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SPARSE RECOVERY PROPERTIES OF DISCRETE RANDOM MATRICES

ASAF FERBER, ASHWIN SAH, MEHTAAB SAWHNEY, AND YIZHE ZHU

Abstract. Motivated by problems from compressed sensing, we determine the threshold behavior
of a random n× d ±1 matrix Mn,d with respect to the property “every s columns are linearly inde-

pendent”. In particular, we show that for every 0 < δ < 1 and s = (1− δ)n, if d ≤ n
1+1/2(1−δ)−o(1)

then whp every s columns of Mn,d are linearly independent, and if d ≥ n
1+1/2(1−δ)+o(1) then whp

there are some s linearly dependent columns.

1. Introduction

Compressed sensing is a modern technique of data acquisition, which is at the intersection of
mathematics, electrical engineering, computer science, and physics, and has tremendously grown in
recent years. Mathematically, we define an unknown signal as a vector x ∈ R

d, and we have access

to linear measurements: that is, for any vector a ∈ R
d, we have access to a · x =

∑d
i=1 aixi. In

particular, if a(1), . . .a(n) ∈ R
d are the measurements we make, then we have an access to the vector

b := Ax, where

A :=







− a(1) −
...

− a(n) −






.

The tasks of compressed sensing are: (i) to recover x from A and b as accurately as possible, and
(ii) doing so in an efficient way. In practice, one would like to recover a high dimensional signal
(that is, d is large) from as few measurements measurements as possible (that is, n is small). In
this regime, for an arbitrary vector x ∈ R

d the problem is ill-posed: for any given b, the solution of
b = Ax, if exists, forms a (translation of) linear subspace of dimension at least d−n, and therefore
there is no way to uniquely recover the original x.

A key quantity to look at to guarantee the success of (unique) recovery is the sparsity of the
vector x, and we say that a vector is s-sparse if its support is of size at most s. That is, if

|supp(x)| = {i : xi 6= 0} ≤ s.

A neat observation is that having at most one s-sparse solution to Ax = b for every b is equivalent
to saying that A is 2s-robust (that is, every 2s columns of A are linearly independent). Indeed, if
we have two s-sparse vectors x 6= y such that Ax = Ay then x − y is a nonzero 2s-sparse vector
in the kernel of A. For the other direction, if there is a nonzero 2s-sparse vector in the kernel of
A, one can split its support into two disjoint sets of size at most s each and consider the vectors
restricted to these sets, one of which is multiplied by −1.

If we take A to be a random Gaussian matrix A (or any other matrix drawn from some “nice”
continuous distribution), then we clearly have that with probability one A is s-robust for n = s
and any d ∈ N (and in particular, one can uniquely recover s/2-sparse vectors). Moreover, in their
seminal work, Candes and Tao [3] showed that it is possible to efficiently reconstruct x with very
high accuracy by solving a simple linear program if we take n = O(s log(d/s)).
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fellowship. Sah and Sawhney were supported by NSF Graduate Research Fellowship Program DGE-1745302. Sah
was supported by the PD Soros Fellowship. Zhu was supported by NSF-Simons Research Collaborations on the
Mathematical and Scientific Foundations of Deep Learning.
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In this paper, we are interested in the compressed sensing problem with integer-valued measure-
ment matrices and with entries of magnitude at most k. Integer-valued measurement matrices have
found applications in measuring gene regulatory expressions, wireless communications, and natural
images [1, 4, 12], and they are quick to generate and easy to store in practice [13, 14]. Under this
setting, for integer-valued signal x, we can have exact recovery even if we allow some noise e with
‖e‖∞ < 1/2 (for more details, see [10]).

The first step is to understand when the compressed sensing problem is well-posed for given
s, n, k, and d. Namely, for which values of s, n, k and d does an s-robust n×d integer-valued matrix
with entries in {−k, . . . , k} exist? For s = n, observe that if d ≥ (2k + 1)2n, then by pigeonhole
one can find n columns for which their first two rows are proportional and therefore are not linearly
independent. In particular, we have d = Ok(n). In [10], Fukshansky, Needell, and Sudakov showed

that there exists an s-robust A with d = Ω(
√
kn), using the result of Bourgain, Vu and Wood

[2] on the singularity of discrete random matrices (in fact, the more recent result by Tikhomirov
[17] gives a better bound for k = 1). Konyagin and Sudakov [15] improved the upper bound to

d = O(k
√
log kn), and they gave a deterministic construction of A when d ≥ 1

2k
n/(n−1) > n.

