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ENUMERATING COPRIME PERMUTATIONS

ASHWIN SAH AND MEHTAAB SAWHNEY

Abstract. Define a permutation σ to be coprime if gcd(m,σ(m)) = 1 for m ∈ [n]. In this note,
proving a recent conjecture of Pomerance, we prove that the number of coprime permutations on
[n] is n! · (c+ o(1))n where

c =
∏

p prime

(p− 1)2(1−1/p)

p · (p− 2)(1−2/p)
.

The techniques involve entropy maximization for the upper bound, and a mixture of number-
theoretic bounds, permanent estimates, and the absorbing method for the lower bound.

1. Introduction

Definition 1.1. Define a permutation σ : [n] → [n] to be coprime if gcd(m,π(m)) = 1 for m ∈ [n].
Let C(n) be the number of coprime permutations on [n].

In recent work, Pomerance [10] provided nontrivial bounds on C(n) proving that n!/3.73n <
C(n) < n!/2.5n for n sufficiently large. Pomerance then conjectured the existence of a constant
c such that C(n) = n!(c + o(1))n (see [10, Section 5]); our main objective is to provide such an
asymptotic.

Theorem 1.2.

C(n) = n!

(

∏

p prime

(p − 1)2(1−1/p)

p · (p− 2)(1−2/p)
+ exp(−Ω(

√

log n log log n))

)n

.

Remark. The p = 2 term is assumed to be 1/2. The same method demonstrates that for fixed
k, Ck(n), which counts permutations σ : [n] → [n] with gcd(ℓ, σ(ℓ), k!) = 1 (see [10, Section 5]),
satisfies

Ck(n) = n!

(

∏

p≤k

(p− 1)2(1−1/p)

p · (p− 2)(1−2/p)

)n

· exp(O(log n)),

though we forgo the details. McNew [8] has independently achieved similar results for fixed k.

Theorem 1.2 is certainly not the only result regarding finding mappings between sets of integers
such that the labels of the matched edges are coprime. One such example is work of Pomerance
and Selfridge [12], answering a question of Newman, demonstrating that such a coprime matching
exists between any set of n consecutive integers A and [n]. Another is work of Bohman and Peng
[2], in connection with the lonely runner conjecture, proving that any two intervals A,B of length

2m in [n] with m = 2Ω((log logn)2) have a coprime matching. This was strengthened in later work of
Pomerance [11] to require only m = Ω((log n)2). We also mention that enumerating C(n) was also
considered by Jackson [6] and is listed as A005326 on the OEIS [14].

Sah and Sawhney were supported by NSF Graduate Research Fellowship Program DGE-1745302. Sah was sup-
ported by the PD Soros Fellowship.
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1.1. Proof techniques. For the upper bound we study C(n) by looking at permutations where
gcd(j, π(j)) has no prime divisor at most a growing function W . Defining τ =

∏

p≤W p and exam-
ining the portion of integers j which are a mod τ and map to b mod τ , we find that the problem
essentially immediately reduces to an entropy maximization program. Using the concavity and sub-
additivity of entropy as well as the Chinese Remainder Theorem, we can obtain the upper bound,
which is done in Section 2. Note that as written, this approach essentially necessarily requires
W = O(log n) as otherwise τ > n and the integers {1, . . . , n} are not equidistributed in residue
classes modτ . In order to do better, we (a) restrict attention only to whether any prime p ≤ W
divides or does not divide an integer j ∈ [n], and (b) focus only on possible prime divisor pat-

terns which produce large buckets (specifically, buckets which have at most k ≈ (log n)1/2 prime
divisors), and treat the rest as an error term. Since

∏

p≤W (1 − p−1) = Θ(1/ logW ) is a negligible

factor, the condition on W we obtain is roughly that W k ≤ n1/100, which allows for consideration
of significantly more prime divisors.

For the proof of the lower bound in Section 3, the role of larger prime factors immediately becomes
crucial. Let BS be the set of integers in [n] with S being the precise set of prime divisors at most W .

For the sake of this discussion W = exp(c(log n)1/2(log log n)1/2) and k = (log n)1/2(log log n)−1/2.
Our proof is based on first taking a “template”, assigning the appropriate “entropy-maximizing”
fraction of BS to map to BS′ . Noting the size of W it follows immediately that (say)

∑

p|n
p>W

1/p ≤ W−1/2

as n has at most 2 log n/(log log n) distinct prime divisors. This suggests that the effect of “large
primes” is minimal and therefore the upper bound proof should be reversible.

