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FRIENDLY BISECTIONS OF RANDOM GRAPHS

ASAF FERBER, MATTHEW KWAN, BHARGAV NARAYANAN, ASHWIN SAH, AND MEHTAAB SAWHNEY

Abstract. Resolving a conjecture of Füredi from 1988, we prove that with high probability, the
random graph G(n, 1/2) admits a friendly bisection of its vertex set, i.e., a partition of its vertex
set into two parts whose sizes differ by at most one in which n− o(n) vertices have at least as many
neighbours in their own part as across. The engine of our proof is a new method to study stochastic
processes driven by degree information in random graphs; this involves combining enumeration
techniques with an abstract second moment argument.

1. Introduction

In a cut of a graph, i.e., a partition of its vertex set into two parts, we call a vertex friendly
if it has more neighbours in its own part than across, and unfriendly otherwise. Questions about
finding friendly and unfriendly partitions of graphs, i.e., partitions in which all (or almost all) the
vertices are friendly or unfriendly, have been investigated in various contexts: in combinatorics,
on account of their inherent interest [5, 10, 28, 30], in computer science, as ‘local’ analogues of
important NP-complete partitioning problems [4, 13], in probability and statistical physics, owing
to their connections to spin glasses [1, 16, 26], and in logic and set theory [2, 25]. On the other
hand, when it comes to finding friendly or unfriendly bisections, i.e., partitions into two parts
whose sizes differ by at most one, there is mostly speculative folklore; our aim here is to prove
one such old and well-known conjecture about random graphs due to Füredi [15], a problem that
has gained some notoriety over the years, in part due to its inclusion in Green’s list of 100 open
problems [17, Problem 91]. Our main result is as follows.

Theorem 1.1. With high probability, a random graph G ∼ G(n, 1/2) admits a bisection in which
n− o(n) vertices are friendly.

To place Füredi’s conjecture and its resolution here in context, we recall some background. It is
a classical fact that every graph admits a partition in which every vertex is unfriendly, as evidenced
by any maximum cut. On the other hand, it is also well-known that not every graph admits a
partition in which every vertex is friendly, though a general result of Stiebitz [28] ensures that one
can always ‘come close’. When it comes to bisections, neither friendly nor unfriendly bisections need
exist in general, and the problem of finding optimal conditions under which such bisections exist is
very much open. That said, Theorem 1.1 asserts that both types of bisections exist for almost all
graphs; indeed, Theorem 1.1 handles friendly bisections as stated, and is easily seen to imply the
analogous result for unfriendly bisections (when applied to the identically distributed complement
of the random graph).

Degree-driven stochastic processes. Although Theorem 1.1 is specifically about friendly bisec-
tions of random graphs, the approach we adopt to prove this result is rather general, and it may
be that the more important point of this work is its contribution to methodology. Concretely, we
introduce a method that appears suitable for analysing many different types of stochastic processes
on random graphs driven primarily by degree information; for example, in forthcoming work, the
fourth and fifth authors [24] use modifications of these techniques to settle various conjectures of
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Tran and Vu [31] concerning majority dynamics on random graphs. Below, we outline how our
approach allows us to prove Theorem 1.1.

We adopt a constructive approach that yields an efficient algorithm to find the bisection promised
by Theorem 1.1. To motivate our approach, it is instructive to consider the following basic algo-
rithm, motivated by the classical large-cut-finding algorithm: starting with any bisection A∪B of a
graph G, repeatedly check whether there are vertices v ∈ A and w ∈ B such that degB(v) > degA(v)
and degA(w) > degB(v), and if so, swap v and w. It is easy to see that such a swap must decrease
the size (i.e., the number of crossing edges) of the bisection, so this algorithm must terminate. Of
course, if we are unlucky, it might happen that when the algorithm terminates, all the vertices in
A are friendly, while very few of the vertices in B are friendly, so the resulting bisection may be
very far from satisfying the conclusion of Theorem 1.1. However, it seems plausible that such an
outcome is rather unusual: if G is sampled from G(n, 1/2), then one might expect this algorithm
(interpreted as a random process) to typically follow a predictable trajectory, and in particular, the
number of friendly vertices in A and in B to stay roughly the same for most of the duration of the
algorithm.

