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RANDOM SYMMETRIC MATRICES: RANK DISTRIBUTION AND

IRREDUCIBILITY OF THE CHARACTERISTIC POLYNOMIAL

ASAF FERBER, VISHESH JAIN, ASHWIN SAH, AND MEHTAAB SAWHNEY

Abstract. Conditional on the extended Riemann hypothesis, we show that with high probability,
the characteristic polynomial of a random symmetric {±1}-matrix is irreducible. This addresses
a question raised by Eberhard in recent work. The main innovation in our work is establishing
sharp estimates regarding the rank distribution of symmetric random {±1}-matrices over Fp for

primes 2 < p ≤ exp(O(n1/4)). Previously, such estimates were available only for p = o(n1/8).
At the heart of our proof is a way to combine multiple inverse Littlewood–Offord-type results to
control the contribution to singularity-type events of vectors in Fn

p with anticoncentration at least

1/p+Ω(1/p2). Previously, inverse Littlewood–Offord-type results only allowed control over vectors
with anticoncentration at least C/p for some large constant C > 1.

1. Introduction

The irreducibility of random polynomials has attracted much interest in recent years. A well-
known conjecture of Odlyzko and Poonen [21] is that the random polynomial P (x) = xd+bd−1x

d−1+
· · · + b1x + b0, where b0 = 1 and b1, . . . , bd−1 are i.i.d. Ber(1/2) random variables (i.e. each bi is
independently 0 or 1 with probability 1/2 each), is irreducible in Z[x] with probability 1−od(1). This
was established in a more general form by Breuillard and Varjú [3] under the Riemann Hypothesis for
a family of Dedekind zeta functions. A version of this conjecture, where b0, . . . , bd−1 are distributed
uniformly in {1, . . . , L} for L divisible by at least 4 distinct primes, was established (unconditionally)
by Bary-Soroker and Kozma [2]. In recent work, Bary-Soroker, Koukoulopoulos, and Kozma [1]
showed that the result continues to hold for {1, . . . , L} for L ≥ 35. We refer the reader to [1–3] for
more precise and general versions of the aforementioned results.

Another popular model of random polynomials is the characteristic polynomial of a random
matrix. It was conjectured by Babai in the 1970s (and again, by Vu and Wood in 2009) that for an
n×n matrix Nn whose entries are i.i.d. Rademacher random variables (i.e. ±1 with probability 1/2
each), the characteristic polynomial ϕ̂(t) = det(tIn −Nn) is irreducible with probability 1− on(1).
This was confirmed, under the extended Riemann Hypothesis, in recent work of Eberhard [8],
building on [3] and ideas from the non-asymptotic theory of random matrices. It is perhaps even
more natural to consider the (real-rooted) characteristic polynomial ϕ(t) = det(tIn −Mn), where
Mn is an n × n symmetric matrix whose entries on and above the diagonal are i.i.d. Rademacher
random variables. In [8], Eberhard asked if ϕ(t) is irreducible with probability 1−on(1). We answer
this question in the affirmative under the extended Riemann hypothesis.

Theorem 1.1. Assume the extended Riemann Hypothesis (ERH) (i.e., the Riemann Hypothesis for
Dedekind zeta functions for all number fields). Then there is an absolute constant c > 0 such that
characteristic polynomial ϕ(t) = det(tIn −Mn) of an n× n random symmetric Rademacher matrix

Mn is irreducible with probability at least 1− 2 exp(−cn1/4).

Ferber was supported in part by NSF grants DMS-1954395 and DMS-1953799. Sah and Sawhney were supported
by NSF Graduate Research Fellowship Program DGE-1745302.
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Remark. The proof in this paper can easily be extended to handle the class of α-balanced distri-
butions considered in [8] with straightforward modifications; we leave the details to the interested
reader.

It was noted in [8] that given the techniques in [3, 8], Theorem 1.1 (with the weaker probability
bound 1 − on(1)) can be deduced from the following universality statement: the probability that

tIn−Mn is invertible over Fp, for p = nΩ(1), is essentially the same as for an n×n symmetric matrix
whose entries on and above the diagonal are sampled from the uniform distribution on Fp. Despite
the intensive efforts to study the singularity probability of symmetric Rademacher matrices ([4,6,7,
10,14,20,24] and especially the recent breakthrough [5] which confirms the long-standing conjecture
that the singularity probability of symmetric Rademacher matrices is exponentially small), a result