To make this argument rigorous, one chooses random subsets of BS to map to BS′ in accor-
dance with the entropy maximizing distribution. One then proves that with high probability the
associated coprimality graph corresponding to BS, BS′ , if S and S′ have size at most k, has at
most approximately a W−1/2 fraction of edges missing at any vertex. This is done via the Chernoff
bound and the prior estimate regarding large prime factors. Combined with estimates regarding
the number of perfect matchings in graph of high minimum degree due to Alon, Rödl, and Ruciński
[1], one can (essentially) handle matching all integers with at most k prime factors at most W .

For the remaining integers, we “absorb” this small subset into the set of integers divisible by
no primes at most W , which is a very large set, namely of size Ω(n/ logW ). On the other hand,
the number of integers with at least k prime factors less than W is n exp(−Ω(k log k)). See [15]
for a more extensive discussion of the absorbing method and its history. Our approach here can
be thought of as analogous to a “robust absorption strategy”, which has appeared for instance in
work of Montgomery [9], in which bipartite graphs with a “resilient matching” property are utilized.
Finally, we note that we have omitted certain special considerations at the prime p = 2, which are
handled via a reduction of Pomerance [10] (Lemma 3.1).

1.2. Further directions. We end by mentioning that we believe obtaining sharper asymptotics for
C(n) is an interesting open problem; our methods are fundamentally limited to error terms that are

of the form n−o(1) as we crucially rely on considering buckets whose shared prime divisors multiply
to less than n1/2 (say) in order to guarantee that the interval has the expected number of elements in
such buckets. Thus either we cannot consider many primes, or cannot consider buckets with many
prime divisors, either of which is a serious issue. Given this, error terms of the form O(n−Ω(1)) would
require a substantial modification of our methods and even the truth of such a statement is not
obvious. Additionally, obtaining an asymptotic expansion for C(n) appears unlikely (as speculated
by Jackson [6]).
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We note that a reduction of Pomerance [10] shows it is enough to count coprime bijections
f : {1, 3, . . . , 2n−1} → [n]. This is the number of matchings in a bipartite graph i ∈ {1, . . . , 2n−1}
on the left and j ∈ [n] on the right are connected if gcd(i, j) = 1. Our proof can be interpreted
as considering the non-edges that occur due to small primes and noting that the “remaining non-
edges” are sparse. For sharper bounds, it may be possible to analyze an edge-removal process
that targets the maximum entropy distribution described in Section 1.1: at each step, uniformly
randomly choose an edge (i, j) in the current graph with probability say proportional to some g(i, j)
and then delete i from the left and j from the right. Here we might take

g(i, j) =
∏

2<p≤n
gp(1p|i,1p|j)

with gp(0, 0) = (p − 2)/p, gp(0, 1) = gp(1, 0) = 1/p, and gp(1, 1) = 0. Depending on how long one
can control this process, the remaining vertices can be handled by the absorbing method. Our proof
can be thought of as very similar to analyzing such a process where we truncate the weights at
p ≤ W .

Techniques involving “weighted removal processes” or that target an “entropy-maximizing dis-
tribution” along with the absorbing method have been recently used to give sharp estimates on
the n-queens problem [13], and may be applicable to further situations where one wishes to count
objects with structured biases (such as number-theoretic considerations, as in the present work).
This in turn builds on recent powerful techniques introduced for counting in quasirandom situations
such as counting combinatorial designs [7], in which polynomially strong error terms are known. It
remains interesting to see the limits of such techniques in number-theoretic settings.

Notation. Throughout this paper we will reserve p for variables which range over the primes. We
will also implicitly assume n is sufficiently large for certain inequalities to hold. We write a = b± c
to mean that a ∈ [b− c, b + c], and f = O(g) means |f | ≤ Cg for some absolute constant C while

f = Ω(g) means f ≥ C|g| for some absolute C. We use log(k) n to denote the k-times iterated

logarithm, e.g. log(5) n = log log log log log n. We may sometimes omit floors and ceilings without
comment if not essential to the situation. We say an event occurs whp (with high probability) if

it occurs with probability tending to 1 as n → ∞. Given a set S, we write
(S
k

)

,
( S
≤k

)

,
( S
<k

)

for the

collection of subsets of S of size k, size at most k, and size less than k, respectively. Finally, as
above, we often refer to a bijective function or permutation as a matching between the domain and
codomain, especially when dealing with extra constraints encoded via a graph.

Acknowledgements. We thank Carl Pomerance for comments motivating our proof of Lemma 2.1
and for communicating the results of McNew [8] regarding Ck(n).