When 1 ≤ s ≤ n − 1 and k = 2, Fukshansky and Hsu [9] gave a deterministic construction such

that d ≥
(

n+2
2

)1+ 2
3s−2 . When s = o(log n), this implies we can take d = ω(n). This result hints

that if we allow s to be “separated away” from n, then one could take d to be “very large”. A
natural and nontrivial step to understand the s-robustness property of matrices is to investigate
the typical behavior. For convenience, we will focus on the case k = 1 (even though our argument
can be generalized to all fixed k), and we define, for all n, d ∈ N, the random variable Mn,d which
corresponds to an n×d matrix with independent entries chosen uniformly from {±1}. For 1 ≤ s ≤ n,
we would like to investigate the threshold behavior of M := Mn,d with respect to being s-robust.
That is, we wish to find some d∗ := d(s, n) such that

lim
n→∞

P[M is s-robust] =

{

0 d/d∗ → ∞
1 d/d∗ → 0.

It is trivial to show (deterministically) that if s = n and M is s-robust, then d ≤ 2n. What if we
allow s to be “separated away” from n? That is, what if s = (1− δ)n for some 0 < δ < 1? It is not
hard to show (and it follows from the proof of Lemma 3.3) that the probability for a random n×n

matrix to have rank at least (1 − δ)n is at least 1 − 2−Ω(δ2n2). Therefore, one could think that a

typical Mn,d might (1− δ)n-robust for some d = 2n
1−o(1)

. This turns out to be wrong as we show in
the following simple theorem:

Theorem 1.1. For any fixed 0 < δ < 1 there exists C > 0 such that for sufficiently large n ∈ N the
following holds. If s = (1−δ)n and d ≥ Cn1+1/(1−δ), then every ±1 n×d matrix M is not s-robust.

Proof. Given any subset v1, . . . ,vs/2 ∈ {±1}n, by Spencer’s “six standard deviations suffice” [16],

there exist some x1, . . . , xs ∈ {±1} for which ‖
∑s

i=1 xivi‖∞ = O(
√
n) (a simple Chernoff bound

suffices if one is willing to lose a
√
log n factor). Fix such a combination for each s/2-subset of

columns. Since there are at most (3C ′√n)
n

integer-valued vectors in the box [−C ′√n,C ′√n]n, and
since

(

d

s/2

)

≥
(

d

s

)s/2

=

(

Cn1/(1−δ)

1− δ

)(1−δ)n/2

>
(

3C ′√n
)n

,

by pigeonhole as long as C is large enough, there are two s/2-subsets with some signed sum equal
to the same vector. Subtracting the corresponding kernel vectors leads to a nonzero s-sparse kernel
vector of M (since their supports are not the same), proving the result. �

In our main result we determine the (typical) asymptotic behavior up to a window of (log n)ω(1).
2



Theorem 1.2. For any fixed 0 < δ < 1, let n ∈ N be sufficiently large, let s = (1 − δ)n, and let
ε = ω(log log n/ log n). We have that:

(1) If d ≤ n1+1/(2−2δ)−ε then whp Mn,d is s-robust.

(2) If d ≥ n1+1/(2−2δ)+ε then whp Mn,d is not s-robust.

We believe that by optimizing our bounds/similar methods one would be able push the bounds

in Theorem 1.2 up to a constant factor of n1+1/(2−2δ) (though we did not focus on this aspect). It
would be interesting to obtain the 1 + o(1) multiplicative threshold behavior.

2. Proof outline

We first outline the proof of Theorem 1.2. We will prove it over Fp for some prime p = eω(log
2 n)

to be chosen later (a stronger statement). Our strategy, at large, is to generate M as

M =

(

M1

M2

)

where M1 = Mn1,d and M2 = Mn2,d, with n1 ≈ n and n2 = o(n). The proof consists of the following
two phases:

(1) Phase 1: Given any vector a ∈ F
d
p, we let

ρFp(a) = max
x∈Fp

P

[

d
∑

i=1

aiξi = x

]

, (2.1)

where the ξis are i.i.d. Rademacher random variables. In this phase we will show that
(a) M1 is whp such that for all a ∈ F

d
p, if | suppa| ≤ s := (1 − δ)n and M1a = 0, then

ρFp(a) = e−ω(log2 n), and
(b) M1 is whp such that every s-subset of its columns has rank s− o(s).

