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OPTIMAL MINIMIZATION OF THE COVARIANCE LOSS

VISHESH JAIN, ASHWIN SAH, AND MEHTAAB SAWHNEY

Abstract. Let X be a random vector valued in R
m such that ‖X‖2 ≤ 1 almost surely. For every

k ≥ 3, we show that there exists a sigma algebra F generated by a partition of Rm into k sets such
that

‖Cov(X)− Cov(E[X | F ])‖F .
1√
log k

.

This is optimal up to the implicit constant and improves on a previous bound due to Boedihardjo,
Strohmer, and Vershynin.

Our proof provides an efficient algorithm for constructing F and leads to improved accuracy
guarantees for k-anonymous or differentially private synthetic data. We also establish a connection
between the above problem of minimizing the covariance loss and the pinning lemma from statistical
physics, providing an alternate (and much simpler) algorithmic proof in the important case when
X ∈ {±1}m/

√
m almost surely.

1. Introduction

Let X be a random vector valued in R
m. By slightly abusing notation, we identify X with its

law, which is a probability measure on (Rm,G), where G is a sigma-algebra on R
m. Let F be a

sigma sub-algebra of G and let Y = E[X | F ] denote the corresponding conditional expectation. In
particular, E[X] = E[Y ]. Let

ΣX := E[(X − EX)(X − EX)T ]

denote the covariance matrix of X and let ΣY denote the covariance matrix of Y . When m = 1,
ΣX is precisely the variance of X, which we denote by Var(X), and similarly for ΣY . The familiar
law of total variance asserts that

Var(X)−Var(Y ) = E(X − Y )2 ≥ 0,

so that taking a conditional expectation results in a loss of variance. This phenomenon extends to
higher dimensions as the law of total covariance:

ΣX − ΣY = E(X − Y )(X − Y )T � 0, (1.1)

where � denotes the usual Loewner order on positive semi-definite matrices.
Recently, motivated by the design of privacy-preserving synthetic data (see the discussion in

Section 1.1), Boedihardjo, Strohmer, and Vershynin [2] asked the following fundamental question:
how much covariance is lost upon taking a conditional expectation? The answer to this clearly
depends on the sigma sub-algebra F (for instance, the choice F = G loses no covariance, whereas
the trivial sigma sub-algebra F = {∅,Rm} leads to the maximum possible covariance loss of ΣX).
This suggests restricting the ‘complexity’ of the sigma sub-algebra F and investigating how much
covariance is necessarily lost upon taking a conditional expectation with respect to a sigma sub-
algebra F with a given complexity. Moreover, for applications, one would like to be able to find
the best possible (at least asymptotically) sigma sub-algebra with a given complexity in an efficient
manner.

Sah and Sawhney were supported by NSF Graduate Research Fellowship Program DGE-1745302. Sah was sup-
ported by the PD Soros Fellowship.
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Since every finitely generated sigma-algebra F may be viewed as the sigma-algebra generated by
a partition of Rm into k sets (for some finite k), a natural and useful measure of complexity of F is
the number of sets in the underlying partition, k. With this notion of complexity, and measuring
covariance loss in the Frobenius norm, Boedihardjo, Strohmer, and Vershynin [2, Theorem 1.2]
showed that there exists an absolute constant C > 0 such that for any random vector X valued in
R
m for which ‖X‖2 ≤ 1 almost surely, and for every k ≥ 3, there exists a partition of Rm into at

most k sets such that for the sigma-algebra F generated by this partition, Y = E[X | F ] satisfies
the dimension-independent bound

‖ΣX − ΣY ‖F ≤ C

√

log log k

log k
, (1.2)

where for A ∈ R
m×m, ‖A‖F =

√

∑

i,j A
2
ij denotes its Frobenius norm. They noted [2, Proposi-

tion 3.14] that the upper bound is optimal up to the factor of
√
log log k.