This is a promising starting point, especially due to the fact that we do not actually need to
fully understand the typical trajectory of the process: indeed, we only need to show that at each
step k, the number of friendly vertices in A concentrates around some value nk, since by symmetry,
the number of friendly vertices in B would then concentrate around nk as well, so the numbers
of friendly vertices in A and B would never get ‘too imbalanced’. However, it is far from obvious
how to actually accomplish this. Roughly speaking, the main issue is that in order to execute even
the first step of the algorithm, we have to inspect every vertex of our graph, meaning that there
is (seemingly) ‘no remaining randomness’ for the second step. This is in contrast with most other
random graph processes in the literature (such as H-free or H-removal processes, as in [7,8,14] for
example), where each individual step is defined in terms of a random choice.

We are able to overcome this issue with two ideas. First, instead of swapping vertices one at
at time, we shall instead swap a sizeable ‘batch’ of vertices between A and B in each step; this is
strongly reminiscent of the influential ‘nibbling’ idea introduced by Rödl [23]. We will be able to use
discrepancy properties of random graphs to show that, in a typical outcome of the random graph
G(n, 1/2), when we have a bisection A ∪ B in which many vertices in A and in B are unfriendly,
swapping a large number of the ‘unfriendliest’ vertices in A and in B dramatically decreases the size
of the bisection. That is to say, it should only take a few steps, in fact, about exp(1/ε), to reach
a bisection in which one of the two parts has (1− ε)n/2 friendly vertices. This makes the problem
of establishing concentration more tractable, since we now only need to do this for a large constant
number of steps. Second, in order to execute a step of our algorithm, we only need to know the
degrees dA(v) and dB(v) for each vertex v at that stage (and not any other information about the
graph). Thus, instead of revealing the whole graph to study the first step, we may simply reveal
the required degree information, meaning that our random graph is now conditionally a degree-
constrained random graph. We then have the randomness of this degree-constrained random graph
with which to show concentration at the next step, for which we again only need to (dynamically)
reveal some more degree information, and so on.

In order to study the resulting degree-constrained random graphs, we have at our disposal power-
ful enumeration theorems due to McKay and Wormald [22], and extensions by Canfield, Greenhill,
and McKay [12], which give very precise asymptotic formulae for the number of graphs with speci-
fied degree information. However, even with these tools, the problem of establishing concentration
remains; attempting to track the trajectory of our random process becomes intractable very quickly,
as early as the third step, in fact. This is the key issue that we build machinery to circumvent: we
develop an abstract second-moment argument with which one can establish concentration of various
statistics at a given step, using only stability and anti-concentration information about the outcomes
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of previous steps, without actually controlling (or even knowing) the trajectory of the process. This
is superficially reminiscent of martingale arguments establishing concentration around the mean
without any knowledge of the location of the mean itself (see [3]), but the inputs to such arguments,
typically Lipschitz-like behaviour of the random variables of interest, are rather different from the
inputs to our argument. As mentioned earlier, this argument is quite general, and we anticipate
that a broad range of similar stochastic processes will now become amenable to analysis.

Notation. Our graph-theoretic notation is for the most part standard; see [9] for terms not defined
here. In a graph G, we write deg(v) for the degree of a vertex v ∈ V (G), and N(v) for its
neighbourhood; also, for a subset U ⊆ V (G), we write degU (v) for the number of neighbours of v in
U , i.e., for the size of N(v) ∩U . We write G(n, p) for the Erdős–Rényi random graph on n vertices
with edge density p.

Our use of asymptotic notation is for the most part standard. We say that an event occurs with
high probability if it holds with probability 1−o(1) as some parameter (usually n, unless we specify
otherwise) grows large. Constants suppressed by asymptotic notation may be absolute, or might
depend on other fixed parameters; we shall spell out the latter situation explicitly whenever there
might be cause for confusion. To lighten notation, we write f = g±h for |f − g| ≤ h, and maintain
this convention with asymptotic notation as well, so for example, f = g ± O(h) is taken to mean
|f − g| = O(h). We also adopt the following non-standard bit of notation: as a parameter n grows
large, we write f ≃ h if f = (1 ± n−Ω(1))h. Also, following a common abuse, we omit floors and
ceilings wherever they are not crucial.

Organisation. This paper is organised as follows. In Section 2, we describe the swapping process
that allows us to prove Theorem 1.1, and also give the deduction of our main result from a few key
lemmas. In Section 3, we dispose of the more routine of these lemmas. The beef of our argument is
in Section 4, where we must work rather hard to establish the key concentration properties of our
swapping process.

2. Proof overview

In this section we make some initial observations, then describe a random swapping process that
underlies our argument and state some facts about this process (with proofs to follow later). We
then show how to deduce Theorem 1.1 from these facts.