(2) Phase 2: Conditioned on the above properties, we will use the extra randomness of M2 to
show that for a specific set of s columns, after exposing M2, the probability that it does not

have full rank is o
(

1/
(d
s

)

)

, and hence a simple union bound will give us the desired result.

In this strategy, it turns out that Phase 1(a) is the limiting factor, i.e., ruling out structured kernel
vectors.

For the proof of the upper bound in Theorem 1.2, we exploit this observation. We show using
the second-moment method that it is highly likely that some 2⌊(1− δ)n/2⌋ columns sum to the zero
vector (corresponding to an all 1s, highly structured kernel vector).

3. Proof of the lower bound in Theorem 1.2

In this section we prove Theorem 1.2. Let (say) p ≈ elog
3 n be a prime, let d = n1+1/(2−2δ)−ε and

s = (1 − δ)n as given, and n1 = (1 − β)n where β = ω(1/ log n) and β = o(log log n/ log n). As
described in Section 2, our proof consists of two phases, each of which will be handled separately.

3.1. Phase 1: no sparse structured vectors in the kernel of M1. Our first goal is to prove
the following proposition.

Proposition 3.1. Mn1,d is whp such that for every (1− δ)n-sparse vector a ∈ F
d
p \{0}, if M1a = 0

then ρFp(a) = e−ω(log2 n).

In order to prove the above proposition, we need some auxiliary results.

Lemma 3.2. Mn1,d is whp n/ log4 n-robust over Fp.
3



Proof. Observe that for any a ∈ F
d
p \{0} we trivially have that P[M1a = 0] ≤ 2−n1 = 2−Θ(n). Since

there are at most
(

d

n/ log4 n

)

pn/ log
4 n ≤

(

edp log4 n

n

)n/ log4 n

= 2o(n)

n/ log4 n-sparse vectors a ∈ F
d
p, by a simple union bound we obtain that the the probability for

such an a to satisfy M1a = 0 is o(1). This completes the proof. �

In particular, by combining the above lemma with the Erdős-Littlewood-Offord inequality [5], we
conclude that if a ∈ F

d
p is (1 − δ)n-sparse and M1a = 0, then ρFp(a) = O(log2 n/n1/2). However,

to prove Proposition 3.1, we need a stronger estimate.
The following lemma asserts that every subset of s columns in M1 has large rank. It will be

crucial in Phase 2.

Lemma 3.3. Let t = ω(log n). Then, whp M1 = Mn1,d is such that every subset of s columns
contains at least s− t linearly independent columns.

Proof. Consider the event that one such subset has rank at most s − t. There are
(d
s

)

≤ ds ≤ nn

possible choices of columns. For each such choice, there are at most 2s ≤ 2n ways to choose a
spanning set of r ≤ s − t columns. Such a subset has span containing at most 2s many {±1}
vectors (indeed, consider a full-rank r × r sub-block; any {±1} vector in the span of the columns
is determined by its value on these r coordinates), so the probability that the remaining at least

t = ω(log n) columns are in the span is at most (2s/2n1)t ≤ (2−(δ−β)n)t = o(n−n). Taking a union
bound, the result follows. �

Next, we state a version of Halász’s inequality ([11, Theorem 3]) as well as a “counting inverse
Littlewood-Offord theorem” as was developed in [7].

Definition 3.4. Let a ∈ F
n
p and k ∈ N. We define R∗

k(a) to be the number of solutions to

±ai1 ± a2 ± . . .± ai2k ≡ 0 mod p

with |{i1, . . . , i2k}| > 1.01k.

Theorem 3.5 ([7, Theorem 1.4]). Given an odd prime p, integer n, and vector a = (a1, . . . , an) ∈
Fn
p \ {0}, suppose that an integer 0 ≤ k ≤ n/2 and positive real L satisfy 30L ≤ | supp (a)| and

80kL ≤ n. Then

ρFp(a) ≤
1

p
+ C3.5

R∗
k(a) + ((40k)0.99n1.01)k

22kn2kL1/2
+ e−L.

