√
n/(log n)4 − τ ≤ √n− τ.

Now y := x · 10√n/τ satisfies the conclusion of Proposition 4.1 since y ∈ [−1, 1]n, ‖Ay‖∞ ≤
10
√
nδ−1 = 10

√
n(log n)4, and

−ρ0vT y/
√
n+ ρT+Ay − ρT−Ay ≤ (

√
n− τ) · 10√n/τ ≤ −5√n

≤ −Λ ≤ −ρ0Λ
≤ −ρ0Λ+ Cm,n(‖ρ+‖1 + ‖ρ−‖1).

Case II: τ < 10
√
n. Then, ‖Ax‖∞ ≤ 10

√
n(log n)4 and

−ρ0vTx/
√
n+ ρT+Ax− ρT−Ax ≤ OPTρ+

√
n/(log n)4.

We compute the left hand side of the above inequality in time O(nnz(A) +m). If it is at most

−ρ0Λ+ (‖ρ+‖1 + ‖ρ−‖1)Cm,n + 2C
√
n/(log n)7/2 +

√
n/(log n)4,

then x satisfies the conclusion of Proposition 4.1. If not, then it must be the case that

OPTρ > −ρ0Λ+ (‖ρ+‖1 + ‖ρ−‖1)Cm,n + 2C
√
n/(log n)7/2,

which certifies by (4.2) that the original linear program is not feasible. �

5. Solving the Minimax Program via Sublinear Primal-Dual Algorithm

Finally, we prove Proposition 4.2 in the following more general form.

Proposition 5.1. There is a randomized algorithm Optimize for which the following holds. On
input

• v1, . . . , vm ∈ R
n with ‖vi‖2 ≤ 1/2 and maxi∈[n]#{j : 〈vj , ei〉 6= 0} ≤ k,

• v′ ∈ R
n with ‖v′‖2 ≤ 1/2,

• ε ∈ (0, 1),
12

Optimize(v′, v1, . . . , vm, ε) runs in time Õ((n+ k)ε−2 +m) 7, and with probability at least 1− 1/n,
outputs a point x′ ∈ [−1/√n, 1/√n]n such that

max
j∈[m]

(v′ + vj)
Tx′ ≤ ε+ min

x∈[−1/
√
n,1/

√
n]n

max
j∈[m]

(v′ + vj)
Tx.

We claim that Proposition 5.1 implies Proposition 4.2. This is due to the following set of obser-
vations. To disambiguate notation, let A ∈ R

m′×n be the matrix appearing in Proposition 4.2.

• We set m = 2m′. For i ∈ [m′], we let vi := δ · eTi A/(2
√
n) and vm′+i = −δ · eTi A/(2

√
n).

The assumptions on v1, . . . , vm are satisfied by the first bullet point of Proposition 4.2 and
since δ ∈ (0, 1). Moreover, for any x ∈ R

n,

δ

2
√
n
‖Ax‖∞ = max

i∈[m]
vTi x.

• We let v′ := (−ρ0vT /
√
n + ρT+A − ρT−A)/2

√
n. Note that this vector can be computed in

time O(nnz(A) + max{m,n}) = O(nnz(A) + n2) = O(nk + n2). The norm assumption on
v′ holds since

‖−ρ0vT /
√
n+ ρT+A− ρT−A‖2 ≤ max{‖v‖2/

√
n, ‖A‖2→∞} ≤

√
n,

where the final inequality uses the first and third bullet points of Proposition 4.1.
• Finally, setting ε = 1/(2

√
n(log n)4), it is immediately seen that if x′ satisfies the conclusion

of Proposition 5.1, then x = 2
√
n · x′ satisfies the conclusion of Proposition 4.2.

We will prove Proposition 5.1 using the sublinear primal-dual framework of Clarkson, Hazan, and
Woodruff [12, Algorithm 1, Algorithm 3]. The pseudocode is presented in Algorithm 1 and relies
on a few subroutines, which we now discuss.

First, we need a standard iterative low-regret algorithm for the class of ‘experts’ corresponding
to the rescaled continuous cube C = [−1/√n, 1/√n]n.