Note that in the case when X is the uniform distribution over x1, . . . , xn ∈ R
m with maxi ‖xi‖2 ≤

1, and F is generated by a partition into k sets, the dimension-independence of (1.2) stands in stark-
contrast to (a variation of) the k-means objective

inf
y1,...,yk∈Rm,I1⊔···⊔Ik=[n]

k
∑

i=1

∑

j∈Ii
‖xj − yi‖2,

which bounds infF ‖ΣX − ΣY ‖F from above (via a direct application of Jensen’s inequality) and,

in general, can decay as slowly as Ω(k−1/m), which is significantly worse in the high-dimensional
regime of interest here.

As our main result, we remove the gap between the upper bound in Theorem 1.1 and the lower
bound in [2, Proposition 3.14], thereby obtaining an optimal and algorithmic answer to the problem
of minimizing covariance loss raised by Boedihardjo, Strohmer, and Vershynin.

Theorem 1.1. Let X be a random vector valued in R
m which satisfies ‖X‖2 ≤ 1 almost surely.

Then for every k ≥ 3, there exists a partition of Rm into at most k sets such that for the associated
σ-algebra F , the conditional expectation Y = E[X | F ] satisfies

‖ΣX − ΣY ‖F ≤ C√
log k

,

where C is an absolute constant.

As noted earlier, our bound is optimal up to the value of the absolute constant C. We prove
Theorem 1.1 in Section 3. Before doing so, in Section 2, we provide a completely different proof of
Theorem 1.1 in the case when X ∈ 1√

m
·{±1}m based on the pinning lemma from statistical physics;

this case is especially important for applications, since it corresponds to the case of Boolean ‘true’
data in the setting of Section 1.1. The proof in Section 2 is much simpler than the general proof in
Section 3 and provides a significantly faster and simpler algorithm for finding F .

Remark. By following exactly the same procedure as in [2, Section 3.6], if the probability space has
no atoms, then the partition can be made with exactly k sets, all of which have the same probability
1/k.

Remark. By combining Theorem 1.1 with the tensorization principle [2, Theorem 3.10], we imme-
diately obtain an analog of Theorem 1.1 for higher moments, which improves [2, Corollary 3.12] by
a factor of

√
log log k: for all d ≥ 2,

‖EX⊗d − EY ⊗d‖F ≤ 4d · C√
log k

, (1.3)
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where C is the absolute constant appearing in Theorem 1.1. Here, X⊗d ∈ R
m×m···×m is defined

by X⊗d(i1, . . . , id) := X(i1) · · ·X(id), where i1, . . . , id ∈ [m] (and similarly for Y ⊗d), and for A ∈
R
m×...m, ‖A‖F :=

√

∑

i1,...,id∈[m]A(i1, . . . , id)
2.

1.1. Applications to the design of privacy-preserving synthetic data. As mentioned earlier,
the problem of minimizing covariance loss was studied in [2] with a view towards designing privacy-
preserving synthetic data. Here, one is given ‘true’ data points x1, . . . , xn ∈ R

m and would like to
construct a map A : {x1, . . . , xn} → R

m such that the set of ‘synthetic’ data {A(x1), . . . ,A(xn)} is
both ‘private’ and ‘accurate’. We refer the reader to [2] for a much more detailed discussion of these
notions and further references, limiting ourselves here to the most basic application of Theorem 1.1.

A popular notion of preserving privacy is k-anonymity [7]; for synthetic data, this is the require-
ment that for any y ∈ {A(x1), . . . ,A(xn)}, the preimage A−1(y) has cardinality at least k. In
words, the true data is transformed into synthetic data in such a manner that the information of
each person in the dataset cannot be distinguished from that of at least k − 1 other individuals in
the dataset.

Let us quickly discuss how Theorem 1.1 may be used to obtain accurate ⌊n/k⌋-anonymous syn-
thetic data. Given true data x1, . . . , xn ∈ R

m, we consider the random vector X which takes on
each value xi with probability 1/n each. Given k ≥ 3, Theorem 1.1 gives a partition of Rm into k
sets, which induces a partition [n] = I1 ∪ · · · ∪ Ik and a sigma algebra F on {x1, . . . , xn}. Moreover,
by a slight variation of the remark following Theorem 1.1, we may assume that |Ii| ≥ ⌊n/k⌋ for all
i ∈ [k]. For j ∈ [n], let I(j) ∈ {I1, . . . , Ik} denote the unique subset of [n] such that j ∈ I(j). Then,
the conditional expectation Y = E[X | F ] corresponds to the synthetic data map

xj 7→ yI(j) :=
1

|I(j)|
∑

i∈I(j)
xi.