of this precision has remained elusive. While for p = o(n1/8), such a result is known due to work of
Maples [18], the bound on p is too restrictive to imply Theorem 1.1 (even with the weaker probability
1− on(1)). The main challenge in addressing the regime p = ω(n1/2) is that one must consider the
arithmetic structure of vectors which are orthogonal to random subspaces of small co-dimension.
However, inverse Littlewood–Offord type theorems (cf. [11, 22, 23]), which have been designed to
study only arithmetically structured vectors, fail to apply to vectors in Fp with anticoncentration
at least C/p for some large constant C > 1. While consideration of vectors with anticoncentration
at most C/p is inessential for the less precise results mentioned above, here we must provide an
appropriate structural result for vectors with anticoncentration at least 1/p+Ω(1/p2), say. This is
accomplished in the key Proposition 2.5. Finally, we note that an upper bound on the singularity
probability of the form 1/p+O(1/p2) can be deduced for p = o(n1/2) from estimates on the expected
size of the kernel over Fp due to [9], but for similar reasons to those mentioned above these estimates
do not appear to extend to p which is larger than a small polynomial.

An obvious generalization of studying the probability of singularity of Mn over Fp is studying the
rank distribution of Mn over Fp. For symmetric Rademacher matrices, the only prior work we are

aware of is the aforementioned work of Maples [18], which effectively requires p = o(n1/8). Results
for unrestricted p are available under the very strong assumption that the independent entries of
Mn are uniformly [12] or nearly-uniformly [15] distributed over Fp.

The main innovation of our work is the following result regarding the rank distribution of sym-
metric Rademacher matrices (and diagonal perturbations) over Fp for all 2 < p ≤ exp(ηn1/4):

Theorem 1.2. There exists η > 0 so that for any 2 < p ≤ exp(ηn1/4) and for any λ ∈ Fp, the
n× n symmetric Rademacher matrix Mn satisfies

P[rankFp(Mn − λIn) = n− k] =

∏∞
i=0(1− p−(2i+1))
∏k

i=1(p
i − 1)

+O(exp(−ηn/ log p)).

Remark. The proof can be extended routinely to the class of α-balanced distributions; however, for
the sake of brevity, we have restricted our attention to the Rademacher distribution.

Remark. Theorem 1.2 is the natural symmetric analog of the results in [16,17]. As mentioned above,
a version was known for p sufficiently small (with weaker error terms) due to Maples [18].

1.1. Organization. The remainder of this paper is organized as follows. In Section 2, we prove
our key structural result (Proposition 2.5) for vectors which are orthogonal to many rows of Mn. In
Section 3, we use this, along with arguments in [15,18] to deduce Theorem 1.2. Appendix A contains
the deduction of Theorem 1.1 from the k = 1 case of Theorem 1.2, following the arguments in [8].
Finally, Appendix B contains the proof of a ‘crude’ structure theorem (which appears in [10], but
with worse parameters) for the reader’s convenience.
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2. Structure Theorem for Almost-Kernel Vectors

We begin by showing the easy fact that, except with exponentially small probability, no sparse
vector has sparse image under M .

Definition 2.1. Let 0 ≤ r ≤ n be a parameter. We say that v ∈ Fn
p is an r-kernel vector of a

matrix M ∈ Fn×n
p if Mv is r-sparse.

In particular, 0-kernel vectors correspond to the usual right-kernel of M .

Lemma 2.2. Let p ≥ 3. With probability at least 1 − exp(−n/6), the symmetric random matrix
Mn − λIn has no n/(16 log p)-sparse n/4-kernel vectors in Fn

p .

Proof. Fix a non-zero v ∈ Fn
p with v1 6= 0. We begin by computing the probability that Mv is

n/4-sparse. We denote the rows of M by R1, . . . , Rn and reveal the rows from bottom-to-top. Since
the first entry Ri is independent Ri+1, . . . , Rn, since v1 6= 0, and since p ≥ 3, it follows that

max
Ri+1,...,Rn

P[Ri · v = 0 | Ri+1, . . . , Rn] ≤
1

2
.

Therefore, the probability that Mv is n/4-sparse is at most

1

2n−n/4
·
(

n

n/4

)
.

Finally, taking the union bound over the at most

exp(nH(1/(16 log p))pn/(8 log p)

choices of n/(16 log p)-sparse vectors in Fn
p gives the desired conclusion. �

We recall the definition of the atom probability of a vector v ∈ Fn
p with respect to Rademacher

random variables.

Definition 2.3. The atom probability of a vector v ∈ Fn
p is defined as

ρFp(v) = max
r∈Fp

P[ξ1v1 + · · ·+ ξnvn = r],

where ξ1, . . . , ξn are i.i.d. Rademacher random variables.

We will need the following ‘crude’ structure theorem for (n−n/ log p)-kernel vectors, which follows
from a more careful version of the argument in [10]. For the reader’s convenience, we include details
in Appendix B.