Theorem 3.6 ([7, Theorem 1.7]). Let p be a prime, let k, n ∈ N, s ∈ [n] and t ∈ [p]. Define
Bk,m,≥t(s, d) as the following set:

{

a ∈ F
d
p : | supp (a)| ≤ s, and R∗

k(b) ≥ t · 2
2k · |b|2k

p
for every b ⊆ a with |b| ≥ m

}

.

We have

|Bk,m,≥t(s, d)| ≤
(

d

s

)

(m

s

)2k−1
(1.01t)m−sps.

We now are in position to prove Proposition 3.1. The proof is quite similar to the proofs in [6–8].

Proof of Proposition 3.1. Let k = log3 n and m = n/ log4 n, p ≈ elog
3 n.

First we use Lemma 3.2 to rule out vectors a with a support of size less than n/ log4 n. Next, let

(say) L = n/ log10 n and let
√
L ≤ t ≤ p.

4



Consider a fixed a ∈ Bk,m,≥t(s, d) \ Bk,m,≥2t(s, d) and we wish to bound the probability that
M1a = 0. By definition, there is a set S ⊆ supp(a) of size at least m such that

R∗
k(a|S) < 2t · 2

2k|S|2k
p

. (3.1)

Since the rows are independent and since ρFp(a) ≤ ρFp(a|S), the probability that M1a = 0

is at most ρFp(a|S)n1 . Furthermore, by Theorem 3.5 and the given conditions, which guarantee

30L ≤ m ≤ | supp(a|S)| and 80kL ≤ m ≤ |S|, and by
√
L ≤ t ≤ p, we have

ρFp(a|S) ≤
1

p
+ C3.5

R∗
k(a|S) + ((40k)0.99|S|1.01)k

22k|S|2kL1/2
+ e−L

≤ 1

p
+

2C3.5t

p
√
L

+
10kC3.5
L1/2

(

k

|S|

)0.99k

+ e−L

≤ Ct

p
√
L

(3.2)

for all sufficiently large n by (3.1). All in all, taking a union bound over all the possible choices of
a (Theorem 3.6), and using the fact that s = (1− δ)n and n1 = (1 − β)n with β = ω(1/ log n), we
obtain the bound

(

d

s

)

(m

s

)2k−1
(1.01t)m−sps

(

Ct

p
√
L

)n1

≤
(

ed

s

)s

(1.01t)m
( p

1.01t

)s
(

Ct

p
√
L

)(1−β)n

≤
(

ed

(1− δ)n

)(1−δ)n

2o(n)
(

1.01t

p

)(δ−β)n (C(log n)5√
n

)(1−β)n

= o(1/p)

on the probability M1 has such a kernel vector for sufficiently large n. Here we used the bounds
d ≤ n1+1/(2−2δ)−ε, ε = ω(log log n/ log n) and β = o(ε). Union bounding over all possible values of

t shows that there is an appropriately small chance of having such a vector for any t ≥
√
L.

Finally, note that Bk,m,≥p(s, d) is empty and thus the above shows that kernel vectors a cannot
be in Bk,m,≥

√
L(s, d). A similar argument as in (3.1) and (3.2) shows that

ρFp(a) ≤
C ′

p
,

and the result follows. �

3.2. Phase 2: boosting the rank using M2. Here we show that, conditioned on the the conclu-

sions of Proposition 3.1 and Lemma 3.3, after exposing M2 whp M =

(

M1

M2

)

is s-robust.

To analyze the probability that a given subset of s columns is not of full rank, we will use the
following procedure:

Fix any subset of s columns in M1, and let C := (c1, . . . , cs) be the submatrix in M1 that consists
of those columns. We reveal M2 according to the following steps:

(1) Let I ⊆ [s] be the largest subset of indices such that the columns {ci | i ∈ I} are linearly
independent. By Lemma 3.3 we have that T := |I| ≥ s−t = (1−δ)n−t, where t = ω(log n).
Without loss of generality we may assume that I := {c1, . . . , cT } and T ≤ s− 1 (otherwise
we have already found s independent columns of M). By maximality, we know that cT+1

can be written (uniquely) as a linear combination of c1, . . . , cT . That is, there exists a
5



unique combination for which
∑T

i=1 xici = cT+1. In particular, this means that

T
∑

i=1

xici − cT+1 = 0,

and hence the vector x = (0, . . . , x1, . . . , xT ,−1, . . . , 0)T ∈ F
d
q is (T +1)-sparse and satisfies