Lemma 5.2. Consider a sequence of vectors vℓ ∈ R
n with ‖vℓ‖2 ≤ 1 for ℓ ∈ [T] and let C =

[−1/√n, 1/√n]n. The sequence of vectors x0 = 0 and for i ≥ 1,

xi+1 = LRA(vi, xi−1) := argmin
x∈C
‖x− (xi−1 − ηvi)‖22,

where η =
√

2/T , satisfies

sup
ℓ∈[T]

1

T

(
max
x∈C

ℓ∑

i=1

vTi x−
ℓ∑

i=1

vTi xi

)
≤
√

2

T
.

Moreover, given vi and xi−1, LRA(vi, xi−1) can be computed in time O(n).

Proof. The expression for LRA(·, ·) corresponds exactly to online mirror descent on C equipped with

the ℓ2-norm, with respect to the 1-strongly convex mirror map Φ(x) =
‖x‖22
2 . Accordingly, we have

the standard guarantee (see, e.g., [10, Equation 4.10]) that for any x ∈ C,
1

T

ℓ∑

i=1

vTi (x− xi) ≤
1

T

(
sup
z∈C

‖z‖22
η

+
η

2

ℓ∑

i=1

‖vi‖22
)
≤ 1

Tη
+

η

2
=

√
2

T
,

taking the balancing value η =
√

2/T . For the assertion about the running time, note that (xi−1−
ηvi) can be readily computed in time O(n), and the minimization to compute xi+1 can also be
performed in time O(n), since the closest point in C to a given point in R

n can be found in a
coordinate-by-coordinate manner. �

7We make the standard data-structure assumption that for any i ∈ [n], the set {j : 〈vj , ei〉 6= 0}, which has size at

most k by assumption, can be determined in time Õ(k).

13

Next, for any v ∈ R
n with ‖v‖2 ≤ 1 and x ∈ C, we need a fast, low-variance, unbiased estimator

for vTx. This is the content of the following lemma.

Lemma 5.3. Let x, v ∈ R
n with ‖x‖2, ‖v‖2 ≤ 1. Define Est(x, v) to be vi/xi with probability equal

to x2i and 0 with probability 1− ‖x‖22. Then, we have that

E[Est(x, v)] = xT v and Var[Est(x, v)] ≤ 1.

Proof. Note that

E[Est(x, v)] =
∑

i∈[n]
vi/xi · x2i = vTx

and
Var[Est(x, v)] ≤ E[Est(x, v)2] =

∑

i∈[n]
v2i /x

2
i · x2i ≤ 1. �

Finally, we require a data-structure which supports efficiently updating and sampling from prob-
ability distributions. We use (a much simpler version of) a data-structure provided in work of
Carmon, Jin, Sidford, and Tian [11, Section 2.4.1].

Lemma 5.4. There exists a data-structure for handling probability probability distributions on [n]
with the follow properties:

• Initialization(v): Given v ∈ (R≥0)
n, construct the data structure corresponding to the prob-

ability distribution v/‖v‖1 on [n] in time O(n).
• Mult(v, i, τ): Given the data structure corresponding to the probability distribution deter-

mined by v ∈ (R≥0)
n, a coordinate i ∈ [n], and τ ∈ R≥0, update to the data structure

corresponding to the probability distribution determined by v′ ∈ (R≥0)
n in time O(log n),

where v′i = τvi and v′j = vj for j 6= i.

• Sample(v): Given the data structure corresponding to the probability distribution determined
by v ∈ (R≥0)

n, produce a sample according to it in time O(log n).

Proof sketch. The data structure associated to v ∈ (R≥0)
n consists of an array on [n], storing

the entries of v, with a full binary tree on top. Each node in the tree maintains the sum of all
the elements in the array which are its descendants (in particular, the sum at the root is ‖v‖1).
Initialize(v) constructs this tree in a ‘bottom-to-top’ fashion and takes time O(n) since there are
O(n) edges in this tree; Mult(v, i, τ) is implemented by starting at the ith position and ‘walking-
up’ to the root along the unique root-to-leaf path, updating the weights of the O(log n) nodes
encountered on the way; Sample(v) is implemented in O(log n)-time by ‘walking down’ from the
root to a leaf, using the values at the left and right child of each node in order to toss a coin with
suitable bias and decide whether to descend to the left child or to the right child. �

The pseudocode for Proposition 5.1 is given in Algorithm 1. For a given vector x ∈ R
n with

‖x‖2 ≤ 1, we define Dist(x, ℓ2) to be the distribution [n] specified by the square of the coordinates
(outputting ∅ with probability 1−‖x‖22) and for z, C ∈ R, define clip(z, C) = min{max{z,−C}, C}.
From the above description of various subroutines, it is immediate that Optimize runs in the
required time.