Proposition 2.4. Suppose that 2 < p ≤ exp(c2.4n
1/4) and fix λ ∈ Fp. With probability at least

1− exp(−n/8), every vector v ∈ Fn
p which is orthogonal to at least n− n/ log p rows of the random

symmetric matrix Mn − λIn over Fp satisfies the following two properties:

• | supp(v)| ≥ n/(16 log p), and
• There exists S ⊆ supp(v) with |S| ∈ [

√
n log n, n3/4] such that

ρFp(v|S) ≤
C2.4
p

.

Since
ρFp(v) ≤ ρFp(v|S)

for any S ⊆ [n], the crude structure theorem shows that any (n/ log p)-kernel vector of Mn − λIn

has atom probability at most
C2.4

p . While this result is optimal up to the constant C2.4, it is

unfortunately insufficient for our application. The next proposition, which is one of the main
innovations of this paper, allows us to show that any (n/ log p)-kernel vector of Mn−λIn has many
disjoint chunks with atom-probability approximately 1/p.
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Proposition 2.5. Suppose that 2 < p ≤ exp(c2.5n
1/4) and fix λ ∈ Fp. Let m = C2.5 log p. With

probability at least 1 − exp(−n/9), every vector v orthogonal to at least n − n/ log p rows of the
random symmetric matrix Mn − λIn over Fp has the following property, which we denote by (†):
given any set T ⊆ [n] of size n/4, there at least n/(2m) disjoint sets S of size m in [n] \T such that

discFp(v|S) = sup
x∈Fp

∣∣∣∣Pξ

[∑

i∈S

ξivi = x

]
− 1

p

∣∣∣∣ ≤
C2.5
p2

.

Proof. This is trivial for p ≤ C
1/2

2.5, so assume the opposite. Let r = n/ log p.

First, by Lemma 2.2 and Proposition 2.4, we may assume that v has some S ⊆ supp(v) with

|S| ∈ [
√
n log n, n3/4] such that

ρFp(v|S) ≤
C2.4
p

.

For some fixed vector with this property, a straightforward argument (cf. proof of Proposition 2.4)
shows that the probability that it is orthogonal to some set of n− r rows of Mn is at most

(
n

r

)
·
(
C2.4
p

)n−n3/4−r

≤ Cnp−n. (2.1)

We will use a union bound argument to establish Proposition 2.5. Given (2.1), the key is to show
that the set of vectors v which fail to satisfy (†) is sufficiently sparse in Fn

p . To this end, consider
some T of size n/4 and for each such T , consider a fixed (but otherwise arbitrary) partition of [n]\T
into S1, . . . , S3n/(4m) of size m (up to rounding). There are at most 2n ways to choose T and at
most 2n ways to choose which of these sets satisfy

discFp(v|Si) ≤ C2.5/p
2.

If v violates (†), then at least a third of these indices are failures. Thus, we see that the number of
vectors which violate (†) is at most

2n · 2n · (p3n/4) · |T |n/(4m), (2.2)

where T is the set of Fp-vectors of size m with

discFp(v|Si) > C2.5/p
2.

Fix some sufficiently large absolute constant C ′ > 0 (depending on C in (2.1)). We claim that if

C2.5 ≥ 1 chosen large enough, then |T | ≤ (p/C ′)m (recall that p > C
1/2

2.5). Note that this claim,

together with (2.1) and (2.2) completes the proof of Proposition 2.5.
We now prove the claim. Note that if b = (b1, . . . , bm) ∈ T ⊆ Fm

p for i.i.d. Rademacher random
variables ξ1, . . . , ξn we have that

1

p2
< discFp(b) = sup

x∈Fp

∣∣∣∣Pξ[b1ξ1 + · · · + bmξm = x]− 1

p

∣∣∣∣

= sup
x∈Fp

∣∣∣∣
1

p

∑

ℓ∈F×

p

exp(2πi(ℓx/p))
m∏

j=1

cos(2π(ℓbj/p))

∣∣∣∣

≤ 1

p

∑

ℓ∈F×

p

m∏

j=1

| cos(2π(ℓbj/p))|

≤ 1

p

∑

ℓ∈F×

p

exp

(
−

m∑

j=1

‖2ℓbj/p‖2R/Z
)
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≤ max
ℓ∈F×

p

exp

(
−

m∑

j=1

‖ℓbj/p‖2R/Z
)
.

In particular, there is some ℓ ∈ F×
p with

m∑

j=1

‖ℓbj/p‖2R/Z ≤ 2 log p.