This map is ⌊n/k⌋-anonymous, by construction. As for accuracy, it follows from Theorem 1.1 that,
with Y the random vector which takes on each value yℓ with probability 1/k,

‖ΣX − ΣY ‖F .
1√
log k

,

so that the synthetic data is accurate in the sense that it approximately preserves, on average, the
second order marginals of the true data. This can be extended to higher-order marginals using
(1.3).

The above idea is adapted in [2] to extract additional guarantees for anonymous, synthetic data
(see [2, Theorems 4.4, 4.6]). In both cases, replacing (1.2) with our Theorem 1.1 leads to quantitative
improvements by a factor of log log k.

Finally, we remark that in [2, Theorems 5.9-5.11], a generalization of (1.2) is used with additional
arguments to design differentially-private synthetic data. Our proof of Theorem 1.1 in Section 3
can also be generalized using similar arguments as in [2] to yield versions of [2, Theorems 5.9-5.11]
without the log log n factor there; we leave the details to the interested reader.

2. Proof of Theorem 1.1 for Boolean Data

In this section, we provide a proof of Theorem 1.1 in the case when X is valued in {±1}m/
√
m

almost surely. In the setting of Section 1.1, this corresponds to the case when the true data is
Boolean and hence is particularly relevant for applications. Our proof relies on the so-called pinning
lemma from statistical physics, discovered independently by Montanari [1] and by Raghavendra and
Tan [6]. The statement below follows by combining [6, Lemma 4.5] with Pinsker’s inequality (cf. the
proofs of [3, Lemmas 4.2, A.2]).
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Lemma 2.1. Let X1, . . . ,Xm be a collection of {±1}-valued random variables. Then, for any
ℓ ∈ [m], we have that

Et∼{0,1,...,ℓ}ES∼([m]
t
)



EXS





∑

i 6=j∈[m]

Cov(Xi,Xj | XS)
2







 ≤ 8m2 log 2

ℓ
.

Roughly speaking, the intuition behind the pinning lemma is the following: either the average
(pairwise) covariance between the random variables X1, . . . ,Xm is already small (in which case, we’re
done) or the average covariance is not small. In the latter case, we expect a random coordinate
Xi to contain substantial information about many of the other coordinates X1, . . . ,Xm, so that
conditioning on a small random subset of the coordinates makes the average conditional covariance
sufficiently small.

Given Lemma 2.1, we can quickly deduce Theorem 1.1 for Boolean data.

Proof of Theorem 1.1 for Boolean data. Recall that X is valued in {±1}m/
√
m almost surely. Note

that we may assume that m ≥ log2 k; otherwise X takes on at most 2m ≤ k values, so that the
sigma algebra F generated by the partition of {±1}m/

√
m which assigns each point to its own part

has at most k parts and satisfies Y := E[X | F ] = X.

Now, let t be chosen uniformly from {0, 1, . . . , log2 k} and let S be chosen uniformly from
(

[m]
t

)

.

This provides a decomposition of {±1}m/
√
m into at most 2t ≤ k clusters, where each cluster

consists of all points of {±1}m/
√
m which agree on the coordinates in S. In other words, each

cluster corresponds to a setting of XS := (Xi)i∈S ∈ {±1}S/√m. Let F denote the sigma algebra
generated by these clusters and let Y = E[X | F ] = E[X | XS ]. Let ΣX and ΣY denote the
covariance matrices of X and Y respectively. Then,

ES‖ΣX − ΣY ‖F = ES‖EX(X − E[X | XS ])(X − E[X | XS ])
T ‖F (from (1.1))

≤ ESEXS
‖EX|XS

(X − E[X | XS ])(X − E[X | XS ])
T ‖F (norm convexity)

= ESEXS

√

∑

i 6=j∈[m]

Cov(Xi,Xj | XS)2 +
∑

i∈[m]

Var(Xi | XS)2

≤
√

√

√

√ESEXS

(

∑

i 6=j∈[m]

Cov(Xi,Xj | XS)2 +
∑

i∈[m]

Var(Xi | XS)2
)

(Jensen)

≤
√

8m2 log 2

log2 k
· 1

m2
+m · 1

m2
≤ 3
√

log2 k
,

where the first term in the penultimate inequality follows by applying Lemma 2.1 with ℓ = log2 k
and rescaling by a factor of m−2 (since each Xi is valued in {±1}/√m) and the second term in the
penultimate inequality follows by noting that Var(Xi | XS) ≤ 1/m (again, since Xi ∈ {±1}/√m).