Given a bisection A∪B of a graph, the friendliness ∆A,B(v) of a vertex v is the difference between
the number of its neighbours on its own side and the number of its neighbours on the other side.
We say a vertex is friendly if its friendliness is positive, and otherwise, we say it is unfriendly. The
total friendliness ∆A,B of the bisection A ∪B is then given by

∆A,B =
∑

v∈V (G)

∆A,B(v).

We also make a simple observation that allows us to restrict our attention to random graphs of
even order (which in turn allows us to somewhat simplify the presentation). A simple union bound
shows that with high probability, in any partition of the vertex set of G(n, 1/2), at most 10n/ log n
vertices have friendliness 1, i.e., have exactly one more neighbour on their own side than across, or
vice versa. Consequently, it clearly suffices to establish Theorem 1.1 for G(n, 1/2) when n is even;
indeed, when n is odd, we may delete an arbitrary vertex from the random graph, apply Theorem 1.1
to the result, and add back the deleted vertex to either part to get the desired bisection. Therefore,
all graphs under consideration will be of even order unless explicitly specified otherwise, and we
shall not belabour this point any further.

The following lemma shows that for a typical outcome of the random graph G(n, 1/2), there is a
window of length O(n3/2) within which the total friendliness of any bisection lies.
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Lemma 2.1. There is a γ > 0 such that for a random graph G ∼ G(n, 1/2), with high probability,

every bisection A ∪B of G has |∆A,B| < γn3/2.

Next, we shall define a simple random ‘swap’ operation that modifies a bisection with the aim of
making it more friendly.

Definition 2.2. Given a bisection A∪B of an n-vertex graph G, the α-swap of A∪B is the random
bisection obtained by the following procedure. First, we take the subset A′ ⊆ A of the ⌊αn⌋ most
unfriendly vertices in A, and the subset B′ ⊆ B of the ⌊αn⌋ most unfriendly vertices in B (breaking
ties according to some a priori fixed ordering of the vertex set), and swap A′ and B′. At this stage,
the parts of the resulting bisection are then (A \ A′) ∪ B′ and (B \ B′) ∪ A′. Next, we make a
uniformly random choice of ⌊α4n⌋ vertices on both of these sides, and swap these subsets.

The following lemma shows that in a typical outcome of the random graph G(n, 1/2), for every

bisection A∪B, either our swapping operation increases the total friendliness by Ω(n3/2), or almost
all the vertices in one of the parts (either A or B) are already friendly.

Lemma 2.3. For every fixed ε > 0, there are α ∈ (0, ε) and β > 0 for which a random graph
G ∼ G(n, 1/2) has, with high probability, the following property. In any bisection A ∪ B of G in
which at least εn vertices are unfriendly in each of A and B, the random bisection A1∪B1 obtained
from an α-swap of A ∪B always satisfies

∆A1,B1 ≥ ∆A,B + βn3/2.

Finally, the next lemma establishes concentration properties for bisections obtained by iterating
our swapping operation.

Lemma 2.4. Fix ε > α > 0, k ∈ N, and an arbitrary bisection A∪B of the vertex set of G(n, 1/2).
For a random graph G ∼ G(n, 1/2), let Ak ∪Bk be the bisection obtained by performing k iterations
of the α-swap procedure starting from A ∪ B. Writing X and Y respectively for the number of
unfriendly vertices in Ak and Bk, we have with high probability that |X − Y | = o(n).

With these facts in hand, we may now easily deduce Theorem 1.1.

Proof of Theorem 1.1. For any fixed ε > 0, we shall show that G ∼ G(n, 1/2) with high probability
has a bisection in which at most 2εn+ o(n) vertices are unfriendly.

Say V (G) = {1, . . . , n}, define the bisection A0 ∪ B0 by A0 = {1, . . . , n/2} and B0 = {n/2 +
1, . . . , n}. Let γ be as in Lemma 2.1 and β as in Lemma 2.3 applied to ǫ. Set K = ⌈2γ/β⌉, and let

A1 ∪B1, A2 ∪B2, . . . , AK ∪BK
be the sequence of bisections arising fromK iterations of the α-swap procedure starting from A0∪B0.

Say that a bisection A∪B is ε-good if there are at most εn unfriendly vertices in A or at most εn
unfriendly vertices in B. Now, the following properties hold with high probability, by Lemmas 2.1,
2.3 and 2.4.

(1) There is an interval of length at most 2γn3/2 such that the total friendliness of every bisection
of G lies in this interval.

(2) For every 0 ≤ k ≤ K − 1, either Ak ∪Bk is ε-good, or ∆Ak+1,Bk+1
≥ ∆Ak,Bk

+ βn2/3.
(3) For every 1 ≤ k ≤ K, the numbers of unfriendly vertices in Ak and in Bk differ by o(n).