Lemma 5.5. The runtime for Optimize(v′, v1, . . . , vm, ε) is bounded by Õ((k + n)ε−2 +m).

Proof. Lines 1-4 take time O(n +m). Line 15 takes time O(Tn) = Õ(ε−2n). By Lemma 5.4, each

iteration of Lines 6-7 can be implemented in time Õ(n), for a total runtime of O(nT) = Õ(ε−2n).

By Lemma 5.2, each iteration of Line 14 takes time O(n), for a total runtime of O(nT) = Õ(ε−2n).

Each iteration of Line 9 takes time O(1) and each iteration of Line 10 takes time Õ(k) (see the
footnote in the statement of Proposition 5.1), so that together, all iterations of Lines 9-10 take time

14

Algorithm 1: Pseudocode for Optimize(v′, v1, . . . , vm, ε) in Proposition 5.1

1 T ← (logm)ε−2

2 x0 ← 0

3 w0 ← Initialize(1m)

4 η ←
√

(logm)/T/100

5 for t = 1, . . . , T do
6 τt ← Sample(Dist(xt−1, ℓ2)))

7 st ← Sample(wt−1)

8 if τt 6= ∅ then
9 v∗t ← Clip(v′T eτt/xτt , 1/η)

10 Jt ← {j ∈ [m] : vTj eτt 6= 0}
11 for j ∈ Jt do
12 vt(j)← Clip((v′ + vj)

T eτt/xτt , 1/η)

13 wt(j)← Mult(wt−1, j, (1 − ηvt(j) + η2vt(j)
2) · (1− ηv∗t + η2(v∗t)

2)−1)

14 xt ← LRA(xt−1, v
′ + vst)

15 return 1
T

∑T
i=1 xi

Õ(Tk) = Õ(kε−2). Finally, by Lemma 5.4, each iteration of Lines 11-13 takes time Õ(k), for a total

runtime of Õ(kT) = Õ(kε−2). �

Finally, we analyse the correctness of Algorithm 1.

Proof of Proposition 5.1. The running time of Optimize is analyzed in Lemma 5.5. For the cor-
rectness, it is helpful to note that the probability distribution defined by the vector wt ∈ (R≥0)

m

in Line 13 coincides with the probability distribution defined by the vector w′
t ∈ (R≥0)

m, where for
j ∈ [m],

w′
t(j) := wt−1(j) · (1− ηvt(j) + η2vt(j)

2),

for vt(j) defined by the same formula as Line 12 (but now, for all j ∈ [m]). Indeed, wt = (1− ηv∗t +
η2(v∗t)

2)−1 · w′
t.

With this observation, the conclusion follows essentially immediately from [12, Algorithm 3],
upon noting that

• Tε(LRA) is any T for which the right hand side of Lemma 5.2 is bounded above by ε; clearly,
T ≥ 4/ε2 suffices, and
• by Lemma 5.3 and since ‖v′ + vj‖2 ≤ 1 for all j ∈ [m], we have that (v′ + vj)

T eτt/xτt is an
unbiased estimator for (v′ + vj)

Tx with variance bounded by 1.

The only difference between [12, Algorithm 3] and Algorithm 1 is that in Algorithm 1, the esti-
mators (v+vj)

T eτt/xτt are not independent for different j ∈ [m]. This only affects (potentially) the
proofs of [12, Lemma B.3, Lemma B.6, Lemma B.7] but a trivial examination of the proof reveals
that independence between the estimators is not used 8. �

Remark (Numerical Precision Issues). The above analysis, as written, assumes exact arithmetic;
there are two points which are numerically sensitive which can be handled using standard techniques.

8This observation is already present in [12, Algorithm 1]. In fact, our setting is essentially identical to [12,
Algorithm 1], except that there, the minimization is over x with ‖x‖2 ≤ 1. Except for the use of the data structure
in Line 13, our algorithm is identical to [12, Algorithm 1] modulo noting that [−1/

√
n, 1/

√
n]n is contained in the

unit ℓ2-ball and that the associated projection in mirror descent can be implemented efficiently.

