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ENUMERATING MATROIDS AND LINEAR SPACES

MATTHEW KWAN, ASHWIN SAH, AND MEHTAAB SAWHNEY

Abstract. We show that the number of linear spaces on a set of n points and the number of rank-3

matroids on a ground set of size n are both of the form (cn+o(n))n
2/6, where c = e

√
3/2−3(1+

√
3)/2.

This is the final piece of the puzzle for enumerating fixed-rank matroids at this level of accuracy: the
numbers of rank-1 and rank-2 matroids on a ground set of size n have exact representations in terms
of well-known combinatorial functions, and it was recently proved by van der Hofstad, Pendavingh,

and van der Pol that for constant r ≥ 4 there are (e1−rn + o(n))n
r−1/r! rank-r matroids on a

ground set of size n. In our proof, we introduce a new approach for bounding the number of clique
decompositions of a complete graph, using quasirandomness instead of the so-called entropy method

that is common in this area.

1. Introduction

Matroids (also sometimes known as combinatorial geometries) are fundamental objects that ab-
stract the combinatorial properties of linear independence in vector spaces. Specifically, a matroid
consists of a ground set E and a collection I of subsets of E called independent sets1. The defining
properties of a matroid are that:

• the empty set is independent (that is, ∅ ∈ I);
• subsets of independent sets are independent (if A′ ⊆ A ⊆ E and A ∈ I , then A′ ∈ I);
• if A and B are independent sets, and |A| > |B|, then an independent set can be constructed

by adding an element of A \B to B (there is a ∈ A\B such that B ∪ {a} ∈ I).

Observe that any finite set of elements in a vector space (over any field) naturally gives rise to a
matroid, though most matroids do not arise this way. The rank of a matroid is the maximum size
of an independent set.

Enumeration of matroids is a classical topic, though the state of our knowledge is rather incom-
plete. Some early upper and lower bounds on the total number of matroids on a ground set of size
n were obtained in the 1970s by Piff and Welsh [16], Piff [15] and Knuth [9], and these bounds
were improved only recently by Bansal, Pendavingh, and van der Pol [2]. It is also of interest to
enumerate matroids of fixed rank: let m(n, r) be the number of rank-r matroids on a ground set of
size n. It is trivial to see that m(n, 1) = 2n − 1, and it is also possible to prove the exact identity
m(n, 2) = b(n+1)−2n, where b(m) is the mth Bell number (which counts the number of partitions
of an m-element set). This identity seems to have been first observed by Acketa [1].

For r ≥ 3, an exact expression for m(n, r) in terms of well-known functions does not seem to be
possible2, but after some exciting recent developments, rather precise asymptotic expressions have
become available. First, Pendavingh and van der Pol [14] observed that (for constant r ≥ 1) the

lower bound m(n, r) ≥ (e1−rn + o(n))n
r−1/r! follows from Keevash’s breakthrough work [7, 8] on

existence and enumeration of combinatorial designs. They also proved an upper bound of the form

1Instead of defining a matroid by its collection of independent sets, some authors prefer to define a matroid by
some other (equivalent) data, such as its collection of flats, its collection of hyperplanes, or its rank function. See for
example [13,20] for a more thorough introduction to matroids and their various definitions.

2Though, a lot of computational work has been done for small n, r, and there are many conjectures about the
relations between the different m(n, r); see for example [5] and the index for matroids on the On-Line Encyclopedia
of Integer Sequences [4].
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m(n, r) ≤ (en+o(n))n
r−1/r!. Even more recently, van der Hofstad, Pendavingh and van der Pol [18]

closed the gap for all r 6= 3, proving that m(n, r) = (e1−rn + o(n))n
r−1/r! for constant r ≥ 4. In

the remaining case r = 3 they were able to prove m(n, 3) ≤ (ne1+β + o(n))n
2/6 ≈ (1.4n)n

2/6, where
−0.67 < β < −0.65 is the solution to a certain variational problem. In this paper, we close the gap
completely in this case r = 3.

Theorem 1.1.

m(n, 3) =
(1 +

√
3

2
e
√
3/2−3n+ o(n)

)n2/6
≈ (0.16169n)n

2/6.

In particular, Theorem 1.1 shows that the lower bound m(n, 3) ≥ (e−2n + o(n))n
2/6 obtainable

from Keevash’s results is far from sharp. This confirms a conjecture in [18] (and disproves the earlier
[19, Conjecture 8.2.9]).