2. Upper Bound

2.1. Setup. Fix W = exp(2−10(log n log log n)1/2) and k = 2−5(log n/ log log n)1/2. Let α =
exp(−k log k), which will roughly correspond to the error term we derive. Our upper bound on
the number of coprime permutations σ : [n] → [n] comes via enumerating permutations such that
p ∤ gcd(j, σ(j)) for all p ≤ W . Let PW = {p : p ≤ W} be the primes which are at most W .

We first define a series of sets with respect to the divisibility structure of PW . For each S ⊆ PW ,
let

AS = [n] ∩
⋂

p∈S
{m : p|m} ∩

⋂

p∈PW \S
{m : p ∤ m}

and

A≥k = [n] \

(

⋃

S∈(PW
<k )

AS

)

.
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To start, we prove that AS has the “predicted size” from an independent heuristic on small primes
if |S| < k, while A≥k is a vanishing small proportion of the set. This will allow us to efficiently
encode the divisibility structure of all primes at most W . Note that this is nontrivial as a more
naive bound based on the Chinese Remainder Theorem (CRT) would restrict us to having W such

that
∏

p≤W p ≤ n1/2 (say) and hence W ≤ log n.

Lemma 2.1. For all S ⊆ PW with |S| < k we have

|AS | = (1± α2)n
∏

p∈S
p−1

∏

p∈PW \S
(1− p−1).

Furthermore,

|A≥k| ≤ nα1/2.

Proof. We first handle A≥k. Let Y be a uniformly random positive integer in [n] and Yp be the
indicator of p|Y for 1 ≤ p ≤ W . Note that

P[Y ∈ A≥k] ≤
∑

1≤p1<···<pk≤W
P

[

⋂

1≤j≤k
Ypj

]

=
∑

1≤p1<···<pk≤W
P

[

∧

1≤j≤k
(pj |Y )

]

≤ 2
∑

1≤p1<···<pk≤W

∏

1≤j≤k

1

pj
≤

2

k!

(

∑

1≤p≤W

1

p

)k

≤ exp(−k log k/2) (2.1)

where we have used that W k ≤ n to derive the probability that Y is divisible by
∏

1≤j≤k pj and

used that
∑

1≤p≤W 1/p = O(log log n). To derive the necessary bound on AS , we proceed via the

Principle of Inclusion-Exclusion (PIE), in particular with the use of Bonferroni’s inequalities [3]. In
particular, we have

P[Y ∈ AS ] = E

[

∏

p∈S
Yp

∏

p∈PW \S
(1− Yp)

]

=
∑

0≤j≤4k
(−1)j

∑

T⊆(PW \S
j )

E

[

∏

p∈S
Yp

∏

p∈T
Yp

]

±
∑

T⊆(PW \S
4k )

E

[

∏

p∈S
Yp

∏

p∈T
Yp

]

=
∑

0≤j≤4k
(−1)j

∑

T⊆(PW \S
j )

∏

p∈S∪T
p−1 ±

((

∏

p∈S
p−1

)

exp(−3k log k) + (2W )4k/n

)

=
∏

p∈S
p−1

∏

p∈PW \S
(1− p−1)±

((

∏

p∈S
p−1

)

exp(−3k log k) + (2W )4k/n

)

= (1± exp(−2k log k))
∏

p∈S
p−1

∏

p∈PW \S
(1− p−1).

The first error term in the third line comes from a bound similar to (2.1), while the second error term
in the third line comes from the slight deviations in probability that a Y is divisible by some product
of primes at most W k ≤ n. The fourth line comes from bounding the tail terms of the product
expansion of

∏

p∈S p−1
∏

p∈PW \S(1−p−1) (e.g. by use of the Bonferroni inequalities once again) and

the fifth line follows upon converting additive error to multiplicative error, using W k ≤ n1/8 and
∏

p∈PW
(1− p−1) = Ω(1/ logW ). This completes the proof. �

Given a coprime permutation σ : [n] → [n] and S1, S2 ⊆ PW we let

βS1,S2(σ) = #{m ∈ [n] : m ∈ AS1 , σ(m) ∈ AS2}
4



and β(σ) be the tuple of all such counts. Note there are at most (2W )k ≤ exp(k log k) ≤ n1/4 such

sets S with |S| < k and that by Lemma 2.1, we have |A≥k| ≤ nα1/2. This implies that there are at
most

(n+ 1)
√
n · (2n2)nα

1/2
≤ enα

1/3

possible choices for β(σ): first, for every pair S1, S2 with |S1|, |S2| < k we choose up to n + 1
possibilities, and then we bound the ways to simultaneously choose all βS,S′(σ) for S ⊆ PW and
|S′| ≥ k (and similar for βS′,S(σ)), which is a total of t ≤ n2 values which must sum to |A≥k|.