15

The first is dividing by xt in Lines 9 and 11. By [12, Lemma C.2], it suffices to truncate entries
smaller than poly(n−1, ε).

The second point is keeping track of the vector wt, and the induced probability distribution, in
a numerically stable manner. This is discussed [11, Section G.1]; for our simplified data structure,
however, a substantially simpler solution suffices, which we now sketch.

First, note that the maximum and minimum value of any wt(i) over the course of the algorithm
is bounded between 4−T and 4T . We will maintain the logarithm of each wt(i) using L = C(log n+
log(1/ε)) bits, for a sufficiently large constant C. In particular, the version of wt(i) we work with is

within a factor of (1 ± εCn−C)Õ((k+n)ε−2+m) of the true wt(i), which is negligible for C sufficiently
large.

For maintaining the logarithm of the weights up to this precision in Line 13, note that, when
‘walking up’ the binary tree, it suffices to set the logarithm of the value of a parent node to be
equal to the logarithm of the value of the heavier child node, in the case when the logarithms of
the values of the children differ by more than 2L. Otherwise, denoting the value of the lighter
child by z and the heavier child by y, the logarithm of the value at the parent node is log(y + z) =
log(y)+log(1+z/y), which can be computed in O(poly(log n, log(1/ε)))-time to L digits of precision,
since 2−2L ≤ |z/y| ≤ 1. Finally, when ‘walking down’ the binary tree in Line 7, if the logarithms of
the values of the children of a node differ by more than L, then it suffices to simply descend to the
heavier child. Otherwise, the bias of the coin to flip is y/(y+z) = 1/(1+z/y), which can be computed
to the desired accuracy in time O(poly(log n, log(1/ε))), noting again that 2−L ≤ |z/y| ≤ 1.

References

[1] Zeyuan Allen-Zhu and Lorenzo Orecchia, Nearly linear-time packing and covering LP solvers, Mathematical
Programming 175 (2019), 307–353. 4

[2] Josh Alman and Virginia Vassilevska Williams, A refined laser method and faster matrix multiplication, Proceed-
ings of the 2021 ACM-SIAM Symposium on Discrete Algorithms (SODA), [Society for Industrial and Applied
Mathematics (SIAM)], Philadelphia, PA, 2021, pp. 522–539. 1

[3] Noga Alon and Joel H. Spencer, The probabilistic method, fourth ed., Wiley Series in Discrete Mathematics and
Optimization, John Wiley & Sons, Inc., Hoboken, NJ, 2016. 1

[4] Ryan Alweiss, Yang P. Liu, and Mehtaab Sawhney, Discrepancy minimization via a self-balancing walk, STOC
’21—Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing, ACM, New York,
[2021] ©2021, pp. 14–20. 2, 5, 17

[5] Sanjeev Arora, Elad Hazan, and Satyen Kale, The multiplicative weights update method: a meta-algorithm and

applications, Theory of computing 8 (2012), 121–164. 3, 10, 11
[6] Wojciech Banaszczyk, Balancing vectors and Gaussian measures of n-dimensional convex bodies, Random Struc-

tures & Algorithms 12 (1998), 351–360. 2
[7] Nikhil Bansal, Constructive algorithms for discrepancy minimization, 2010 IEEE 51st Annual Symposium on

Foundations of Computer Science—FOCS 2010, IEEE Computer Soc., Los Alamitos, CA, 2010, pp. 3–10. 1
[8] József Beck, Roth’s estimate of the discrepancy of integer sequences is nearly sharp, Combinatorica 1 (1981),

319–325. 1
[9] József Beck and Tibor Fiala, “integer-making” theorems, Discrete Applied Mathematics 3 (1981), 1–8. 2

[10] Sébastien Bubeck, Convex optimization: Algorithms and complexity, Foundations and Trends® in Machine
Learning 8 (2015), 231–357. 13

[11] Yair Carmon, Yujia Jin, Aaron Sidford, and Kevin Tian, Coordinate methods for matrix games, 2020 IEEE
61st Annual Symposium on Foundations of Computer Science, IEEE Computer Soc., Los Alamitos, CA, [2020]
©2020, pp. 283–293. 14, 16

[12] Kenneth L. Clarkson, Elad Hazan, and David P. Woodruff, Sublinear optimization for machine learning, J. ACM
59 (2012), Art. 23, 49. 5, 13, 15, 16