In fact, Theorem 1.1 is really a corollary of the following theorem, estimating the number of linear
spaces on a set of n points. In incidence geometry, a linear space on a point set P is a collection of
subsets of at least two points of P (called lines) such that each pair of points lies in a unique line
(see for example [3,17] for more on linear spaces). For reasons that will become clear in a moment,
we denote the number of linear spaces on a set of n points by p(n, 3).

Theorem 1.2.

p(n, 3) =
(1 +

√
3

2
e
√
3/2−3n+ o(n)

)n2/6
≈ (0.16169n)n

2/6.

We remark that one may also be interested in linear spaces in which no line has exactly 2 points
(these are called proper linear spaces). It should be possible to adapt our proof to show that the
expression in Theorem 1.2 is also a valid estimate for the number of proper linear spaces on a set
of n points (though this would require some rather deep machinery due to Keevash [7] and McKay
and Wormald [12]). See Remark 3.3 for discussion.

To explain the connection between Theorems 1.1 and 1.2 we need to make a few more definitions.
A d-partition (or generalised partition of type d) of a ground set E is a collection of subsets of E
(called parts) each having size at least d, such that every subset of d elements of E is contained
in exactly one of the parts. So, a 1-partition is an ordinary partition, and a 2-partition is a linear
space. For any r ≥ 2, there is a correspondence between the set of (r−1)-partitions of E and the set
of so-called paving matroids of rank r on the ground set E. Namely, a paving matroid of rank r is a
matroid for which its set of hyperplanes (maximal subsets with rank r−1) form an (r−1)-partition
of its ground set. See for example [20, Section 3] for more details.

For r ≥ 2 let p(n, r) be the number of paving matroids of rank r, or equivalently the number
of (r − 1)-partitions, on a ground set of size n. Given the above correspondence, we trivially
have p(n, r) ≤ m(n, r), and it was proved by Pendavingh and van der Pol [14, Theorem 3] that

p(n, r) ≤ m(n, r) ≤ p(n, r)1+O(1/n) for constant r. So Theorem 1.1 is a direct consequence of
Theorem 1.2, and for the rest of the paper we will abandon the language of matroids and focus on
Theorem 1.2.

In fact, we find it convenient to use the language of graph theory: note that a linear space on a
set of n points is precisely equivalent to a clique-decomposition of the complete graph Kn (meaning,
a decomposition of the edges of Kn into nonempty cliques of arbitrary sizes).

1.1. Discussion of proof techniques. If one is interested in counting the number of decompo-
sitions of Kn into cliques which each have a fixed number of vertices k, this is a problem about
enumerating combinatorial designs. Specifically, such a decomposition corresponds exactly to a
design called a (2, k, n)-Steiner system. Such Steiner systems can be enumerated using powerful
tools due to Keevash [7, 8]: in particular, if n satisfies certain necessary divisibility conditions, the
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number of such Steiner systems can be written as (ckn + o(n))αkn
2
, where ck−2

k = e1−(
k
2)/(k − 2)!

and αk = (k−2)/(k(k−1)). Note that αk is maximised for two different k: namely, when k = 3 and
when k = 4. This suggests that decompositions containing mostly 3-cliques and 4-cliques comprise
the bulk of the clique-decompositions in p(n, 3).

The above observation motivates our proof strategy, and we believe it also explains why counting
(r − 1)-partitions and rank-r matroids is most difficult when r = 3 (if r ≥ 4, then one can do a
similar calculation for hypergraph clique-decompositions and see that there is a single maximising
value of k).

For the lower bound in Theorem 1.2 (namely, that there are at least about (0.16n)n
2/6 clique-

decompositions), we proceed in a very similar fashion as in [8]: we consider a random process that
builds a clique-decomposition by iteratively removing random 3-cliques and 4-cliques from Kn (with
a particular carefully chosen ratio between the two), until a very small number of edges remain (these
edges are then treated as 2-cliques in our decomposition). We then study the number of possible
outcomes of this process3. The details of the lower bound appear in Section 3.