M1x = 0. Since T + 1 ≤ s, by Proposition 3.1 we know that ρFp(x) = 2−ω(log2 n).
(2) Expose the row vector of dimension T + 1 from M2 below the matrix (c1, . . . , cT+1). We

obtain a matrix of size (n1 + 1)× (T + 1). Denote the new row as (y1, . . . , yT+1).
(3) If the new matrix is of rank T + 1, then consider this step as a “success”, expose the entire

row and start over from (1). Otherwise, consider this step as a “failure” (As we failed to

increase the rank) and observe that if

[

c1 . . . cT+1

y1 . . . yT+1

]

is not of full rank, then we must

have

x1y1 + x2y2 + . . .− yT+1 = 0.

The probability to expose such a vector y is at most ρFp(x) = e−ω(log2 n).

(4) All in all, the probability for more than βn − t failures is at most
(βn

t

)

(

e−ω(log2 n)
)βn−t

=

e−ω(n logn) = o
(

(d
s

)−1
)

. Therefore, by the union bound we obtain that whp M is s-robust.

This completes the proof.

4. Proof of the upper bound in Theorem 1.2

We first perform preliminary computations to compute a certain correlation. This boils down to
estimating binomial sums. Let ξi, ξ

′
i be independent Rademacher variables and define

α(n,m) =
P[ξ1 + · · ·+ ξn = ξ1 + · · ·+ ξm + ξ′m+1 + · · · + ξ′n = 0]

P[ξ1 + · · ·+ ξn = 0]2
.

Clearly α(n,m) ≤ α(n, n) ≤ 10
√
n by [5].

Lemma 4.1. Fix λ > 0. If n is even and 0 ≤ m ≤ (1− ε)n we have

α(n,m) = 1 +O(m/(εn)).

Proof. We have

α(n,m) ≤ supk P[ξ1 + · · ·+ ξn−m = k]

P[ξ1 + · · ·+ ξn = 0]2
≤

2−(n−m)
( n−m
⌊(n−m)/2⌋

)

2−n
( n
n/2

) = 1 +O(m/(n−m)). �

We will also need a more refined bound when m is small.

Lemma 4.2. If n is even and 0 ≤ m ≤ n1/2, we have

α(n,m) = 1 +O(m2/n2).

Proof. Using the approximation 1 − x = exp(−x − x2/2 + O(x3)) for |x| ≤ 1/2 we see that if y is
an integer satisfying 1 ≤ y ≤ x/2 then

x(x− 1) · · · (x− y + 1) = xy exp

(

−
y−1
∑

i=0

i

x
−

y−1
∑

i=0

i2

2x2
+O

(y4

x3

)

)

= xy exp

(

− y(y − 1)

2x
− y(y − 1)(2y − 1)

12x2
+O

(y4

x3

)

)

. (4.1)

6



We now apply this to the situation at hand. We see α(n,m) is equal to

2−(2n−m)
∑s

k=0

(m
k

)( n−m
n/2−k

)2

2−2n
( n
n/2

)2

=2m
m
∑

k=0

(

m

k

)(

(n/2)(n/2 − 1) · · · (n/2− k + 1)× (n/2)(n/2 − 1) · · · (n/2− (m− k) + 1)

n(n− 1) · · · (n−m+ 1)

)2

=2m
m
∑

k=0

(

m

k

)(

(n/2)me−
k(k−1)

n
− k(k−1)(2k−1)

3n2 − (m−k)(m−k−1)
n

− (m−k)(m−k−1)(2m−2k−1)

3n2 +O(m4/n3)

nme−
m(m−1)

2n
−m(m−1)(2m−1)

12n2 +O(m4/n3)

)2

=2−m
m
∑

k=0

(

m

k

)

exp

(

− m3 − 4mk(m− k) + n(2k −m)2 − nm

2n2
+O(m2/n2)

)

=2−m
m
∑

k=0

(

m

k

)(

1− m3 − 4mk(m− k)− nm

2n2
+O(m2/n2)

)(

1− (2k −m)2

2n
+O

(

(2k −m)4

n2

))

=2−m
m
∑

k=0

(

m

k

)(

1− m3 − 4mk(m− k)− nm

2n2

)(

1− (2k −m)2

2n

)

+O(m2/n2).