Fix outcomes of G and A1 ∪ B1, A2 ∪ B2, . . . , AK ∪ BK satisfying all these properties. Now,
by property (1), it is not possible for the total friendliness to increase by βn3/2 in each of the K
iterations. So, by property (2), there must be some k for which Ak ∪ Bk is ε-good, meaning that
there are at most εn unfriendly vertices in Ak or at most εn unfriendly vertices in Bk. The third
property (3) now ensures that there are at most 2εn+o(n) unfriendly vertices in total at this stage.
The bisection Ak ∪Bk has the properties we desire, proving the result. �
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2.1. Overview of the proofs of the key lemmas. We now briefly discuss the proofs of Lemmas 2.1,
2.3 and 2.4. First, Lemma 2.1 is proved via a Chernoff bound and a simple union bound over all
possible bisections. Second, Lemma 2.3 is also proved by a union bound: we show that that no
bisection of the graph has many vertices with friendliness very close to zero, so that there is al-
ways some reasonably large gain from swapping unfriendly vertices; here, one must also control
the (small) amount of additional unfriendliness potentially introduced between pairs of swapped
vertices.

The proof of Lemma 2.4 is by far the most technical ingredient in the proof. At a high level, one
runs the iterated swap algorithm on a random graph G ∼ G(n, 1/2), at each step revealing only
that information about G (namely, degrees into certain parts) which is necessary to determine the
outcome of the α-swap procedure. So, at every step, we need to study a degree-constrained random
graph model; this is accomplished using graph enumeration techniques in the style of McKay–
Wormald [22]. One can track the fraction of vertices that live in prescribed parts at prescribed times
inductively, showing via the second moment method in our degree-constrained random graph model
that the numbers of different types of vertices are concentrated. However, several obstacles arise
naturally due to the presence of complicated conditional distributions, and the need for all of the
different ‘well-conditioned’ degree-constrained models (based on different revelations) to converge
to a single distribution of degrees. The totality of what must be tracked to implement this argument
is contained in Proposition 4.3.

In particular, we note that the first part of the proof (Lemmas 2.1 and 2.3) and the second part of
the proof (Lemma 2.4) are essentially logically independent, and the analysis here can be extended
to a variety of similar algorithms based on degree sequences. One can think of the first part as
providing a monovariant to the graph process analyzed in the second part, guaranteeing that the
graph partition ‘gets better’ over time and converges to a friendly distribution of degrees rather
than to an abstract (iterated) optimizer of some associated variational problem.

3. Swapping decrement

In this section we prove Lemmas 2.1 and 2.3. To start with, we need some simple facts about
centered binomial distributions. The first is a Chernoff bound (see [18, Theorem 2.1], for example)
and the second follows from the Erdős–Littlewood–Offord theorem (see [29, Corollary 7.4]).

Theorem 3.1. For N ∈ N, let X1, . . . ,XN be independent Rademacher random variables (satisfying
P(Xi = 1) = P(Xi = −1) = 1/2), and let X = X1 + · · ·+XN .

(1) For all t ≥ 0, we have P(|X| ≥ t) ≤ 2e−t
2/(2N).

(2) For all t ≥ 1 and all x ∈ R, we have P(|X − x| ≤ t) ≤
√
2t/

√
N . �

The proof of Lemma 2.1 is extremely simple, being a routine application of the union bound.

Proof of Lemma 2.1. There are
( n
n/2

)
≤ 2n bisections in total. For each such bisection A ∪ B, the

random variable ∆A,B + n/2 has a centered binomial distribution to which Theorem 3.1 applies
(with N =

(n
2

)
). For sufficiently large γ, we then have

P

(
|∆A,B| ≥ γn3/2

)
≤ 2 exp

(
−(γn3/2 − n/2)2

2
(n
2

)
)

= o(2−n),

so the desired result follows from the union bound. �

Lemma 2.3 is also proved by the union bound, but for this, we will first need to prove some
auxiliary lemmas.
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Lemma 3.2. For any sufficiently small fixed η > 0, a random graph G ∼ G(n, 1/2) with high

probability has the property that for every bisection A ∪B of G, we have |∆A,B(v)| ≥ 4−1/η√n for
all but at most ηn vertices v ∈ A, and for all but at most ηn vertices v ∈ B.