Therefore we have that

C(n) ≤ enα
1/3

· sup
β
{σ : [n] → [n] coprime : β(σ) = β} (2.2)

Finally we define the following parameters:

ρS1,S2 = βS1,S2/n, βS1,· =
∑

S2

βS1,S2 = |AS1 |, β·,S2 =
∑

S1

βS1,S2 = |AS2 |.

2.2. Completing the upper bound. We now bound the number of choices of σ given β(σ). This
will complete the proof of the upper bound due to (2.2). We bound the number of permutations σ
satisfying β(σ) = β as follows:

• For each pair of subsets S1, S2 ⊆ PW , choose which βS1,S2 elements of AS1 which have image
in AS2 . Call such elements VS1→S2 .

• For each pair of subsets S1, S2 ⊆ PW , choose which βS1,S2 elements of AS2 which have
preimage in AS1 . Call such elements VS1←S2 .

• Determine a precise mapping between VS1→S2 and VS1←S2 .

Note also that if ρS1,S2 6= 0 where S1 ∩ S2 6= ∅, then the expression within the supremum in (2.2) is
actually 0. Thus we can restrict attention to values of β where ρS1,S2 = 0 when S1 ∩ S2 6= ∅.

Given this procedure, we see that the number of σ such that β(σ) = β is bounded by
∏

S1,S2⊆PW

βS1,S2 !
∏

S1⊆PW

βS1,·!
∏

S2⊆PW
βS1,S2 !

∏

S2⊆PW

β·,S2 !
∏

S1⊆PW
βS1,S2 !

=
∏

S1,S2⊆PW

(βS1,S2 !)
−1 ∏

S1⊆PW

βS1,·!
∏

S2⊆PW

β·,S2 !

≤ |A≥k|!
2

∏

|S1|,|S2|<k

(βS1,S2 !)
−1 ∏

|S1|<k

βS1,·!
∏

|S2|<k

β·,S2 !

≤ enα
1/3

·
∏

|S1|,|S2|<k

(βS1,S2 !)
−1 ∏

|S|<k

|AS |!
2 (2.3)

where we used that factorials are log-convex in the third line to combine the terms for |S| ≥ k, and
used Lemma 2.1 and Stirling’s approximation in the fourth.

We now bound each term in the above product. Write nS = n
∏

p∈S p−1
∏

p∈PW \S(1 − p−1).

Noting that n! ≤ 3(n+ 1)(n/e)n for all n ≥ 1 and (2W )k ≤ n1/4, and applying Lemma 2.1 we find
that

∏

|S|≤k
|AS |! ≤ enα

1/3
·
∏

|S|<k

((1 + α2)nS/e)
(1+α2)nS

≤ e2nα
1/3

·
∏

S⊆PW

(

(n/e)
∏

p∈S
p−1

∏

p∈PW \S
(1− p−1)

)n
∏

p∈S p−1
∏

p∈PW \S(1−p−1)

= e2nα
1/3

· (n/e)n
∏

p∈PW

(1− 1/p)n(1−1/p)(1/p)n/p

5



Next noting that n! ≥ (n/e)n for all n ≥ 1, we find that
∏

|S1|,|S2|<k

(βS1,S2 !)
−1 ≤ en

∏

|S1|,|S2|<k

βS1,S2
−βS1,S2 ≤ enα

1/3
· en

∏

S1,S2⊆PW

βS1,S2
−βS1,S2

= enα
1/3

· en exp
(

− n
∑

S1,S2

ρS1,S2 log βS1,S2

)

= enα
1/3

· (e/n)n exp
(

− n
∑

S1,S2

ρS1,S2 log ρS1,S2

)

.

Let Z be the random variable which takes on the value (S1, S2) with probability ρS1,S2 . Treat-

ing each set Si as a vector in {0, 1}PW , we may equivalently view Z = ((1p∈S1 ,1p∈S2))p∈PW
∈

{0, 1}2|PW |. Let Zp be (1p∈S1 ,1p∈S2) when (S1, S2) is drawn according to Z, and note that Z is
determined upon knowing Zp for all p ∈ PW . By the subadditivity of entropy we therefore find that

exp
(

− n
∑

S1,S2

ρS1,S2 log ρS1,S2

)

= exp(nH(Z)) ≤
∏

p∈PW

exp(nH(Zp)).