In the third line we used (4.1) and in the fourth line we simplified the expression and used k ≤
m ≤ n1/2 to subsume many terms into an error of size O(m2/n2). The fifth line used exp(x) =
1 + x + O(x2) for |x| ≤ 1 and the sixth line uses 2−m

(m
k

)

(2k −m)4 ≤ 2m2 exp(−(2k −m)2/100).
Finally, this sum equals

α(n,m) = 1− 3nm2 − 3m3 + 2m2

4n3
+O(m2/n2) = 1 +O(m2/n2). �

We are ready to prove the upper bound in Theorem 1.2.

Proof of the upper bound in Theorem 1.2. We are given δ ∈ (0, 1) and ε = ω(log log n/ log n), with

d = n1+1/(2−2δ)+ε. Let s = 2⌊(1 − δ)n/2⌋. We consider an n× d random matrix with independent
Rademacher entries and wish to show it is not s-robust whp. We may assume ε < 1/2 as increasing
d makes the desired statement strictly easier.

For an s-tuple of columns labeled by index set S ⊆ [d], let XS be the indicator of the event that
these columns sum to the zero vector. Let X =

∑

S∈([d]s )
XS , and let (ξ1, . . . , ξd) be a vector of

independent Rademachers. We have

EX =

(

d

s

)

EX[s] =

(

d

s

)

P[ξ1 + · · · + ξs = 0]n =

(

d

s

)(

2−s

(

s

s/2

))n

and

VarX = EX2 − (EX)2 =
∑

S,T∈([d]s )

(

P

[

∑

i∈S
ξi =

∑

j∈T
ξT = 0

]n
− P[ξ1 + · · ·+ ξs = 0]2n

)

= (EX)2 · 1
(d
s

)2

∑

S,T∈([d]s )

(

P

[

∑

i∈S ξi =
∑

j∈T ξT = 0
]n

P[ξ1 + · · ·+ ξn = 0]2n
− 1

)

= (EX)2
s
∑

m=0

(

s
m

)(

d−s
s−m

)

(d
s

) · (α(s,m)n − 1).

For every η > 0 and m ≤ cηn
1/2, where cη is a sufficiently small absolute constant in terms of η, we

see |α(s,m)n−1| ≤ η by Lemma 4.2. For cηn
1/2 < m ≤ (1−ε/8)s we have α(s,m)n ≤ exp(O(m/ε))

7



by Lemma 4.1. For this range we have, since m/s ≥ nδ/2s/d,
( s
m

)( d−s
s−m

)

(d
s

) ≤ (s+ 1)P[Bin(s, s/d) ≥ m] ≤ exp(−sD(m/(2s)||s/d)) ≤ exp(−m(δ/4) log n)

by Chernoff–Hoeffding (the fact that Bin(n, p) exceeds nq for q ≥ p with probability at most
exp(−nD(q||p)), where this is the KL-divergence). Thus

(1−ε)s
∑

m=c
√
n

( s
m

)( d−s
s−m

)

(d
s

) · (α(s,m)n − 1) ≤
(1−ε)s
∑

m=c
√
n

exp(O(m/ε)) · exp(−m(δ/4) log n) = o(1)

as ε = ω(log log n/ log n).
Finally for (1− ε/8)s ≤ m ≤ s we have

s
∑

m=(1−ε)s

( s
m

)( d−s
s−m

)

(d
s

) · (α(s,m)n − 1) ≤
s
∑

m=(1−ε)s

( s
m

)( d−s
s−m

)

(d
s

) (10
√
n)n ≤ 2s

( d
εs/8

)

(d
s

) (10
√
n)n.

Thus
s
∑

m=(1−ε)s

( s
m

)( d−s
s−m

)

(d
s

) · (α(s,m)n − 1) ≤
(

10s

εd

)(1−ε/8)s

(10
√
n)n ≤ (n− 1

2−2δ
−ε/2)(1−ε/8)(1−δ)n(10

√
n)n,

since d = n1+1/(2−2δ)+ε and s = 2⌊(1 − δ)n/2⌋ along with ε = ω(log log n/ log n). We see that this
is o(1). Thus

VarX ≤ (EX)2 ·
(

η + o(1) + o(1)

)

≤ 2η(EX)2

for n sufficiently large, and thus X > 0 with probability at least 1− 2η. �
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