Proof. For each bisection A∪B, if we condition on an outcome of G[A], then the random variables
{∆A,B(v) : v ∈ A} become mutually independent. Conditionally, for each v ∈ A, the random
variable 2∆A,B(v) + 1 has a centered binomial distribution to which Theorem 3.1 applies (with
N = n− 1). Therefore,

P

(
|∆A,B(v)| ≤ 4−1/η√n

)
≤ (

√
2 · 4−1/η√n)/

√
n− 1 ≤ 2 · 4−1/η

for large n, from which it follows that the probability that the property in the statement of the
lemma does not hold is at most

2n
(
n/2

ηn

)
(2 · 4−1/η)ηn = o(1). �

Lemma 3.3. For any sufficiently small fixed α > 0, a random graph G ∼ G(n, 1/2) with high
probability has the property that for every bisection A ∪ B of G and every pair of subsets A′ ⊆ A
and B′ ⊆ B each of size αn, we have

|∆A′,B′ | ≤ α4/3n3/2,

where we view A′ ∪B′ as a bisection of the induced subgraph G[A′ ∪B′].

Proof. Note that the event does not depend on A,B, only on A′, B′. For subsets A′ and B′ as in
the statement of the lemma, the random variable ∆A′,B′ + αn has a centered binomial distribution

to which Theorem 3.1 applies (with N =
(2αn

2

)
). We then have

P

(
|∆A′,B′ | ≥ α4/3n3/2

)
≤ 2 exp

(
−(α4/3n3/2 − αn)2

2
(2αn

2

)
)

= o

((
n

αn

)−2
)
,

so the desired result follows from a union bound over all choices of A′ and B′. �

Lemma 3.4. For any sufficiently small fixed δ > 0, a random graph G ∼ G(n, 1/2) with high
probability has the following property. For every bisection A ∪ B, and every pair of subsets A′ ⊆
A,B′ ⊆ B each of size δn, if we swap A′ and B′ to obtain a bisection A1∪B1 with A1 = (A\A′)∪B′

and B1 = (B \B′) ∪A′, then we have

|∆A1,B1 −∆A,B| ≤ δ1/3n3/2.

Proof. For each bisection A ∪ B and subsets A′ and B′ as in the lemma statement, the random
variable ∆A1,B1 − ∆A,B has a centered binomial distribution to which Theorem 3.1 applies (with
N = 2(n/2 − δn)δn). We then have

P

(
|∆A1,B1 −∆A,B| ≥ δ1/3n3/2

)
≤ 2 exp

(
− (δ1/3n3/2)2

4(n/2− δn)δn

)
= o

(
2−n

(
n/2

δn

)−2
)
,

so the desired result follows once again from the union bound. �

We are now ready to prove Lemma 2.3.

Proof of Lemma 2.3. Let η < ε/2 be small enough for Lemma 3.2 to hold, let α ∈ (0, ε/2) be small

enough so that Lemma 3.3 holds and Lemma 3.4 holds for δ = α4, and also α ≤ 4−3/η . Now assume
that the properties in Lemmas 3.2 to 3.4 all hold for G with these parameters, which occurs with
high probability.

Now, consider an arbitrary bisection A ∪ B where at least εn vertices in A are unfriendly and
at least εn vertices in B are unfriendly. Let A′ be the subset of the αn most unfriendly vertices
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in A, and let B′ ⊆ B be the subset of the αn most unfriendly vertices in B. By assumption, at
least εn vertices in A are unfriendly, so at least (ε− α)n ≥ ηn vertices in A are unfriendly but not

as unfriendly as A′. By Lemma 3.2 we deduce that for all v ∈ A′ we have ∆A,B(v) ≤ −4−1/η√n.

Similarly, for all v ∈ B′ we have ∆A,B(v) ≤ −4−1/η√n.
Next, let A′′ = (A \A′) ∪B′ and B′′ = (B \B′) ∪A′ be the parts resulting from the first step in

an α-swap. We know that |∆A′,B′ | ≤ α4/3n3/2 by Lemma 3.3, so we have

∆A′′,B′′ = ∆A,B − 4
∑

v∈A′∪B′

∆A,B(v) + 4∆A′,B′

≥ ∆A,B + 4(2αn)(4−1/η√n)− 4α4/3n3/2 ≥ ∆A,B + 4α4−1/ηn3/2

Finally, by the guarantee in Lemma 3.4, we note that the final random swap in the definition of the
α-swap procedure changes the friendliness of the bisection A′′ ∪B′′ by at most

δ1/3n3/2 = α4/3n3/2 ≤ α4−1/ηn3/2

in passing to the final bisection A1 ∪ B1. It follows that we have the desired result with β =
3α4−1/η . �

4. Concentration of the iterated swapping process

In this section we prove Lemma 2.4. In fact, it will follow from the more technical Proposition 4.3,
which we shall shortly state and prove by induction. To get started, we need some definitions.