[13] Daniel Dadush, https://homepages.cwi.nl/~dadush/workshop/discrepancy-ip/open-problems.html. 2
[14] Ronen Eldan and Mohit Singh, Efficient algorithms for discrepancy minimization in convex sets, Random Struc-

tures Algorithms 53 (2018), 289–307. 1, 2, 3, 7, 8
[15] Apostolos A. Giannopoulos, On some vector balancing problems, Studia Math. 122 (1997), 225–234. 1

16

https://homepages.cwi.nl/~dadush/workshop/discrepancy-ip/open-problems.html

[16] E. D. Gluskin, Extremal properties of orthogonal parallelepipeds and their applications to the geometry of Banach

spaces, Mat. Sb. (N.S.) 136(178) (1988), 85–96. 1
[17] Shunhua Jiang, Zhao Song, Omri Weinstein, and Hengjie Zhang, Faster dynamic matrix inverse for faster lps. 1
[18] Avi Levy, Harishchandra Ramadas, and Thomas Rothvoss, Deterministic discrepancy minimization via the multi-

plicative weight update method, Integer programming and combinatorial optimization, Lecture Notes in Comput.
Sci., vol. 10328, Springer, Cham, 2017, pp. 380–391. 1

[19] Yang P. Liu, Ashwin Sah, and Mehtaab Sawhney, A Gaussian Fixed Point Random Walk, 13th Innovations in
Theoretical Computer Science Conference (ITCS 2022) (Dagstuhl, Germany) (Mark Braverman, ed.), Leibniz
International Proceedings in Informatics (LIPIcs), vol. 215, Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2022, pp. 101:1–101:10. 2, 5

[20] Shachar Lovett and Raghu Meka, Constructive discrepancy minimization by walking on the edges, SIAM J.
Comput. 44 (2015), 1573–1582. 1

[21] Thomas Rothvoss, Constructive discrepancy minimization for convex sets, SIAM J. Comput. 46 (2017), 224–234.
1, 2, 3, 6

[22] Joel Spencer, Six standard deviations suffice, Trans. Amer. Math. Soc. 289 (1985), 679–706. 1, 3, 7, 8

Appendix A. Deferred proofs from Section 2

A.1. Proof of Theorem 1.1 given Theorem 2.1. The following result is an immediate conse-
quence of [4, Theorem 1.2].

Theorem A.1. There is a randomized algorithm Sparse-Coloring and an absolute constant CA.1 >
0 for which the following holds. On input a matrix A ∈ R

m×n, Sparse-Coloring(A) runs in time
O(nnz(A) + n), and with probability at least 99/100, returns a vector v ∈ {±1}n such that

‖Av‖∞ ≤ CA.1‖A‖1→2

√
(logm)(log n).

Proof of Theorem 1.1. First, note that we may assume that m ≤ n2; otherwise Theorem 1.1 follows
from noting (using Bernstein’s inequality and the union bound) that a uniformly random v ∈ {±1}n
succeeds with probability at least 1/2 (and given v, its success can be checked in time O(nnz(A)+n)).
Moreover, we may assume that m ≥ n/(log n)2; otherwise, ‖A‖1→2 ≤

√
m · ‖A‖1→∞ ≤

√
n/(log n),

and we may use the algorithm Sparse-Coloring from Theorem A.1.
Now, suppose that n/(log n)2 ≤ m ≤ n2. Define the sets

CLight := {i ∈ [n] : ‖Aei‖2 ≤
√
n/(log n)} and CHeavy := [n] \ CLight,

where ei denote the i-th elementary basis vector. Note that for any j ∈ CHeavy, we have
√

nnz(Aej)‖A‖1→∞ ≥
√
n/(log n),

from which we see that

nnz(Aej) = Ω̃(n).

We define ALight to be the restriction of A to columns corresponding to R
CLight and AHeavy to be

the restriction of A to columns corresponding to R
CHeavy . Note that it suffices to find a vector v ∈

{±1}CHeavy such that ‖AHeavyv‖∞ .
√

n log(m/n+ 2) in time Õ(nnz(A) + n) as ALight is handled

immediately by Theorem A.1. By Theorem 2.1, we can find such a v in time Õ(nnz(AHeavy) +

|CHeavy|2) = Õ(nnz(A) + |CHeavy|2), which we claim is Õ(nnz(A) + n). Indeed,

nnz(AHeavy) ≥ |CHeavy| · min
j∈CHeavy

nnz(Aej) = Ω̃(|CHeavy| · n)

so that

|CHeavy|2 ≤ |CHeavy| · n = Õ(nnz(AHeavy)) = Õ(nnz(A)). �
17

A.2. Proof of Theorem 2.1 given Theorem 2.2.