The upper bound is more interesting. In [8], Keevash is able to upper-bound the number of Steiner
systems by adapting an approach of Linial and Luria [11], using the so-called entropy method.
Roughly speaking, the idea is as follows. To prove an upper bound on the number of k-clique
decompositions of Kn, it suffices to prove an upper bound on the entropy of a uniformly random
k-clique decomposition P . In order to specify an outcome of P , it suffices to specify, for each edge
e ∈ Kn, the clique Ce containing e. Therefore, one can upper-bound the entropy of P by considering
an ordering e1, . . . , e(n2)

of the edges of Kn, and upper-bounding the conditional entropy of each Cei ,

given the previous cliques Ce1 , . . . , Cei−1 . If e1, . . . , e(n2)
is a random ordering, then it is possible to

upper-bound these conditional entropies by studying the expected number of possible choices for
Cei given Ce1 , . . . , Cei−1 . This is possible due to a certain symmetry of k-clique decompositions:
namely, Keevash makes crucial use of the fact that in any k-clique decomposition, for any edge e
and any k-clique C ⊆ Kn containing e (other than Ce itself) there are exactly (

(k
2

)

− 1)2 edges
e′ /∈ C such that Ce′ and C share an edge (meaning that after Ce′ is revealed, C can be ruled out
as a possible outcome of Ce).

For decompositions of Kn into cliques of mixed sizes, an analogous symmetry property does
not hold, and the number of edges e′ whose clique Ce′ intersects a particular clique C depends
on the structure of our clique-partition. So, we cannot prove the upper bound in Theorem 1.2
by a straightforward generalisation of Keevash’s proof. Instead, we exploit a different symmetry
property of clique-decompositions, generalising an observation in [10], as follows. Suppose P is a
clique-partition into cliques of bounded size (say, each of the cliques in P has at most 100 vertices).
Then, if we take the union of a random subset of the cliques in P , where each clique is included
independently with probability p ∈ (0, 1), we are very likely to arrive at a quasirandom graph with
density about p (i.e., a graph whose “local statistics” resemble a random subgraph of Kn obtained
by including each edge with probability p independently). Sweeping some details under the rug, this
means that we can give an upper bound on the number of ways to choose a clique-decomposition
with a prescribed number of cliques of each size (the precise statement is in Lemma 2.2), by counting
in a clique-by-clique manner, where at each step the number of choices for a k-clique is roughly the

3It would be possible to consider a random process that, at each step, randomly decides whether to remove a
3-clique or 4-clique, with an appropriate probability. This would be in close correspondence with the upper bound
approach described below. However, it is more convenient for us to reuse existing analysis of clique removal processes,
and consider the concatenation of a 4-clique removal process and a 3-clique removal process.
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expected number of k-cliques in a random graph of the appropriate density4. We remark that our
approach seems to be more flexible than the entropy method, for problems of this type: it is possible
to recover all of Keevash’s upper bounds in this way (though with slightly weaker quantitative
aspects). Also, in our view, our clique-by-clique approach is more naturally in correspondence with
the clique-by-clique processes used to prove lower bounds in this area.

Finally, having an upper bound for the number of clique partitions with a prescribed number sk
of k-cliques for each k ≤ 100 (and no cliques with more than 100 vertices), it remains to show that
the contribution from cliques with more than 100 vertices is negligible, and to optimise our formula
over choices of s1, . . . , s100. For the former, we use a very crude encoding argument (Lemma 2.1).
The latter is a simple calculus exercise (essentially, we use the method of Lagrange multipliers;
see Lemma 2.5). In agreement with the heuristic mentioned earlier, we find that our formula is
maximised when only s3, s4 are non-negligible.

1.2. Notation. We use standard asymptotic notation throughout, as follows. For functions f =
f(n) and g = g(n), we write f = O(g) to mean that there is a constant C such that |f | ≤ C|g|,
f = Ω(g) to mean that there is a constant c > 0 such that f(n) ≥ c|g(n)| for sufficiently large n,
and f = o(g) to mean that f/g → 0 as n → ∞. Also, following [7], the notation f = 1 ± ε means
1− ε ≤ f ≤ 1 + ε.

We write NG(v) to denote the neighbourhood of a vertex v in a graph G (i.e., the set of vertices
adjacent to v). For a real number x, the floor and ceiling functions are denoted ⌊x⌋ = max{i ∈ Z :
i ≤ x} and ⌈x⌉ = min{i ∈ Z : i ≥ x}. We will however mostly omit floor and ceiling symbols and
assume large numbers are integers, wherever divisibility considerations are not important. Finally,
all logarithms in this paper are in base e.

Acknowledgements. We thank Michael Simkin for helpful comments on the manuscript. Sah and
Sawhney were supported by NSF Graduate Research Fellowship Program DGE-1745302. Sah was
supported by the PD Soros Fellowship.

2. The upper bound

2.1. Removing the contribution from large parts. We first reduce to the case where all cliques
have bounded size. Related ideas appeared in [18].