First, we introduce some notation to handle empirical distributions. Given a sequence (ai : i ∈ I),
the uniform measure L̂ on this sequence is the probability distribution of aj where j is chosen
uniformly from I; when the sequence (ai : i ∈ I) is itself random — for example, comprised of

jointly random vectors — we emphasise that the associated uniform measure L̂ is itself a random
object, i.e., each realisation of the random sequence (ai : i ∈ I) gives rise to an associated uniform
measure on this realisation.

We now define some empirical degree distributions associated with our iterated swapping process.

Definition 4.1. Given a graph G on the vertex set {1, . . . , n}, we consider the iterated swapping
process in which we start with the bisection A0 ∪ B0, where A0 = {1, . . . , n/2} and B0 = {n/2 +
1, . . . , n}, and repeatedly perform α-swaps k times to yield a sequence (At ∪ Bt)kt=0 of bisections.

For a binary sequence x = (xt)
k+1
t=1 ∈ {0, 1}k+1, let Vx be the set of vertices that are in part At at

those times t with xt−1 = 0, and in part Bt at those times t with xt−1 = 1 for 1 ≤ t ≤ k + 1. For a

binary sequence x ∈ {0, 1}k+1, let L̂x be the uniform measure on the sequence of degree vectors
((

(degVy(v)− |Vy|/2)/
√
n
)
y∈{0,1}k+1

: v ∈ Vx

)
.

Next, we recall the definition of multidimensional Kolmogorov distance on R
d.

Definition 4.2. Let L and L′ be probability distributions on R
d. We define the Kolmogorov

distance dK(L,L′) between L and L′ to be the supremum of |L(A) − L′(A)| over all sets A of the
form (−∞, a1]× · · · × (−∞, ad], where a1, . . . , ad ∈ R.

Note that the Kolmogorov distance controls the probability of lying in any half-open box: indeed,
for any such box B = (b1, c1]× · · · × (bd, cd], we can use the inclusion-exclusion principle to express
L(B) as a signed sum of 2d probabilities of the form L((−∞, a1]×· · ·×(−∞, ad]), so |L(B)−L′(B)| ≤
2d dK(L,L′).

The promised generalisation of Lemma 2.4 is now as follows.

Proposition 4.3. Fix α ∈ (0, 1/4) and k ∈ N. There are cα,k, Cα,k > 0 such that for each

x ∈ {0, 1}k+1 there are
7



(1) a 2k+1-dimensional probability distribution Lx, and
(2) a real number πx ≥ α4k/2,

both of which may depend on α and n, such that the following holds. For G ∼ G(n, 1/2), consider a

sequence of k iterated α-swaps, and for x ∈ {0, 1}k+1, let Vx and L̂x be as in Definition 4.1. Then,
with high probability, all of the following hold.

A1 For each x ∈ {0, 1}k+1, we have

||Vx| − πxn| ≤ n1−cα,k .

A2 For each x ∈ {0, 1}k+1, we have

dK(L̂x,Lx) ≤ n−cα,k .

A3 For each vertex v ∈ V (G) and each x ∈ {0, 1}k+1, we have

|degVx(v) − |Vx|/2| < Cα,k
√
n log n.

A4 For each x ∈ {0, 1}k+1, and each box B =
∏
y∈{0,1}k+1(ay, by] with side lengths by − ay =

n−cα,k (and, therefore, vol(B) = (n−cα,k)2
k+1

) we have

Lx(B) ≤ vol(B) exp(Cα,k
√

log n).

Again, we emphasise that we treat α and k as fixed constants for the purpose of the ‘with high
probability’ statement in the above proposition; in particular, Proposition 4.3 only holds if n grows
sufficiently fast (with respect to α and k).

Before discussing the proof of Proposition 4.3, we explain how it implies Lemma 2.4. The key
observation is that A1 to A4 essentially allow us to read off, from the distributions Lx, arbitrary
information about degree statistics (and, in particular, the number of friendly vertices in each part).
We will need the following lemma.

Lemma 4.4. Suppose that G is such that A2 to A4 are satisfied, and let H ⊆ R
{0,1}k+1

be any
half-space (i.e., the region bounded by one hyperplane). Then for any x ∈ {0, 1}k+1, we have

L̂x(H) = Lx(H) + o(1).

We defer the proof of Lemma 4.4 (in a slightly stronger form, see Lemma 4.6) to Section 4.2; we
now deduce Lemma 2.4 from Proposition 4.3 and Lemma 4.4.