Finally, by Markov’s inequality,

PS

[

‖ΣX −ΣY ‖F ≥ 9
√

log2 k

]

≤ 1

3
,

so we have a very simple randomized algorithm for finding (with probability at least 2/3) a sigma al-
gebra F obtaining the desired guarantee: first choose t uniformly from {0, 1, . . . , log2 k}, then choose

S uniformly from
([m]

t

)

, and finally decompose {±1}m/
√
m based on the values of the coordinates

in S. �
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3. Proof of Theorem 1.1

In this section, we prove Theorem 1.1 for general random vectors X ∈ R
m satisfying ‖X‖2 ≤ 1

almost surely. As in [2], we use principal component analysis to reduce to the case where m =
c log k, for a sufficiently small absolute constant c > 0. However, our treatment of the dimension-
reduced problem is rather different from [2]. Indeed, whereas [2] partitions the dimension-reduced
random vector according to the closest point in a volumetric epsilon-net (thereby, only exploiting
the information that ‖X‖2 ≤ 1 almost surely), our clustering scheme also takes into account the
distributional profile of the dimension-reduced random vector; briefly, we place each ‘heavy’ point
into its own cluster, place nearby points, which are ‘collectively light’ into a single cluster, and for
the intermediate case, adopt a randomized rounding scheme to cluster the points. In particular, our
proof provides another instance where nets based on randomized rounding provide better control
than volumetric nets (see [4, 5, 8] for some other recent examples).

This section is organized as follows: in Section 3.1, we show how to appropriately cluster points
in the most challenging ‘intermediate’ case, mentioned above (Proposition 3.2). Given this, the
proof of Theorem 1.1 is completed in Section 3.2 by following the aforementioned decomposition
into heavy, collectively light, and intermediate cases.

3.1. Key estimate. Let p = c log k, where c is a sufficiently small positive universal constant (for
instance, c ∈ (0, 1/120) is certainly sufficient). Let

γ :=
e−(log k)/(4p)

√
p

=
e−1/(4c)

√
c log k

.

Let X be a random vector valued in x0+[−γ/2, γ/2]p, supported on finitely many points, such that

for any x ∈ supp(X) =: X , we have P[X = x] ≤ k−1/3. Let W := x0 + {±3γ/2}p. For each x ∈ X ,
let wx ∈ W be a random vector defined as follows: E[(wx)i] = xi, and the random variables (wx)i
are independent. In words, the vector wx is obtained by randomly rounding x to a point in W so
that wx has mean x; it is easily seen that such a distribution wx is unique. Moreover, for distinct
x ∈ X , the random vectors wx are independent.

Now, given a realisation of the random vectors wx, for each w ∈ W, let

Cw := {x ∈ X : wx = w},
so that Cw consists of those points in X which are rounded to w. Let F denote the sigma-algebra
corresponding to the partition (Cw)w∈W . Note that F is random, depending on the realisation of
wx.

In our analysis, we will also require the following random vector, which should be viewed as an
idealised version of E[X | F ]; this random vector, which we denote by Z, takes on the value

zw :=

∑

x∈X xP[wx = w]P[X = x]
∑

x∈X P[wx = w]P[X = x]

with probability

qw :=
∑

x∈X
P[wx = w]P[X = x]

for each w ∈ W. We begin with the following preliminary, but key, lemma.