To count the number of such vectors, note that there are at most p choices of ℓ. Moreover, since
coordinate-wise multiplication by ℓ is a bijection from Fm

p onto itself, it follows that

|T | ≤ p ·#{b ∈ Fm
p :

m∑

j=1

‖bj/p‖2R/Z ≤ 2 log p}.

The second term in the product is a count of lattice points in a ball. A standard volumetric argument
shows that there are at most vol(Bm

2 (R +
√
m)) integer lattice points in an m-dimensional ball of

radius R. Hence, we see that

|T | ≤ p ·
(
1 +

p
√
2 log p√
m

)m

≤ 2m ·
(
1 + p

√
2C−1

2.5

)m
≤

(
8C

−1/2

2.5 p
)m

since m = C2.5 log p and p > C
1/2

2.5. Choosing C2.5 sufficiently large completes the proof. �

3. Proof of Theorem 1.2

We are now in position to deduce Theorem 1.2; the high-level structure of the argument is as in
[15,18]. However, we make explicit a number of details which are implicit in [18] as well as make a
number of simplifications and changes to account for use of our structure theorem Proposition 2.5.

We first recall a basic linear algebra fact about full-rank principal minors.

Lemma 3.1. If M ∈ Fn×n is a symmetric matrix of rank r, then there is an invertible r×r principal
minor of M .

Fix λ ∈ Fp. We consider the nested sequence of symmetric matrices

M1 − λI1 ⊆ M2 − λI2 ⊆ · · · ⊆ Mn − λIn,

where Mi−λIi is the top-left i× i-submatrix of M −λI (hence, the nested sequence is obtained by
iteratively adding symmetric “reverse-L” shapes of Rademacher random variables, with a shift by λ
on the diagonal element). For simplicity, let At = Mt − λIt. Define the events

ES,t = {At has no nonzero t/(16 log p)-sparse t/4-kernel vector}, and

EU,t = {every nonzero (t/ log p)-kernel vector v of At satisfies property ( † )},
where recall that (†) is the property that given any set T ⊆ [t] of size t/4, there at least t/(2m)
disjoint sets S of size m = C2.5 log p in [t] \ T such that

discFp(v|S) = sup
x∈Fp

∣∣∣∣Pξ

[∑

i∈S

ξivi = x

]
− 1

p

∣∣∣∣ ≤
C2.5
p2

.

By Lemma 2.2 and Proposition 2.5, we see that

P[Ec
S,t ∨ Ec

U,t] ≤ 2 exp(−t/9). (3.1)
5



Lemma 3.2. We have for 2 < p ≤ exp(c3.2n
1/4), fixed λ ∈ Fp, and for any k ≥ 0 that

P[corankAt+1 = k − 1|At : corankAt = k ∧ ES,t ∧ EU,t] = 1− p−k +O(exp(−Ω(t))),

P[corankAt+1 = k + 0|At : corankAt = k ∧ ES,t ∧ EU,t] = p−k − p−k−1 +O(exp(−Ω(t/ log p))),

P[corankAt+1 = k + 1|At : corankAt = k ∧ ES,t ∧ EU,t] = p−k−1 +O(exp(−Ω(t/ log p))).

Remark. Note that, without the error terms inside O(·), the probabilities are exactly the same as
for the uniform model (i.e. the independent entries of Mn are chosen uniformly from Fp).

Before proving Lemma 3.2, let us show how it implies Theorem 1.2.

Proof of Theorem 1.2. We consider the exposure process obtained by iteratively revealing Mt for
1 ≤ t ≤ n and considering the resulting corank of At. Starting from a random An/20, let τ denote
the (random) first value of t ≥ n/20 such that either (i) At ∈ Ec

S,t ∪Ec
U,t, or (ii) corank(At) = 0. We

claim that, except with probability at most O(exp(−Ω(n/ log p))), we have τ ≤ n/2, and moreover,
Aτ satisfies condition (ii) and not condition (i).

To see this, note that by Lemma 2.2 and Proposition 2.5, the probability that At ∈ Ec
S,t ∪ Ec

U,t

is O(exp(−Ω(n))) for any t ≥ n/20. Moreover, for At ∈ ES,t ∧ EU,t with corank(At) = k ≥ 1, we

see that P[corankAt+1 = k − 1 | At] ≥ 1 − 1
3 + O(exp(−Ω(n))) ≥ 3

5 for all n sufficiently large, and

similarly, P[corankAt+1 = k+1 | At] ≤ 1
8 for all n sufficiently large. Therefore, by a straightforward

comparison argument, it follows that for all n sufficiently large, the probability that τ ≤ n/2 and
Aτ satisfies condition (ii) and not condition (i) is at most

O(exp(−Ω(n/ log p))) + q,

where q = O(exp(−Ω(n))) is the probability that a biased random walk with steps −1 with proba-
bility 1/2, 0 with probability 1/4, and +1 with probability 1/4 and initial state n/20 does not hit
0 in n/2− n/20 steps.