Proof of Lemma 2.4. Let Ak∪Bk be the bisection resulting from k iterations of the α-swap process.
Recall that in the statement of Lemma 2.4, the random variables X and Y are the numbers of
unfriendly vertices in Ak and Bk. It suffices to prove that there is some value N (potentially
depending on all of α, k, n) such that X = N + o(n) with high probability. Indeed, by symmetry it
would follow that Y = N + o(n) with high probability as well, implying that |X − Y | = o(n) with
high probability, as desired.

To this end, for i ∈ {0, 1}, let Si = {x ∈ {0, 1}k+1 : xk+1 = i} and note that a vertex v ∈ Ak is
unfriendly if and only if

∑

y∈S0

degVy(v) −
∑

y∈S1

degVy(v) =
∑

y∈S0

(
degVy(v)− |Vy|/2

)
−
∑

y∈S1

(
degVy(v)− |Vy|/2

)
≤ 0.

So, defining the affine half-space

H =



d ∈ R

{0,1}k+1
:
∑

y∈S0

dy −
∑

y∈S1

dy ≤ 0



 ,

we have X =
∑

x∈S0
|Vx|L̂x(H). By Proposition 4.3 and Lemma 4.4, with high probability we have

X = n
∑

x∈S0
πxLx(H) + o(n), as desired. �
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We will prove Proposition 4.3 by induction on k. In its full generality, our argument will rely on a
second moment computation that utilises results of McKay–Wormald [22] and Canfield–Greenhill–
McKay [12] about enumerating graphs with specified vertex-degrees. Since the argument is rather
technical, we shall proceed slowly, first illustrating the base case before jumping into the meat of
the argument.

4.1. The base case. In this subsection we prove Proposition 4.3 for k = 0. This entails some
explicit calculations in the random graph G(n, 1/2); the inductive step can be seen as a ‘relativized’
version of this argument, with the randomness coming from a well-conditioned random graph with
specified degree information rather than G(n, 1/2).

Recall that we need to prove that the four properties in A1 to A4 each hold with high probability.
The most interesting of these properties is A2, which will be established using the following lemma.

Lemma 4.5. Fix c > 0 and d ∈ N. Let (~d(v))v∈V be a sequence of n discrete jointly random vectors
in R

d, and let L be the (fixed) distribution on R
d defined by choosing v uniformly at random from V

and then sampling from ~d(v). Suppose that for a box Q = (−q, q]d for q ≥ 1, the following conditions
hold:

(1) for each ~s,~t ∈ Q and each u, v ∈ V , we have

P(~d(u) = ~t ∧ ~d(v) = ~s) = (1± n−c)P(~d(u) = ~t)P(~d(v) = ~s),

(2) L(Qc) ≤ n−c, and
(3) for each box B ⊆ Q with side lengths at least n−c, we have L(B) ≤ q vol(B).

For a given realisation of the random sequence (~d(v))v∈V , let L̂ be the (random) distribution on R
d

which is the uniform measure on this realisation. With probability at least 1−O(qdn−c/8) over the

randomness of (~d(v))v∈V , we have dK(L, L̂) = O(qdn−c/(8d)).

In applications, ~d(v) will be a list of degrees from v to a number of other fixed subsets, and

(~d(v))v∈V will be the random ensemble of these lists. The above lemma roughly states that given
decorrelation between these degree statistics, a tail bound and anticoncentration (for technical
reasons), the empirical degree distribution of V is very likely to concentrate around an explicit
distribution.

Here, we again reiterate that the constants suppressed by the asymptotic notation in Lemma 4.5
are allowed to depend on the fixed parameters c and d.

Proof of Lemma 4.5. For any v ∈ V , and any box B, let Ev,B be the event that ~d(v) lies in B, so

that nL̂(B) is the number of v ∈ V such that Ev,B holds. For u, v ∈ V and boxes B,B′ ⊆ Q, we

can sum the bound in (1) over all the points ~t ∈ B and ~s ∈ B′ to see that

P(Eu,B ∩ Ev,B′) = P(Eu,B)P(Ev,B′)± n−c.