Lemma 3.1. With notation as above,

‖ΣX − ΣZ‖F = ‖E[XXT ]− E[ZZT ]‖F ≤ 36e−1/(2c)

√
c log k
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Proof. The first equality follows from the observation that E[Z] = E[X]. We proceed to prove the
inequality. For convenience of notation, let

µx,w := P[X = x]P[wx = w]

We have

‖E[XXT ]− E[ZZT ]‖F = ‖
∑

x,w

µx,w(xx
T − zwz

T
w)‖F = ‖

∑

x,w

µx,w(xx
T − xzTw − zwx

T + zwz
T
w)‖F

= ‖
∑

x,w

µx,w(x− zw)(x− zw)
T ‖F

≤(1) 2‖
∑

x,w

µx,w(x− w)(x − w)T ‖F + 2‖
∑

x,w

µx,w(w − zw)(w − zw)
T ‖F

≤(2) 2‖
∑

x,w

µx,w(x− w)(x − w)T ‖F + 2‖
∑

x,w

µx,w

∑

x′∈X

µx′,w

qw
(w − x′)(w − x′)T ‖F

= 2‖
∑

x,w

µx,w(x− w)(x− w)T ‖F + 2‖
∑

w

∑

x′∈X
µx′,w(w − x′)(w − x′)T ‖F

= 4‖
∑

x,w

µx,w(x− w)(x− w)T ‖F

≤ 4max
x∈X

‖Ewx
[(x− wx)(x− wx)

T ]‖F

≤(3) 4max
x∈X

‖9γ2 · Idp×p ‖F

≤ 36γ2
√
p =

36e−1/(2c)

√
c log k

,

as desired.
Inequality (1) follows since (x + y)(x + y)T � 2xxT + 2yyT for any vectors x, y and 0 � A �

B for symmetric matrices A,B implies that ‖A‖F ≤ ‖B‖F. (To see this inequality note that

‖B‖2F − ‖A‖2F = tr(B2 − A2) = tr((B − A)(B + A)) = tr((B + A)1/2(B − A)(B + A)1/2) ≥ 0.)
Inequality (2) follows since for any collection of vectors y1, . . . , ym and for any p1 ≥ 0, . . . , pm ≥ 0
such that

∑

i pi = 1, we have (
∑

i piyi)(
∑

i piyi)
T �∑i piyiy

T
i , as is verified by noting that for any

vector u,

uT (
∑

i

piyi)(
∑

i

piyi)
Tu =

(

∑

i

pi(u
T yi)

)2

≤
(

∑

i

pi

)

·
(

∑

i

pi(u
T yi)

2

)

(Cauchy–Schwarz)

= uT

(

∑

i

piyiy
T
i

)

u.

Finally, inequality (3) uses that E[(wx)i] = xi, the independence of (wx)i and (wx)j , and the crude
estimate |(x− wx)i| ≤ 3γ. �

The following is the main result of this subsection.
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Proposition 3.2. There exists an absolute constant K > 0 such that for all k ≥ K, and with
Y = E[X | F ] (notation as above), we have

‖ΣX − ΣY ‖F = ‖E[XXT ]− E[Y Y T ]‖F ≤ 36e−1/(2c)

√
c log k

+ k−1/48,

with probability (over the realisation of F) at least 1− exp(−k1/7).

Proof. Without loss of generality we may assume that x0 = 0. By Lemma 3.1 and the trian-
gle inequality, it suffices to show that for all sufficiently large k, except with probability at most
exp(−k1/7),

‖E[ZZT ]− E[Y Y T ]‖F ≤ k−1/48.

For convenience of notation, for w ∈ W let

pw :=
∑

x∈X
P[X = x]1[wx = w]

and for w ∈ W, i ∈ [p], let

(yw)i :=
∑

x∈X
xiP[X = x]1[wx = w].

By Hoeffding’s inequality, for a given w ∈ W,

P

[

|pw − qw| ≥ k−1/12
]

≤ exp(−2k−1/6/
∑

x

P[X = x]2)

≤(1) exp(−2k−1/6/k−1/3)

= exp(−2k1/6),

where inequality (1) uses
∑

x P[X = x]2 ≤ maxx P[X = x] ≤ k−1/3, by assumption. Similarly, for a
given w ∈ W and i ∈ [p], we have

P

[

|(yw)i − qw · (zw)i| ≥ γ · k−1/12
]

≤ exp(−2γ2k−1/6/
∑

x

x2iP[X = x]2)

≤ exp(−2k1/6).