To summarize, we have shown that except with probability O(exp(−Ω(n/ log p))), there exists
some τ ∈ [n/20, n/2] such that Aτ ∈ ES,τ ∧ EU,τ and corank(Aτ ) = 0. From this point on-
wards, outside an event of probability at most O(exp(−Ω(n/ log p))), it follows by the remark
following Lemma 3.2 that we can couple the corank process Aτ+1, . . . , An with the corank process
A′

1, . . . , A
′
n−τ where A′

i is the top-left i× i sub-matrix of M ′
n−τ −λ and M ′

n−τ is an (n− τ)× (n− τ)
random symmetric matrix whose independent entries are chosen uniformly from Fp. By [12, Theo-
rem 4.1], for τ ∈ [n/20, n/2] and for any 0 ≤ k ≤ n− τ ,

P[corankA′
n−τ = k] =

∏∞
i=0(1− p−(2i+1))
∏k

i=1(p
i − 1)

+O(p−Ω(n)),

which completes the proof. �

Finally, we prove Lemma 3.2

Proof of Lemma 3.2. Note that rankAt+1 − rankAt ∈ {0, 1, 2} since rank is monotone and sub-
additive and the rank of the “reverse-L” is at most 2. Since the ambient dimension increases by 1 at
each step, it follows that the corank increases by one of the three values {0,±1}, so that it suffices
to prove the first and third equalities. Write

At+1 =

[
At ξt
ξTt z

]

where ξt is an i.i.d. Rademacher vector and z+λ is an independent Rademacher.Let ξ be the vector
[ξTt z]

T .
Step 1: Corank decrease via linear forms. The first equality is only nontrivial when k ≥ 1,

and in this case we need the rank to increase by 2. Basic linear algebra (cf. [7, Lemma 2.4]) shows
6



that this is equivalent to requiring ξt to lie outside the span of the column space of At. Equivalently,
ξt should not be orthogonal to all kernel vectors of At (which form a dimension k subspace of Ft

p).
Let v1, . . . ,vk form a basis of the kernel. We have

∣∣∣Pξ[vj · ξt = 0 for all j ∈ [k]]− p−k
∣∣∣ =

∣∣∣∣
1

pk

∑

a∈Fk
p\{0}

Eξ exp

(
2πi

p
(ξt · (a1v1 + · · ·+ akvk))

)∣∣∣∣

≤ max
a∈Fk

p\{0}

∣∣∣∣Eξ exp

(
2πi

p
(ξt · (a1v1 + · · ·+ akvk))

)∣∣∣∣.

Let a = (a1, . . . , ak) ∈ Fk
p \ {0} denote the element attaining the maximum. Since v1, . . . ,vk are

linearly independent vectors in the kernel of At, v = a1v1 + · · ·+ akvk is a nonzero kernel vector of
At. Since we have conditioned on ES,t∧EU,t, v has at least t/(16 log p) non-zero entries and satisfies
property (†).

From EU,t we see that v can be partitioned into at least t/(2m) disjoint sets S1, . . . , St/2m of size

m with discFp(v|Si) ≤ C2.5p
−2 for all i ∈ [t/2m]. Hence,

Eξ exp

(
2πi

p
ξt · v

)
≤

t/2m∏

ℓ=1

∣∣∣∣Eξ|Sℓ
exp

(
2πi

p
ξ|Sℓ

· v|Sℓ

)∣∣∣∣

≤
t/2m∏

ℓ=1

∣∣∣∣∣∣

∑

j∈Fp

exp

(
2πi

p
j

)
·
(
1

p
+ discFp(v|Sℓ

)

)∣∣∣∣∣∣

≤
t/2m∏

ℓ=1

∣∣∣∣∣∣

∑

j∈Fp

discFp(v|Sℓ
)

∣∣∣∣∣∣

≤ (C2.5p
−1)t/(2m) = exp(−Ω(t)),

if p > C2.5.
From ES,t we see that v has support size at least t/(16 log p), so that

Eξ exp

(
2πi

p
ξt · v

)
≤

∏

j∈supp(v)

∣∣∣∣Eξj exp

(
2πi

p
ξjvj

)∣∣∣∣

≤ (1− Ω(1/p2))t/16 log p

= exp(−Ω(t/(p2 log p))) = exp(−Ω(t)),

if p ≤ C2.5. Therefore regardless of what p > 2 is, we have

Pξ[vj · ξt = 0 for all j ∈ [k]] = p−k +O(exp(−Ω(t))),

as desired to establish the first equality.
Step 2: Corank increase via quadratic forms. Now we turn to the third equality. First

note that it suffices to prove the claim when k ≤ t/(64 log p) since if k > t/(64 log p), the first
equality already implies that the second and third probabilities are of size p−k +O(exp(−Ω(t))) =
O(exp(−Ω(t))).