Lemma 2.1. Fix L ≥ 11 and n sufficiently large as a function of L. Let Γs2,...,sL;E denote the set
of clique-decompositions of Kn, for which there are E edges covered by cliques with more than L
vertices, and there are sk cliques with k vertices for each 2 ≤ k ≤ L. Then

|Γs2,...,sL;E| ≤ n|E|/5|Γs2+E,s3,...,sL;0|.
Proof. Fix a clique decomposition P ∈ Γs2,...,sL,E. Let P1 be the “truncated” clique decomposition
obtained from P by first removing each clique with more than L vertices, and then adding two-
vertex cliques (i.e., single edges) for each of the edges which are no longer covered by a clique. Then
P is uniquely determined by the pair (P1, P2), where P2 contains all the cliques in P with more
than L vertices.

There are at most 2|E|−1 ways to choose a sequence sL+1, . . . , sn such that
∑n

t=L+1

(

t
2

)

st = |E|.
Indeed, such a sequence can be interpreted as an integer partition5 of |E| (where we are only allowed
to use parts which have size of the form

(t
2

)

for t > L). For each such sL+1, . . . , sn, the number of

4In our actual proof, due to the fact that we are considering decompositions into cliques of mixed sizes, it is more
convenient to consider small “chunks” of cliques with a representative number of cliques of each size, and estimate
the number of choices for each chunk, rather than estimating the number of choices for each clique individually.

5The number of partitions of an integer N is at most its number of compositions, which is 2N−1.
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possibilities for P2 which contain exactly st cliques of each size t > L is at most
∏n

t=L+1(n
t)st = nΣ,

where

Σ =
n
∑

t=L+1

tst ≤
2

L

n
∑

t=L+1

(

t

2

)

st =
2|E|
L

.

Then, we observe that 2|E|−1nΣ ≤ n|E|/5 for L ≥ 11 and n large enough. �

2.2. Counting decompositions into prescribed numbers of bounded-size cliques. We now
estimate the number of clique-decompositions with prescribed numbers of cliques of each (bounded)
size. We will later optimise over choices of these prescribed numbers.

Lemma 2.2. Fix a constant L ∈ N and integers s2, . . . , sL such that
(2
2

)

s2 + · · · +
(L
2

)

sL =
(n
2

)

.
Let Γs2,...,sL be the set of all clique-decompositions of Kn whose number of t-cliques is st for each t.
Then

Γs2,...,sL ≤ exp

( L
∑

k=2

sk

(

log

(

n

k

)

− log sk + 1

)

−
(

n

2

)

± n2−Ω(1)

)

.

We define an ordered clique-decomposition of Kn to be an ordered list of cliques whose edge-
disjoint union is equal to Kn. Let Ξs2,...,sL be the set of all orderings of clique-decompositions
in Γs2,...,sL . First, we need the following modification of [10, Lemma 2.6], showing that for ini-
tial segments of a random ordered clique-decomposition, the graph of uncovered edges is “typi-
cal”/“quasirandom”.

Lemma 2.3. Fix a constant L ∈ N and any integers s2, . . . , sL such that
(

2
2

)

s2+ · · ·+
(

L
2

)

sL =
(

n
2

)

.
Consider a uniformly random ordered clique-decomposition (of Kn) from Ξs2,...,sL (which has N :=
s2+ · · ·+sL cliques). Let Gm be the random subgraph of Kn consisting of the edges not appearing in
the first m cliques of our random ordered clique-decomposition. Then with probability 1− on→∞(1),
for all 0 ≤ m ≤ N and all sets of vertices A with |A| ≤ L, we have

∣

∣

∣

∣

∣

∣

∣

∣

⋂

w∈A
NGm(w)

∣

∣

∣

∣

− (1−m/N)|A|n

∣

∣

∣

∣

≤ n1/2 log n.

Proof. Fix a particular choice of m and A; we will take a union bound over all such choices. It
suffices to consider a uniformly random ordering of a fixed clique-decomposition P ∈ Γs2,...,sL (i.e.,
we prove the desired statement conditioned on any outcome of the unordered set of cliques in our
random ordered clique-decomposition).

The first m cliques in our random ordering comprise a uniformly random subset R ⊆ P of m
cliques in P . Consider the closely related “binomial” random subset R′ ⊆ P , where each clique is
included with probability 1 − m/N independently; let G′

m contain the edges of Kn which do not
appear in any of the cliques in R′.