Note that Zp is supported on (0, 0), (1, 0), (0, 1) due to the constraint ρS1,S2 = 0 whenever we have
p ∈ S1 ∩ S2. Additionally, P[Zp = (1, ·)] = P[Zp = (·, 1)] = ⌊n/p⌋/n since σ is a permutation and
|{p|ℓ}∩ [n]| = ⌊n/p⌋. These constraints determine the law of Zp and therefore H(Zp). In particular,
it follows that P[Zp = (1, 0)] = P[Zp = (0, 1)] = 1/p± 1/n and P[Zp = (0, 0)] = 1− 2/p± 2/n.

Putting everything together into (2.3), this gives an upper bound of

e7nα
1/3

· (n/e)n
(

∏

p∈PW

(1− 1/p)n(1−1/p)(1/p)n/p
)2

∏

p∈PW

(1− 2/p)−n(1−2/p)(1/p)−2n/p

= e7nα
1/3

· (n/e)n
∏

p∈PW

(p− 1)2(1−1/p)n(p − 2)−n(1−2/p)p−n

≤ e7nα
1/3+n/W · (n/e)n

∏

p

(p− 1)2(1−1/p)n(p − 2)−n(1−2/p)p−n

where we have used that (p−1)2(1−1/p)(p−2)−(1−2/p)p−1 = 1+O(1/p2) which implies the inequality
∏

p>W (p − 1)2(1−1/p)(p − 2)−(1−2/p)p−1 = 1 + O(1/(W logW )) ≤ exp(1/W ). The desired result
follows immediately using our expressions for α,W .

3. Lower Bound

3.1. Setup and preliminaries. Recall that we have set W = exp(2−10(log n log log n)1/2) and
k = 2−5(log n/ log log n)1/2, as well as α = exp(−k log k).

For the lower bound, note that any coprime permutation must map even numbers to odd numbers,
which are sets of approximately the same size. In order to witness this phenomenon, we use the
following reduction of Pomerance [10]. Define [n]o = {1, 3, . . . , 2n − 1}, the first n odd positive
integers.

Lemma 3.1 ([10, Lemma 1]). Let C0(n) be the number of bijective functions f : [n]o → [n] with
gcd(j, f(j)) = 1 for all j ∈ {1, 3, . . . , 2n− 1}. Then C(2n) = C0(n)

2 and C(2n+1) ≥ 2C0(n− 1)2.

We will require slightly modified sets in order to capture the divisibility structures of [n] and [n]o.
Let P ′W = PW \ {2}. For S ⊆ P ′W define

BS = [n] ∩
⋂

p∈S
{m : p|m} ∩

⋂

p∈P ′
W \S

{m : p ∤ m}, B≥k = [n] \
⋃

S∈(P
′
W

<k
)

BS

6



and the analogous

CS = [n]o ∩
⋂

p∈S
{m : p|m} ∩

⋂

p∈P ′
W \S

{m : p ∤ m}, C≥k = [n]o \
⋃

S∈(P
′
W

<k
)

CS.

Similar to Lemma 2.1, we have the following control on the set sizes BS , CS .

Lemma 3.2. For all S ⊆ P ′W with |S| < k we have,

|BS |, |CS | = (1± α2)n
∏

p∈S
p−1

∏

p∈P ′
W \S

(1− p−1).

Furthermore,

|B≥k|, |C≥k| ≤ α1/2n.

For the remainder of this section we focus on providing an asymptotic lower bound on C0(n),
which we treat as a matching problem between [n]o and [n] with forbidden edges corresponding
to non-coprime pairs. Now, heuristically, the lower bound should match the bounding scheme
presented in Section 2 (ignoring the prime p = 2). However, to actually ensure we avoid coprimality
with respect to larger primes p, we will require a number of estimates. The crucial point for our
lower bound is noting that the divisibility structure of primes larger than W removes a sparse graph
(of density bounded by say W−1/2).

Fact 3.3. For ℓ ∈ [2n] we have that
∑

p|ℓ
p>W

1

p
< W−1/2.

Proof. This is immediate noting that at most 2 log n/(log log n) distinct primes divide an integer
ℓ ∈ [2n]. �

We will also require that for a given “large class” only a small portion of numbers are divisible
by a fixed p.

Lemma 3.4. For W < p′ ≤ n1/3 and |S| < k, we have that

|BS ∩ {m : p′|m}| ≤ 2|AS |/p
′, |CS ∩ {m : p|m}| ≤ 2|BS |/p

′.