By Lemma 3.1, At has a principal minor of rank (t−k). Therefore, without loss of generality, we
may suppose that the top left (t−k)× (t−k) block, call it B, has full rank. Let φ be the restriction
of ξ to these coordinates. In order for the corank of At+1 to be larger than the corank of At, it must
be the case that rank(At+1) = rank(At). This precisely corresponds to the event

{∃w ∈ Ft−k
p : ξt = Atw} ∧ {φTB−1φ = z}.

7



Indeed, if ξt is not in the column space then the rank of At+1 must increase and if φTB−1φ 6= −z,
then B along with the new elements in the “reverse-L” will have rank (t − k + 1). On the other
hand, if the above event holds, then it is easy to see that rank(At+1) = rank(At).

As in the first case, let v1, . . . ,vk form a basis of the kernel of At. Then,

∣∣∣∣Pξ[vj · ξt = 0 for all j ∈ [k] ∧ φTB−1φ = z]− p−k−1

∣∣∣∣

≤ sup
a∈Fk+1

p \{0}

∣∣∣∣Eξ exp

(
2πi

p
(ξt · (a1v1 + · · ·+ akvk) + ak+1(φ

TB−1φ− z))

)∣∣∣∣.

Note here that ξt, φ, z all depend on ξ. Let a = (a1, . . . , ak+1) ∈ Fk+1
p \ {0} denote the element

attaining the maximum. If ak+1 = 0, we have a bound of exp(−Ω(t)) exactly as in the first case. It
therefore suffices to consider ak+1 6= 0. Let v = a1v1 + · · ·+ akvk.

To handle the quadratic term φTB−1φ, we will use a decoupling trick, which in this context
essentially goes back to [7]. Let I ⊔ J = {1, . . . , t} be the partition with J = [t/(64 log p)], and let
ξI , ξJ be the obvious restrictions. Let ξ′J be an independent resample of ξJ . Let ξ = ξI + ξJ and
ξ′ = ξI + ξ′J . Let φ′ = ξ′ |[t−k]. We have that

∣∣∣∣Eξ exp

(
2πi

p
(ξt · v + ak+1(φ

TB−1φ− z))

)∣∣∣∣
2

= EξI ,ξJ ,ξ
′

J
exp

(
2πi

p
((ξJ − ξ′J) · v + ak+1(φ

TB−1φ− (φ′)TB−1φ′))

)

≤ EξJ ,ξ
′

J

∣∣∣∣EξI

[
exp

(
2πi

p
ak+1(φ− φ′)TB−1(φ+ φ′)

) ∣∣∣∣ξJ , ξ
′
J

]∣∣∣∣

≤ EξJ ,ξ′J

∣∣∣∣EξI

[
exp

(
2πi

p
(2ak+1(ξJ − ξ′J)

TB−1φ′′)

)∣∣∣∣ξJ , ξ
′
J

]∣∣∣∣,

where we have abused notation by using ξJ − ξ′J to denote the extension of this vector to [t − k]
with the coordinates in [t − k] \ J equal to 0 and where φ′′ denotes the (t− k)-dimensional vector
which coincides with ξ (and hence ξ′) on I ∩ [t− k] and has remaining coordinates 0.

We now consider two cases. Note that P[ξJ = ξ′J ] = 2−|J |, which is of size exp(−Ω(t/ log p)).
Otherwise, w = B−1(ξJ−ξ′J) is a linear combination of at most t/(64 log p) different columns of B−1

and hence is orthogonal to at least (t− k)− t/(64 log p) ≥ t/(32 log p) different rows of B. Hence, if
we extend w to a t-dimensional vector by padding it with 0s, then the resulting vector is a non-zero
vector which is orthogonal to at least t− t/32(log p) rows of At. Since At is assumed to satisfy EU,t,
it follows that this vector has at least t/(2m) disjoint sets S1, . . . , St/2m of size m = C2.5 log p such

that discFp(v|Si) ≤ C2.5p
−2 for all i ∈ [2m]. Furthermore EU,t guarantees that we can take these

sets disjoint from the set J ∪ {t− k + 1, . . . , t} which has size at most t/(32 log p). In other words,
the sets S1, . . . , St/2m are contained in I ∩ [t− k], which is the support of the random entries of φ′′.
Thus, similar to Step 1, we deduce for realizations of ξJ , ξ