Let E denote the event that |∑x∈X P[X = x]1[wx = w]− qw| ≤ k−1/12 and |(yw)i − qw · (zw)i| ≤
γ · k−1/12 for all w ∈ W, i ∈ [p]. By the preceding discussion,

P[Ec] ≤ 2 · 2p · p · exp(−2k1/6) ≤ exp(−k1/7)

for all sufficiently large k. Moreover, for every i ∈ [p], x ∈ X , and ε ∈ {±1}, we have P[(wx)i =
ε · 3γ/2] ≥ 1/3, so that for every w ∈ W,

qw ≥ 3−p ≥ k−3c/2,

and hence, on the event E , we have for all w ∈ W that

pw = qw ± k−1/12 = qw(1± k−1/24),

assuming that c < 1/36. Finally, we see that on the event E ,

‖E[ZZT ]− E[Y Y T ]‖F = ‖
∑

w∈W
(qwzwz

T
w − ywy

T
w/pw)‖F

≤ ‖
∑

w

(qwzw − yw)z
T
w‖F + ‖

∑

w

yw(z
T
w − yTw/pw)‖F

≤ 2p · (max
w

‖qwzw − yw‖2‖zw‖2 +max
w

q−1
w ‖yw‖2‖qwzTw − yw · qw/pw‖2)

7



≤ 2p
(

γ2p · k−1/12 + k3c/2γ
√
pmax

w
(‖qwzTw − yw‖2 + ‖yw(1− qw/pw)‖2)

)

≤ γ2pkc · k−1/12 + k5c/2γ2p · k−1/12 + k5c/2γ2p ·max
w

|1− qw/pw|

≤ 3 · k5c/2γ2p · k−1/24 ≤ k−1/48,

provided that c < 1/120. �

3.2. Finishing the proof. With Proposition 3.2, we are ready to prove Theorem 1.1 through a
sequence of reductions. Recall that in the statement of Theorem 1.1, X is a random vector valued
in R

m which satisfies ‖X‖2 ≤ 1 almost surely. Without loss of generality, we may assume that X is
finitely supported, by rounding the points in the support to a sufficiently fine ε-net with respect to
the Euclidean metric (see, e.g., [2, Lemma 3.6]).

Next, we show that it suffices to assume that X is valued in R
p, for p = c log k, where c is as in

Section 3.1. The following lemma is a slight modification of [2, Lemmas 3.2,3.3].

Lemma 3.3. Suppose that X is a random vector with ‖X‖2 ≤ 1 almost surely. Let S = E[XXT ]
and let P the projection onto the subspace corresponding to the largest t ≥ 1 eigenvectors of S. Let
Y = E[X | PX]. Then,

‖ΣX − ΣY ‖F = ‖E[XXT ]− E[Y Y T ]‖F ≤ 1√
t
.

Proof. The equality holds since E[X] = E[Y ]. For the inequality, we note that, with A := E[XXT ]−
E[Y Y T ],

‖A‖F ≤(1) ‖PAP‖F + ‖(I − P )E[XXT ](I − P )‖F

≤(2) ‖PAP‖F +
1√
t

= ‖E(PX − PY )(PX − PY )T ‖F +
1√
t

=(3) 1√
t
,

where (1) follows from the proof of [2, Lemma 3.2], (2) follows from [2, Lemma 3.3], and (3) follows
since PY = PE[X | PX] = PX. �

By taking t = c log k in Lemma 3.3 and using the triangle inequality, we see that it suffices to
prove Theorem 1.1 for X ∈ R

p, with p = c log k (the clustering in the original problem corresponds
to applying the map P−1 to the clustering in the dimension-reduced problem). Therefore, consider
such an X, and recall that we may assume that X is finitely supported, denoting the support by
X . Let

X (1) = {x ∈ X : P[X = x] ≥ 3/k}.
Note that |X (1)| ≤ k/3. By assigning each point in X (1) to its own cluster, it suffices to find a

clustering of the points in X \ X (1) into fewer than 2k/3 clusters.
For this, we begin by writing B := {x ∈ R

p : ‖x‖2 ≤ 1} as a disjoint union of cubes, denoted

by C, each with side length γ = e− log k/(4p)/
√
p. By a standard volumetric estimate (see, e.g.,

[2, Proposition 3.7]), the number of cubes in C is at most k1/3 (if c < 1/120, say, and k is sufficiently

large). Therefore, it suffices to cluster the points in each cube into at most (2/3)k2/3 clusters. We
have two cases:

• Case I: C ∈ C satisfies P[X ∈ C \ X (1)] ≤ k−1/2. Let us denote all such cubes by C1. In
this case, we assign all the points in C \ X (1) to a single cluster (say, corresponding to the
midpoint of C).