Proof of Theorem 2.1. As in the previous subsection, it suffices to consider the case n/(log n)2 ≤
m ≤ n2.

Initialize v0 = 0. At each time step ℓ ≥ 1, given the partial coloring vℓ−1 ∈ [−1, 1]n, let
Fℓ = {i ∈ [n] : (vℓ−1)i ∈ {±1}}, Gℓ = {i ∈ [n] : (vℓ−1)i /∈ {±1}}, and Λℓ = Diag(1 − |vℓ−1|). If
Gℓ = ∅, then return vℓ−1. Else, let Aℓ denote the restriction of A to the columns spanned by Gℓ and
notice that Λℓ restricts naturally to Gℓ.

We consider two separate cases. If |Gℓ| ≥ n/(log n)2, then we use Theorem 2.2 to find a vector

v′ℓ ∈ [−1, 1]Gℓ such that ‖AℓΛℓv
′
ℓ‖∞ ≤ C2.2

√
|Gℓ| log(m/|Gℓ|+ 2) and such that v′ℓ has at least

C−1
2.2|Gℓ| coordinates that are valued in {±1} 9. In particular, for at least one value of σℓ ∈ {±1},

the vector vℓ := vℓ−1+σℓΛℓv
′
ℓ has at most (1−C−1

2.2/2)|Gℓ| coordinates that are not valued in {±1}.
Moreover,

‖Avℓ‖∞ ≤ ‖Avℓ−1‖∞ + ‖AℓΛℓv
′
ℓ‖∞ ≤ ‖Avℓ−1‖∞ + C2.2

√
Gℓ log(m/|Gℓ|+ 2).

On the other hand, if |Gℓ| ≤ n/(log n)2, let v′ℓ ∈ [−1, 1]n denote the random vector with in-
dependent coordinates such that (v′ℓ + vℓ−1)i ∈ {±1} and E[(v′ℓ)i] = 0 for all i ∈ [n]. Let
vℓ = v′ℓ + vℓ−1 ∈ {±1}n. A direct application of Bernstein’s inequality and the union bound
shows that, with probability at least 99/100,

‖Avℓ‖∞ ≤ ‖Avℓ−1‖∞ + ‖Av′ℓ‖∞ ≤ ‖Avℓ−1‖∞ + 10
√
n.

Note that, given vℓ−1, we can sample from v′ℓ in time O(n) and verify that vℓ satisfies the above
inequality in time O(nnz(A) + n).

Observe that, due to the guarantee |Gℓ+1| ≤ (1−C−1
2.2/2)|Gℓ|, we are in the first case for at most

O(log log n) iterations, which together take time

Õ




O(log logn)∑

ℓ=0

(1− C−1
2.2/2)

2ℓ−2n2 + nnz(Aℓ)


 = Õ(n2 + nnz(A)).

As mentioned before, the second step takes time O(nnz(A) + n).
Finally, denoting the output of the process by v ∈ {±1}n and using |Gℓ| . (1 − C−1

2.2/2)
ℓn, we

have that

‖Av‖∞ .
√
n+

∑

ℓ≤O(log logn)

√
|Gℓ| log(m/|Gℓ|+ 2) .

√
n log(m/n+ 2),

as desired. �

Department of Statistics, Stanford University, Stanford, CA 94305, USA

Email address: visheshj@stanford.edu

Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

Email address: {asah,msawhney}@mit.edu

9More precisely, we make at most Õ(1) independent calls to Theorem 2.2, which guarantees that we find such a
v′ℓ with probability at least 1− 1/n.

18

	1. Introduction
	1.1. Proof outline

	2. Preliminary reductions
	3. Stability of the linear program
	4. Reduction to a Minimax Problem
	5. Solving the Minimax Program via Sublinear Primal-Dual Algorithm
	References
	Appendix A. Deferred proofs from Section 2
	A.1. Proof of Theorem 1.1 given Theorem 2.1
	A.2. Proof of Theorem 2.1 given Theorem 2.2