′
J such that ξJ − ξ′J 6= 0,

∣∣∣∣EξI

[
exp

(
2πi

p
(2ak+1(ξJ − ξ′J)

TB−1φ′′)

)∣∣∣∣ξJ , ξ
′
J

]∣∣∣∣ ≤ (C2.5p
−1)t/(2m) = exp(−Ω(t))

for p > C2.5. For p ≤ C2.5, we use ES,t to deduce that w has support size at least t/(16 log p).
Therefore, w has at least t/(32 log p) on the support of the random entries of φ′′, so that the result
again follows as in Step 1. �
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Appendix A. Proof of Theorem 1.1

In this section, we show how the local singularity statement Theorem 1.2 implies the global
irreducibility statement Theorem 1.1. We use an approach pioneered by Breuillard and Varjú [3]
for random polynomials and used subsequently by Eberhard [8] for characteristic polynomials of
i.i.d. matrices. The proof is nearly identical to that given in [8, Section 3] modulo the input of
Theorem 1.2.

We first define some notation. Let Ω ⊆ C be the set of roots of ϕ and G be its Galois group. Let
Λϕ(p) be the number of roots of ϕ in Fp, without multiplicity. A number field K has discriminant
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∆K , while a polynomial ϕ has discriminant ∆ϕ. Given q ∈ Z, PK(q) is the number of prime ideals
of K of norm q.

Proposition A.1 ([3, Proposition 16]). If ϕ ∈ Z[x] and ϕ̃ is its squarefree part, and if p ∤ ∆ϕ̃ then

Rϕ(p) =
∑

ω∈Ω/G

PQ(ω)(p).

Now let
wX(t) = 2 exp(−X)1(X−log 2,X](t) · t

be a weighting function.

Proposition A.2 ([3, Proposition 9]). If the Riemann hypothesis holds for K then
∑

p

PK(p)wX(log p) = 1 +O(X2 exp(−X/2) log ∆K).

Proposition A.3 ([8, Proposition 3.5]). Let ϕ be the characteristic polynomial of a matrix M with
integer entries bounded in magnitude by H. If the Riemann hypothesis holds for Q(ω) for all roots
ω of ϕ, then ∑

p

Rϕ(p)wX(p) = |Ω/G|+O(n3X2 exp(−X/2) log(Hn)).

Finally, we state the following bound on the probability for a symmetric Rademacher matrix to
have simple spectrum.

Proposition A.4. The n×n random symmetric Rademacher matrix Mn has simple spectrum with
probability 1− exp(−Ω(n1/2(log n)1/4)).

Remark. A bound of the form 1− exp(−Ω(nc))) for some small constant c > 0 is the content of [19,
Corollary 2.3]. The improved bound stated here follows by replacing the application of the results of
[24] in [19] by the substantially sharper arithmetic structure estimates [14, Theorem 4.8;Lemma 4.5]
appearing in work of the last three authors [14]. We omit the standard details.

We are ready to prove the result.

Proof of Theorem 1.1 given Theorem 1.2. Given a prime p > 2 and λ ∈ Fp, let Ep,λ be the event
that the characteristic polynomial ϕ of our random symmetric matrix Mn has λ as a root over Fp.

By Theorem 1.2 applied to Mn − λIn, we see that if 2 < p ≤ exp(c1.2n
1/4)), then

P[Ep,λ] =
1 +O(1/p)

p
.

Summing over λ yields
E[Rϕ(p)] = 1 +O(1/p).

Thus for 2 ≤ X ≤ c1.2n
1/4 we have

E
∑

p

Rϕ(p)wX(log p) =
∑

p

(1 +O(1/p))wX (log p)

= (1 +O(exp(−X/2)))
∑

p

wX(log p)

= 1 +O(exp(−X/2)) +O(X2 exp(−X/2)).

The second line is by Proposition A.1 applied to K = Q, or just the prime number theorem with
Riemann error term. Applying Proposition A.2 under ERH we obtain

E|Ω/G|+O(n3X2 exp(−X/2) log n) = 1 +O(X2 exp(−X/2))
10



hence
E|Ω/G| = 1 +O(n3X2 exp(−X/2) log n).

Choosing X = c1.2n
1/4 at the top of its range, we deduce

E|Ω/G| = 1 +O(exp(cn−1/4)).

Thus
P[|Ω/G| > 1] = O(exp(cn−1/4)).