Since the cliques in P are edge-disjoint, note that there are at most
(|A|

2

)

= O(1) cliques in P
that include more than one vertex in A. Let U be the set of vertices in these atypical cliques. Now,
for each v /∈ A and w ∈ A there is exactly one clique ewv in P containing v and w, whose presence
in R′ would prevent v from appearing in

⋂

v∈A NG′
m
(v). For each fixed v /∈ U the hyperedges ewv ,

for w ∈ A, are distinct, so

Pr

(

v ∈
⋂

w∈A
NG′

m
(w)

)

= (1−m/N)|A|.

Let Q = |⋂w∈ANG′
m
(w)|; it follows that EQ = (1−m/N)|A|n+O(1).

Now let I be the set of cliques of P which contain a vertex of A. We have |I| = O(n) since the
cliques in P are edge-disjoint. Note that Q is entirely determined by I∩R′, and adding or removing
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any clique from R′ affects Q by at most L− 1 = O(1). So by the Azuma–Hoeffding inequality, for
t ≥ 0 we have

Pr(|Q− EQ| ≥ t) ≤ 2 exp(−Ω(t2/n)).

It follows that with probability at least 1− n−10L we have |Q− (1−m/N)|A|n| ≤ √
n log n. Recall

that we have been considering the “binomial” random subset R′; we can transfer this result to the
“uniform” random subset R using a standard inequality (for example, the so-called Pittel inequality;
see [6, p. 17]). Then, we take a union bound over choices of m and A. �

We also need the fact that the cliques of different sizes are “well-distributed” in a random ordered
clique-decomposition.

Lemma 2.4. Fix a constant L ∈ N and integers s2, . . . , sL such that
(

2
2

)

s2 + · · · +
(

L
2

)

sL =
(

n
2

)

.
Consider a uniformly random ordered clique-decomposition (of Kn) from Ξs2,...,sL (which has N :=
s2 + · · · + sL cliques). Then with probability 1 − on→∞(1), for any 0 ≤ m < m′ ≤ N and any
0 ≤ k ≤ L, if we consider all the cliques ranging from the (m + 1)-th to the m′-th in our random
ordered clique-decomposition, the number of such cliques that have exactly k vertices differs from
sk(m

′ −m)/N by at most n log n.

Proof. As in the proof of Lemma 2.4, it suffices to consider a uniformly random reordering of a fixed
clique-decomposition P ∈ Ξs2,...,sL. The desired result then follows from a concentration inequality
for the hypergeometric distribution (see for example [6, (2.5) and Theorem 2.10]) and the union
bound. �

Now we are ready to prove Lemma 2.2.

Proof of Lemma 2.2. Let N = s2 + · · · + sL, and let c be a very small constant (c = 1/(10L2) will
do). We will count ordered clique decompositions in Ξs2,...,sL , and then at the end of the proof we
will divide by N !.

Partition the interval {1, . . . , N} into sub-intervals I1, . . . , Inc by taking

Ii = {1, . . . , N} ∩ ((i− 1)Nn−c, iNn−c].

Let mi = min Ii = ⌊(i − 1)Nn−c + 1⌋ be the first index in each Ii. Say that an ordered clique
decomposition P ∈ Ξs2,...,sL is ordinary if for each 1 ≤ i ≤ nc, the following hold.

(1) The graph G(i) := Gmi−1 consisting of those edges not covered by the first mi − 1 cliques of
P satisfies the conclusion of Lemma 2.3.

(2) For each 1 ≤ i ≤ nc and 2 ≤ k ≤ L, the number of cliques ranging from the mi-th to the
(mi+1 − 1)-th which have exactly k vertices satisfies the conclusion of Lemma 2.4.

Almost all ordered clique decompositions in Ξs2,...,sL are ordinary by Lemmas 2.3 and 2.4, so it
suffices to prove an upper bound on the number of ordinary decompositions.

For each 1 ≤ i ≤ nc, we consider separately the number of choices for the cliques indexed by
indices in Ii, for an ordinary ordered clique-decomposition. Let γi = 1−(i−1)n−c. Now, (1) implies

that for all k ≤ L, the number of k-cliques in G(i) is

γ
(k2)
i nk/k! +O(nk−1/2 log n). (2.1)

To see this, we count the number of ways to choose an ordered list of k vertices inducing a clique,
in a vertex-by-vertex fashion, then divide by k!.