For p′ > n1/3 we have that

|BS ∩ {m : p′|m}| ≤ 2n2/3, |CS ∩ {m : p|m}| ≤ 2n2/3.

Proof. The second claim follows immediately as |[2n] ∩ {m : p′|m}| ≤ 2n2/3. For the first claim, we
focus on BS as the analogous claim for CS follows similarly. Let Y and Yp be as in the proof of
Lemma 2.1. Note that

P[Y ∈ AS ∧ Yp′ ] = E

[

Yp′
∏

p∈S
Yp

∏

p∈P ′
W \S

(1− Yp)

]

=
∑

0≤j≤4k
(−1)j

∑

T⊆(P
′
W

\S

j
)

E

[

Yp′
∏

p∈S
Yp

∏

p∈T
Yp

]

±
∑

T⊆(P
′
W

\S

4k
)

E

[

Yp′
∏

p∈S
Yp

∏

p∈T
Yp

]

=
∑

0≤j≤4k
(−1)j

∑

T⊆(P
′
W

\S

j
)

(p′)−1
∏

p∈S∪T
p−1 ±

(

(p′)−1
(

∏

p∈S
p−1

)

exp(−3k log k) + (2W )4k/n

)

= (1± α2)(p′)−1
∏

p∈S
p−1

∏

p∈P ′
W \S

(1− p−1)

7



where we have used that n1/3(W )4k ≤ n1/4. The result follows immediately. �

We will also require that in any bipartite graph with balanced vertex parts and a very large
minimum degree there are a large number of perfect matchings. The argument is identical to that
of Alon, Rödl, and Ruciński [1, Theorem 1], but we reprove the result in order to quantify the
dependencies.

Lemma 3.5. Let G = (A ∪B,E) be a bipartite graph such that |A| = |B| = n and ∆ = ∆(KA,B \
G), the maximum degree of the bipartite complement, satisfies ∆ ≤ n/3. Then there are at least
((n− 2∆)/e)n perfect matchings in G.

Proof. By [1, Theorem 3], if for any X ⊆ A, Y ⊆ B,

k(|X|+ |Y |) + E(A \X,B \ Y ) ≥ kn

holds, then G has a k-factor (and therefore a subgraph of G which is k-regular). Let k = n − 2∆
and note that for |X| + |Y | ≥ n the above inequality is immediate. If |X| + |Y | ≤ n, suppose that
|X| ≥ |Y | (the other case being analogous) and note that E(A \X,B \ Y ) ≥ (n − |X|)(n − |Y |)−
(n− |X|)∆ = (n− |X|)(n − |Y | −∆) and hence

k(|X|+ |Y |) + E(A \X,B \ Y ) ≥ k(|X|+ |Y |) + (n− |X|)(n − |Y | −∆).

Therefore it suffices to check that k(|X|+ |Y |)+ (n−|X|)(n−|Y |−∆) ≥ kn which is equivalent to

k(n− |X| − |Y |) ≤ (n− |X|)(n − |Y | −∆).

Fix |X|+ |Y | = t and imagine varying |X| with t ≥ |X| ≥ |Y | = t− |X|. By concavity of the right
side, it suffices to check when |X| = t, |Y | = 0 and |X| = |Y | = t/2. In the first case the inequality
follows as k ≤ n−∆ and in the second case the inequality is equivalent to

k(n− t) ≤ (n− t/2)(n − t/2−∆).

Viewing the difference of the right and left hand sides as functions of t, the derivative is seen to be
t/2 + k − n+∆/2 and thus the inequality is closest when t = 2n− 2k −∆ = 3∆. It becomes

(n− 2∆)(n − 3∆) ≤ (n− 3∆/2)(n − 5∆/2)

which is trivially true as n ≥ 3∆.
Now let G′ be the corresponding subgraph of G which is exactly k-regular. Then by the solution

of the van der Waerden conjecture on permanents due to Egorychev [4] and Falikman [5] it follows
that the number of perfect matchings in G′ is at least (k/n)nn! ≥ (k/e)n. �

Finally we will repeatedly require the Chernoff bound.

Lemma 3.6 (Chernoff bound). Let X be either:

• a sum of independent random variables, each of which takes values in [0, 1]
• hypergeometrically distributed (with any parameters).

Then for any δ ≥ 0 we have

P[X ≥ (1 + δ)EX] ≤ exp(−δ2EX/(2 + δ)).