Furthermore, |Ω/G| = 1 means that ϕ is a perfect power of an irreducible polynomial.
Now to rule out the case of perfect powers and complete the proof, it suffices to show that

the random symmetric matrix Mn has simple spectrum with very high probability, say at least
1− exp(−Ω(

√
n)). This is the content of Proposition A.4. �

Appendix B. Proof of Proposition 2.4

We require a version of Halasz’s inequality as well as a ‘counting inverse Littlewood-Offord theo-
rem’ tailored to it. This was developed in work of the first two authors along with Luh and Samotij
[11]. For the sake of simplicity, we will use the statements [13, Theorem 3.8, 3.9].

Definition B.1. Let a ∈ Fn
p and k ∈ N. We define R∗

k(a) to be the number of solutions to

±ai1 ± a2 ± . . .± ai2k ≡ 0 mod p

with |{i1, . . . , i2k}| > 1.01k.

Theorem B.2 ([13, Theorem 3.8], c.f. [11, Theorem 1.4]). Given an odd prime p, integer n, and
vector a = (a1, . . . , an) ∈ Fn

p \ {0}, suppose that an integer 0 ≤ k ≤ n/2 and positive real L satisfy
30L ≤ | supp(a)| and 80kL ≤ n. Then

ρFp(a) ≤
1

p
+ CB.2

R∗
k(a) + (40k0.99n1.01)k

22kn2kL1/2
+ e−L.

Theorem B.3 ([13, Theorem 3.9]). Let p be a prime and let k, s1, s2, d ∈ [n], t ∈ [1, p] be such that
s1 ≤ s2. Let

Baddk,s1,s2,≥t(n) =
{
a ∈ Fn

p : | supp(a)| = d and ∀b ⊂ a|supp(a) s.t. s2 ≥ |b| ≥ s1 : R∗
k(b) ≥ t · 2

2k · |b|2k
p

}
.

Then,

|Baddk,s1,s2,≥t(n)| ≤
(
n

d

)
pd+s2(0.01t)

−d+
s1
s2

d
.

We now are in position to prove Proposition 2.4. The proof given is essentially identical to that
in [10]. However, we need to be more careful regarding the level of unstructuredness obtained in
the argument.

Proof of Proposition 2.4. Let r = n/ log p. Let k = n1/4, s1 =
√
n log n, s2 = n3/4, and choose

some n/(16 log p) ≤ d ≤ n (so that s2 ≤ d in particular). First use Lemma 2.2 to rule out d-sparse

vectors v. Next, let L = n1/4. Consider some
√
L ≤ t ≤ p, if it exists.

Consider a fixed v ∈ Baddk,s1,s2,≥t \ Baddk,s1,s2,≥2t and a fixed choice of n − r rows of Mn − λIn.
We wish to bound the probability that v is orthogonal to all those rows. By definition, there is a
set S ⊆ supp(v) of size in [s1, s2] such that

R∗
k(v|S) < 2t · 2

2k|S|2k
p

.

Since v is orthogonal to all of the given n− r rows, we expose them one-by-one (with any rows in S
coming last). The first at least n−r−s2 rows are such that, conditioned on the prior revelations, the
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random dot product with v is zero with probability at most ρFp(v|S). Furthermore, by Theorem B.2
and the given conditions, which guarantee 30L ≤ s1 ≤ | supp(v|S)| and 80kL ≤ s1 ≤ |S|, we have

ρFp(v|S) ≤
1

p
+ CB.2

R∗
k(v|S) + (40k0.99|S|1.01)k

22k|S|2kL1/2
+ e−L

≤ 1

p
+

2CB.2t

p
√
L

+
10kCB.2
L1/2

(
k

|S|

)0.99k

+ e−L

≤ Ct

p
√
L

for all sufficiently large n. Multiplying over all the rows, and taking a union bound over the possible
choices of v (Theorem B.3) and collection of n− r rows, we have a bound of

(
n

d

)
pd+s2(0.01t)

−d+
s1
s2

d ·
(
n

r

)
·
(

Ct

p
√
L

)n−r−s2

≤ (C ′)npdt
−d+

s1
s2

d
(

t

p
√
L

)n

≤ exp(C ′′n
√
log n)(t/p)n−dL−n/2 ≤ exp(−n(log n)/9)

for sufficiently large n. Union bounding over all possible choices of d and a dyadic partition of t
shows that there is an appropriately small chance of having such a vector orthogonal to n− r rows
for any t ≥

√
M .

The remaining vectors v ∈ Fn
p with | supp(v)| ≥ n/(16 log p) all have some subset S ⊆ supp(v)

such that

R∗
k(v|S) ≤

√
L · 2

2k|S|2k
p

,

and applying Theorem B.2 once again finishes. �
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