For any choice of tk = n−csk +O(n log n), we have

(

t2 + · · ·+ tL
t2, . . . , tL

)

= eO(n(log n)2)

( L
∏

k=2

(

sk
s2 + · · ·+ sk

)− sk
s2+···+sk

)n−c(s2+···+sk)+O(n logn)

.
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So, given (2), we can multiply these estimates to see that the number of ways to choose the cliques
indexed by Ii is at most

en
2−c−Ω(1)

L
∏

k=2

(sk
N

)−skn
−c L

∏

k=2

(

γ
(k2)
i

nk

k!

)n−csk
.

We next take the product of this expression over all 1 ≤ i ≤ nc, and divide by the number of
orderings N ! of each clique-decomposition, to obtain the desired result. In particular one obtains

en
2−Ω(1) 1

N !

nc
∏

i=1

( L
∏

k=2

(sk
N

)−skn
−c L

∏

t=2

(

γ
(k2)
i

nk

k!

)n−csk
)

= en
2−Ω(1) 1

N !

L
∏

k=2

((sk
N

)−sk
(nk

k!

)sk
)

·
nc
∏

i=1

L
∏

t=2

γ
n−c(k2)sk
i

= en
2−Ω(1)−(n2)

L
∏

k=2

(sk
e

)−sk
(nk

k!

)sk
.

We note that this involves an approximation by a Riemann integral:

nc
∏

i=1

L
∏

k=2

γn
−csk

i = exp

(

n−c
nc
∑

i=1

log γi

L
∑

k=2

(

k

2

)

sk

)

= exp

((

n

2

)

n−c
nc
∑

i=1

log(in−c)

)

= exp

((

n

2

)(
∫ 1

0
log x dx±O(n−c/2)

))

= exp

(

−
(

n

2

)

+O(n2−c/2)

)

. �

2.3. Optimising over prescribed clique numbers. Given Lemmas 2.1 and 2.2, the upper bound
in Theorem 1.2 will be a simple consequence of the following lemma.

Lemma 2.5. Fix a constant L ∈ N, let D be the set of (s2, . . . , sL) ∈ R
L−1 such that s2, . . . , sL ≥ 0

and
(2
2

)

s2 + · · ·+
(L
2

)

sL =
(n
2

)

, and consider the real-valued function f : D → R defined by

f(s2, . . . , sL) =
1

5
s2 log n+

L
∑

k=2

(

sk log

(

n

k

)

− sk log sk + sk

)

−
(

n

2

)

.

Then, the maximum value of f(s2, . . . , sL) is

n2

6

(

log n− 3 +

√
3

2
+ log

1 +
√
3

2
± n−Ω(1)

)

.

Proof. Since f is continuous on D and D is compact, our function f attains a maximum.
First, we claim that a maximum can only be attained when all sk are strictly positive. Indeed,

consider some (s1, . . . , sL) ∈ D for which sk = 0, in which case there must be some sj > 0. We

make a slight perturbation: increase sk to
(j
2

)

ε and decrease sj by
(k
2

)

ε, for some very small ε > 0
(note that we are still in D), and consider the corresponding change to the value of f . Note that
the terms containing sj decrease by O(ε) but the terms containing sk increase by Ω(ε log(1/ε)). So,
our perturbation has increased the value of f , which proves the claim.

Note that if we increase sk by
(j
2

)

ε and decrease sj by −
(k
2

)

ε, for some very small ε > 0, then the
value of f increases by

(

j

2

)(

log

(

n

k

)

− log sk + τ(k)

)

ε−
(

k

2

)(

log

(

n

j

)

− log sj + τ(j)

)

ε+O(ε2),
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where we set τ(k) = (log n)/5 when k = 2, and τ(k) = 0 when k 6= 2. (This essentially follows from
taking a derivative). So, a maximum can only occur when each

log
(n
k

)

− log sk + τ(k)
(k
2

)

takes a common value λ. For this λ, we see that

sk =

(

n

k

)

e−(
k
2)λ+τ(k). (2.2)

Now, recalling the definition of D, we have

n1/5

(

n

2

)

e−λ +
L
∑

k=3

(

k

2

)(

n

k

)

e−(
k
2)λ =

(

n

2

)

. (2.3)

There is a unique λ satisfying this equation, because the left-hand side of the equation is monoton-
ically decreasing in λ. Now, if λ = (log n)/3 + α, for |α| ≤ 1, then we may compute

n1/5

(

n

2

)

e−λ +

L
∑

k=3

(

k

2

)(

n

k

)

e−(
k
2)λ = (e−3α/2 + e−6α/4)n2 ± n2−Ω(1).