8



• Case II: C ∈ C satisfies P[X ∈ C \ X (1)] ≥ k−1/2. Let us denote all such cubes by C2.

In this case, consider the random vector XC , which takes on each value x ∈ C \ X (1) with

probability P[X = x]/P[X ∈ C\X (1)]. Note that XC is supported on a p-dimensional cube of

side length γ, and for any x ∈ XC , we have that P[XC = x] ≤ (3/k)/k−1/2 ≤ 3k−1/2 ≤ k−1/3.
We partition the points in C \ X (1) according to the clusters coming from Proposition 3.2

applied to XC , noting that there are at most 2p < k1/2 clusters for each cube C ∈ C2

(provided that c < 1/2). Denote the corresponding sigma algebra by FC .

At this point, we have partitioned the points in X into at most k/3 + k1/3 · k1/2 < k/2 clusters.
To complete the proof, we check that the sigma algebra F generated by this clustering satisfies the
conclusion of Theorem 1.1. Letting Y = E[X | F ], we have

‖ΣX − ΣY ‖F = ‖E[XXT ]− E[Y Y T ]‖F
≤
∑

C∈C1

P[X ∈ C \ X (1)] · γ2p+
∑

C∈C2
P[X ∈ C \ X (1)] · ‖ΣXC

− ΣE[XC |FC ]‖F

≤ k1/3 · k−1/2 +
∑

C∈C2
P[X ∈ C \ X (1)] ·

(

36e−1/(2c)

√
c log k

+ k−1/48

)

(Proposition 3.2)

≤ 40√
c log k

,

provided that c < 1/120 and k is sufficiently large.

References

[1] Montanari Andrea, Estimating random variables from random sparse observations, European Transactions on
Telecommunications 19 (2008), 385–403.

[2] March Boedihardjo, Thomas Strohmer, and Roman Vershynin, Covariance’s loss is privacy’s gain: Computation-

ally efficient, private and accurate synthetic data, 2021.
[3] Vishesh Jain, Frederic Koehler, and Andrej Risteski, Mean-field approximation, convex hierarchies, and the opti-

mality of correlation rounding: a unified perspective, Proceedings of the 51st Annual ACM SIGACT Symposium
on Theory of Computing, 2019, pp. 1226–1236.

[4] Bo’az Klartag and Galyna V Livshyts, The lower bound for Koldobsky’s slicing inequality via random rounding,
Geometric Aspects of Functional Analysis, Springer, 2020, pp. 43–63.

[5] Galyna V Livshyts, Konstantin Tikhomirov, and Roman Vershynin, The smallest singular value of inhomogeneous

square random matrices, The Annals of Probability 49 (2021), 1286–1309.
[6] Prasad Raghavendra and Ning Tan, Approximating CSPs with global cardinality constraints using SDP hierarchies,

Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms, ACM, New York, 2012,
pp. 373–384.

[7] Latanya Sweeney, k-anonymity: A model for protecting privacy, International Journal of Uncertainty, Fuzziness
and Knowledge-Based Systems 10 (2002), 557–570.

[8] Konstantin Tikhomirov, Singularity of random Bernoulli matrices, Ann. of Math. (2) 191 (2020), 593–634.

Department of Statistics, Stanford University

Email address: visheshj@stanford.edu

Department of Mathematics, Massachusetts Institute of Technology

Email address: {asah,msawhney}@mit.edu

9


	1. Introduction
	1.1. Applications to the design of privacy-preserving synthetic data

	2. Proof of Theorem 1.1 for Boolean Data
	3. Proof of Theorem 1.1
	3.1. Key estimate
	3.2. Finishing the proof

	References