3.2. Proof of the lower bound. In order to complete the proof of Theorem 1.2, we devise a
procedure that produces a triplet (σ,RB , RC) where RB ⊆ [n] and RC ⊆ [n]o with |RB |, |RC | ≤
n exp(nαc) and such that σ is coprime. The number of possible outcomes of such a procedure is

bounded above by C(n) exp(nαc/2) due to the size bounds on RB , RC and therefore it suffices to
provide a lower bound on the number possible outcomes.

Let MB denote the set of labels
⋃

S⊆P ′
W

|S|<k

{S}∪{∗} and let MC denote the set of labels
⋃

S⊆P ′
W

|S|<k

{S}∪

{∗}. We first construct (via a randomized procedure) a pair of maps φ1 : [n] → MB and φ2 : [n] →
MC which will serve as a template for the procedure producing (σ,RB , RC).
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Lemma 3.7. There exist assignment functions φ1 : [n] → MB and φ2 : [n] → MC such that:

• φ1(m1) = ∗ for m1 ∈ B≥k and φ2(m2) = ∗ for m2 ∈ C≥k.
• If S ∩ T 6= ∅ then x ∈ BS implies φ1(x) 6= T , and y ∈ CT implies φ2(y) 6= S.
• For |S1|, |S2| < k, we have

βS1,S2 := |{m1 ∈ BS1 : φ1(m1) = S2}| = |{m2 ∈ CS2 : φ2(m2) = S1}|.

• For all |S1|, |S2| < k,

βS1,S2 = (1± exp(−Ω((log n log log n)1/2)))n
∏

p∈S1

p−1
∏

p∈S2

p−1
∏

p∈P ′
W \(S1∪S2)

(1− 2p−1)

• |{m1 : φ1(m1) = ∗}| ≤ 2α1/2n.
• |{m2 : φ2(m2) = ∗}| ≤ 2α1/2n.

Proof. We construct initial random assignment functions which essentially only fail the third bullet
point, and then “throw out” a small fraction of values by reassigning them to ∗ in order to balance the
two sides. For m1 ∈ B≥k deterministically assign φ′1(m1) = ∗ and for m2 ∈ C≥k deterministically
assign φ′2(m2) = ∗. Given m1 ∈ BS with |S| < k, for each |T | < k we assign φ′1(m1) = T with
probability

1S∩T=∅ ·
∏

p∈T
(p− 1)−1

∏

p∈P ′
W \(S∪T )

(1− (p − 1)−1)

and otherwise set φ′1(m1) = ∗. Analogously, given m2 ∈ CS with |S| < k, for |T | < k we assign
φ′2(m2) = T with probability

1S∩T=∅ ·
∏

p∈T
(p− 1)−1

∏

p∈P ′
W \(S∪T )

(1− (p − 1)−1)

and else set φ′2(m2) = ∗. Evidently the stated probabilities add to at most 1 when summing over
|T | < k, so this is well-defined.

By Lemma 3.2 we have for |S1|, |S2| < k which are disjoint that

E|{m1 ∈ BS1 : φ
′
1(m1) = S2}|

= (1± α2)n
∏

p∈S1

p−1
∏

p∈P ′
W \S1

(1− p−1)
∏

p∈S2

(p− 1)−1
∏

p∈P ′
W \(S1∪S2)

(1− (p− 1)−1)

= (1± α2)n
∏

p∈S1

p−1
∏

p∈S2

p−1
∏

p∈P ′
W \(S1∪S2)

(1− 2p−1)

and analogously

E|{m2 ∈ CS2 : φ
′
2(m2) = S1}| = (1± α2)n

∏

p∈S1

p−1
∏

p∈S2

p−1
∏

p∈P ′
W \(S1∪S2)

(1− 2p−1).

Applying Chernoff (Lemma 3.6) it follows with probability at least 1/2 that if for |S1|, |S2| < k
disjoint we set

βS1,S2 = min(|{m1 ∈ BS1 : φ
′
1(m1) = S2}|, |{m2 ∈ CS2 : φ

′
2(m2) = S1}|)

then

βS1,S2 = (1± 2α2)n
∏

p∈S1

p−1
∏

p∈S2

p−1
∏

p∈PW \(S1∪S2)

(1− 2p−1).