(The dominant terms of the expression on the left-hand side are the ones with k ∈ {3, 4}). Therefore,
we can write the solution to (2.3) as λ = (log n)/3+α for |α| ≤ 1 (since α = −1 makes the left side
of (2.3) too large and α = 1 makes it too small).

Recall that
(

n
2

)

= (1/2)n2 +O(n), so for the λ satisfying (2.3) we have

e−3α/2 + e−6α/4 = 1/2 + n−Ω(1),

hence the quadratic formula yields

e−3α =
√
3− 1 + n−Ω(1).

Thus

e−3λ = (
√
3− 1)n−1 ± n−1−Ω(1).

Using (2.2), we then compute that f is maximised when

s3 =
n3

6
e−3λ ± n2−Ω(1) =

n2(
√
3− 1)

6
± n2−Ω(1),

s4 =
n4

24
e−6λ ± n2−Ω(1) =

n2(2−
√
3)

12
± n2−Ω(1),

and sk = n2−Ω(1) for k /∈ {3, 4}. The desired result follows after substituting into the formula for
f(s2, . . . , sL) and simplifying. �

2.4. Deducing the upper bound. We now give the short deduction of the upper bound in
Theorem 1.2 using Lemmas 2.1, 2.2, and 2.5.

Proof of the upper bound in Theorem 1.2. Let L = 11. The sets Γs2,...,sL;E defined in Lemma 2.1

form a partition of the set of all clique-decompositions of Kn. There are at most
(

n
2

)L
= en

2−Ω(1)

choices of s2, . . . , sL, E, so it suffices to upper-bound the maximum possible value of |Γs2,...,sL,E |.
By Lemma 2.1 it in fact suffices to upper-bound the maximum possible value of ns2/5|Γs2,...,sL,0|.
This is precisely what is accomplished by Lemmas 2.2 and 2.5. �
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3. The lower bound

The lower bound in Theorem 1.2 is an immediate consequence of the following estimate.

Lemma 3.1. Let

s3 =
⌊n2(

√
3− 1)

6

⌋

, s4 =
⌊n2(2−

√
3)

12

⌋

.

For c > 0, let Γc be the collection of clique-decompositions of Kn in which there are s3 − ⌊n2−c⌋
cliques with 3 vertices, s4 cliques with 4 vertices, and the rest are cliques with 2 vertices. If c > 0 is
sufficiently small then

|Γc| ≥
(1 +

√
3

2
e
√
3/2−3n− o(n)

)n2/6
.

To prove Lemma 3.1 we need a notion of “typicality” (called “quasirandomness” in [10]), closely
related to the property in Lemma 2.3.

Definition 3.2. For an n-vertex, m-edge graph G, we define its density p(G) = m/
(n
2

)

. We say that

G is (ε, h)-typical if for every set A of at most h vertices of G, the vertices in A have (1±ε)p(G)|A|n
common neighbours.

Note that if an n-vertex graph G with density p is (ε, h)-typical then it has

(1±Ok(ε))p
(k2)nk/k!

k-cliques, for any k ≤ h (as for (2.1), we count cliques vertex-by-vertex; this calculation also appears
explicitly in [10, Proposition 2.8]).

Proof. Given a graph G and an integer k, we define its Kk-removal process as follows. Starting from
the graph G, at each step we consider the set of all copies of Kk in our graph, choose one uniformly
at random, and remove its edges. (Eventually we will run out of copies of Kk, at which point the
process aborts).

We will need the following facts about the behaviour of the K3-removal process and the K4-
removal process.

(1) There is a > 0 such that the following holds. If we run the K4-removal process on Kn, then
with probability 1− o(1):
(a) the process does not abort before s4 steps, and
(b) for each t ≤ s4, the graph at step t is (n−b, 3)-typical.

(2) For every a > 0 there is c > 0 such that the following holds. Let G be an n-vertex graph with
m :=

(n
2

)

− 6s4 = (3−O(1/n))s3 edges which is (n−a, 2)-typical. If we run the K3-removal
process on G, then with probability 1− o(1):
(a) the process does not abort before s3 − n2−c steps, and
(b) for each t ≤ s3 − n2−c, the graph at step t is (n−c, 2)-typical.

For a simple proof of Fact (2), see [10, Theorem 4.1]. Fact (1) can be proved in basically exactly
the same way (in fact it is slightly simpler, because we start from the complete graph instead of a
general typical graph). See [8, Section 6] for some discussion of (a generalisation of) the Kk-free
process starting from a complete graph, which implies the desired result.

Now, we simply concatenate the K4-removal process and the K3-removal process. Indeed, starting
from the complete graph Kn, we first run s4 steps of the K4-removal process, then s3 − n2−c steps
of the K3 removal process. In this way, either we abort or we produce a clique decomposition in Γc,
in which our set of 4-cliques and our set of 3-cliques are both equipped with an ordering. Let Q be
the set of outcomes of our concatenated process for which in each of the first s4 steps, our graph is
(n−b, 3)-typical, and in each of the next s3 − n2−c steps, our graph is (n−c, 2)-typical.
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The probability of each outcome in Q is at most

s4
∏

t=1

(

(1 + n−Ω(1))

(

(n
2

)

− 6t
(n
2

)

)6n4

24

)−1 s3−n2−c
∏

t=1

(

(1 + n−Ω(1))

(

(n
2

)

− 6s4 − 3t
(n
2

)

)3n3

6

)−1

, (3.1)

and by (1–2) above, these probabilities sum up to 1− o(1). So, the number of outcomes in Q is at
least 1− o(1) divided by the expression in (3.1). It follows that

|Γc| ≥
(n4

24

)s4(n3

6

)s3
exp

(

6

s4
∑

t=1

log

(

(n
2

)

− 6t
(n
2

)

)

+ 3

s3
∑

t=1

log

(

(n
2

)

− 6s4 − 3t
(n
2

)

)

− n2−Ω(1)

)

/(s4!s3!).

(The difference between taking a sum up to s3 and up to s3 − n2−c is easily seen to contribute to
the negligible exp(−n2−Ω(1)) factor.)

Let a3 = 3s3/
(n
2

)

and a4 = 6s4/
(n
2

)

, and note that a3 + a4 = 1. By Stirling’s approximation we
compute that log |Γc| is at least

4
∑

k=3

sk

(

log

(

n

k

)

− log sk + 1

)

+ 6

s4
∑

t=1

log

(

(n
2

)

− 6t
(

n
2

)

)

+ 3

s3
∑

t=1

log

(

(n
2

)

− 6s4 − 3t
(

n
2

)

)

− n2−Ω(1)

=

4
∑

k=3

sk

(

log

(

n

k

)

− log sk + 1

)

+ 6

(

n

2

)
∫ a4/6

0
log(1− 6t) dt+ 3

(

n

2

)
∫ a3/3

0
log(1− a4 − 3t) dt− n2−Ω(1)

=

4
∑

k=3

sk

(

log

(

n

k

)

− log sk + 1

)

+

(

n

2

)
∫ a3+a4

0
log(1− t) dt− n2−Ω(1)

=

4
∑

k=3

sk

(

log

(

n

k

)

− log sk + 1

)

−
(

n

2

)

− n2−Ω(1).

Substituting the values of s3 and s4 and simplifying (or alternatively, comparing with the expressions
in the proof of Lemma 2.5) yields the desired result. �

Remark 3.3. In Lemma 3.1 we consider clique-decompositions that have a small number of “triv-
ial” cliques with two vertices. We believe that it is possible to adapt the proof to avoid such
cliques, but this requires some of Keevash’s deepest results on clique-decompositions of quasiran-
dom graphs. Namely, for any constant k, Keevash’s machinery [8] allows one to estimate the number
of Kk-decompositions of any dense quasirandom graph satisfying certain divisibility conditions (the

number of edges should be divisible by
(k
2

)

and every degree should be divisible by k− 1; say such a
graph is Kk-divisible). So, in order to prove a version of Lemma 3.1 in which no clique has exactly
two vertices (thereby proving a version of Theorem 1.2 for proper linear spaces), it suffices to prove
a suitable lower bound on the number of ways to partition the edges of Kn into a K3-divisible
quasirandom graph with density (

√
3− 1)/2 + o(1), a K4-divisible quasirandom graph with density

(2 −
√
3)/2 + o(1) and a tiny “remainder graph” with O(1) edges, itself decomposable into cliques

which have more than two vertices. A suitable lower bound on the number of such graph partitions
can be proved with some elementary number theory and the machinery of McKay and Wormald [12]
for enumerating graphs with a given dense degree sequence (the remainder graph is just to handle
divisibility issues, and it turns out we can always choose it to be either a copy of K5, a copy of K7,
or a vertex-disjoint union K5 ∪K7).
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