To construct φ1, for each pair of disjoint |S1|, |S2| of size less than k assign βS1,S2 values of S1 to
map to the label S2. Send all remaining values in S1, if any, to ∗ (and set B≥k = ∗ as before). For
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φ2, assign βS1,S2 values of S2 to map to the label S1 and send all remaining values in S2, if any, to
∗. This is well-defined since clearly

∑

|S2|<k

βS1,S2 ≤
∑

|S2|<k

|{m1 ∈ BS1 : φ
′
1(m1) = S2}| ≤ |BS1 |

and similar for φ′2.
The first four properties follow immediately. The final two properties follow from noting that

∣

∣

∣
|{m1 ∈ BS1 : φ

′
1(m1) = S2}| − |{m2 ∈ CS2 : φ

′
2(m2) = S1}|

∣

∣

∣
≤ 8α2βS1,S2 ,

so the extra amount of values assigned the label ∗ is not significant, and by citing the second part
of Lemma 3.2. �

To construct (σ,RB , RC), we define βS1,S2 as in Lemma 3.7, β1
∗ = |{m1 : φ1(m1) = ∗}|, and

β2
∗ = |{m2 : φ2(m2) = ∗}|. Next we consider the following procedure:

• Fix φ1, φ2 satisfying Lemma 3.7 with these values of β.
• Choose σ1 uniformly randomly among all permutations of [n] with σ1(BS) = BS for all S

and σ2 uniformly randomly among all permutations of [n]o with σ2(CS) = CS for all S.
• Let BS1,S2 = {m1 ∈ BS1 : φ1(σ1(m1)) = S2} and CS1,S2 = {m2 ∈ CS2 : φ2(σ2(m2)) = S1} for
|S1|, |S2| < k. Furthermore let RB = {m1 : φ1(σ1(m1)) = ∗} and RC = {m2 : φ2(σ2(m2)) =
∗}

• For disjoint S1, S2 of size at most k with (S1, S2) 6= (∅, ∅), let σ form a uniformly random
matching between BS1,S2 and CS1,S2 not violating the coprimality condition.

• For (S1, S2) = (∅, ∅) let σ be a uniformly random matching between B∅,∅∪RB and C∅,∅∪RC .
• Output (σ,RB , RC).

Note that this fully specifies σ since if S1 ∩ S2 6= ∅ we have x ∈ BS1 implies φ1(x) 6= S2 and
similar for φ2. Furthermore, given the output (σ,RB , RC) we can mostly reconstruct the procedure.
In particular, for |S1|, |S2| < k, BS1,S2 is the set of values in BS1 mapped to CS2 by σ for all
(S1, S2) 6= (∅, ∅), while B∅,∅ is the set of values in B∅ \RB mapped to C∅ ∪RC . This determines σ1
up to right-multiplication by some ξ1 which preserves the sets BS1,S2 for all |S1|, |S2| < k as well as
RB , and similar for σ2.

Therefore, if X is the number of possible outputs (σ,RB , RC) where σ is coprime and Y is the
number of ways to run the above procedure where the output is coprime, we have

Y ≤ X · β1
∗ !β

2
∗ !

∏

|S1|,|S2|<k
S1∩S2=∅

βS1,S2 !
2 ≤ C0(n) · n

β1
∗+β2

∗

∏

|S1|,|S2|<k
S1∩S2=∅

βS1,S2 !
2. (3.1)

Now we provide a lower bound on Y .
Note that by Lemma 3.4 and the Chernoff bound (Lemma 3.6), with probability at least 3/4 we

have that for all disjoint |S1|, |S2| < k the coprimality bipartite graph between parts BS1,S2 and

CS1,S2 for (S1, S2) 6= (∅, ∅) has at most 4W−1/2βS1,S2 edges missing from each vertex. Furthermore
with probability 3/4 the non-coprimality bipartite graph between B∅,∅ ∪ RB and C∅,∅ ∪RC has at

most 4W−1/2β∅,∅ + |RB | edges missing from each vertex. Using that |β∅,∅| ≥ n exp(−2 log log n)

and |RB | = β1
∗ ≤ 2α1/2n, we see that the maximum degree of the complement bipartite graph is

bounded by (4W−1/2 + α1/3)β∅,∅, say.
Therefore applying Lemma 3.5 shows that there are

Y ≥ (3/4)2β1
∗ !β

2
∗ !

∏

|S|<k

|BS |!
∏

|S|<k

|CS |! ·
∏

|S1|,|S2|<k
S1∩S2=∅

(βS1,S2/e)
βS1,S2e−4(4W

−1/2+α1/3)βS1,S2 (3.2)
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possible valid ways to run the procedure. Now, given (3.1) and (3.2), a nearly identical calculation
as in Section 2 demonstrates

C0(n) ≥ exp(−nα1/4)n!

(

∏

p>2

(p− 1)2(1−1/p)

p · (p − 2)(1−2/p)

)n

.

Finally, using Lemma 3.1 implies the result.
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