It follows that Var(nL̂(B)) ≤ n + n2−c ≤ 2n2−c, so by Chebyshev’s inequality, with probability at
least 1− n−c/4, we have

∣∣∣L̂(B)− E[L̂(B)]
∣∣∣ =

∣∣∣L̂(B)− L(B)
∣∣∣ ≤ 2n−c/4. (4.1)

Now, consider a family B of O(nc/8qd) half-open boxes with side lengths at most D = n−c/(8d)

that partition the (big) box Q. By the union bound, with probability 1 − O(qdn−c/8), the bound

(4.1) holds for all B ∈ B. Also, since E[L̂(Qc)] = L(Qc) ≤ n−c, by Markov’s inequality, we have

L̂(Qc) ≤ n−c/2 with probability at least 1−n−c/2. Now, it is a routine matter to deduce the desired
conclusion from these two facts. The details are as follows.
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For any semi-infinite box A = (−∞, a1]×· · ·× (−∞, ad], we can find subcollections B−,B+ ⊆ B

such that ⋃

B∈B−

B ⊆ A ∩Q ⊆
⋃

B∈B+

B,

and |B+ \B−| = O((q/D)d−1). Then
∑

B∈B−

L̂(B) ≤ L̂(A ∩Q) ≤
∑

B∈B+

L̂(B).

Furthermore, using (3) and (4.1) for all B ∈ B, we see that both the sum
∑

B∈B−
L̂(B) and the

sum
∑

B∈B+
L̂(B) differ from L(A ∩Q) by at most

O
(
|B+ \B−|(qDd) + |B|(2n−c/4)

)
= O

(
qdn−c/(8d)

)
.

So, we have
∣∣∣L(A)− L̂(A)

∣∣∣ = O
(
L(Qc) + L̂(Qc) + qdn−c/(8d)

)
= O

(
qdn−c/(8d)

)
,

proving the lemma. �

Now we use Lemma 4.5 to prove the base case of Proposition 4.3.

Proof of the k = 0 case of Proposition 4.3. First, we have |V0| = |A0| = |V1| = |B0| = n/2, proving
A1. Furthermore, for a sufficiently large Cα,k > 0, given a vertex v, we have |degVi(v) − n/4| <
Cα,kn

1/2
√
log n with probability at least 1− 1/n2, say, just by the Chernoff bound, whence a union

bound demonstrates A3.
It remains to prove A2 and A4. It is enough to prove them for x = (0), by symmetry. We will

take L0 to be the distribution of the random vector

~d(v) = (|degV0(v)− n/4|/√n, |degV1(v) − n/4|/√n),
where v ∈ V0 is arbitrary; clearly, this distribution does not actually depend on the specific choice
of v ∈ V0. Then, L0 has a simple description in terms of independent binomial distributions.
Although it will not be necessary for the proof, we remark that L0 is well-approximated by the
bivariate normal distribution N(0, 1/2)2, and it is possible to take L0 to be this distribution as well.

Before proceeding further, we note that the aforementioned Chernoff bound shows that with

Q = (−Cα,k
√
log n,Cα,k

√
log n]2, we have L0(Q

c) ≤ 2/n2. Now, for every individual point ~d ∈ R2,

we have L0({~d}) = O((1/
√
n)2) = O(1/n), by the Erdős–Littlewood–Offord theorem applied to

each coordinate, say. Since L0 is supported on the lattice ((Z − n/4)/
√
n)2, for a box B with side

lengths at least 1/
√
n, we have

L0(B) = O (vol(B)) , (4.2)

establishing A4. Now, we claim that for every pair of vertices u, v and every pair of points ~s,~t ∈ Q,
we have

P(~d(u) = ~t ∧ ~d(v) = ~s) = (1±O(
√

log n/n))P(~d(u) = ~t)P(~d(v) = ~s).

Indeed, we will then be able to apply Lemma 4.5 to establish that A2 holds with high probability.

The claim follows from the following explicit calculation. The only dependence between ~d(u) and
~d(v) comes from the potential edge between u and v, but we can check that if we condition on

this edge being present (or not), the probabilities P(~d(u) = ~t) and P(~d(v) = ~s) vary only by a

factor of (1 ± O(
√

log n/n)), which in itself boils down to the observation that
(n/2−1

t

)
/
(n/2−1
t−1

)
=

(n/2− t)/t = 1 +O(1/4 − t/n). �
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4.2. Preliminaries for the inductive step. We start with some preparations before proceeding
to the details of the inductive step. First, we provide a proof of Lemma 4.4; actually we prove the
following more general lemma.

Lemma 4.6. For fixed c > 0, d ∈ N and any q ≥ 1, let L,L′ be probability distributions on R
d

satisfying dK(L,L′) ≤ n−c, L′ ((−q, q]d
)
= 1, and L(B) ≤ q vol(B) for all boxes B with side lengths

at least n−c. Then the following conclusions hold.

(1) For any region H ⊆ R
d defined as the intersection of O(1) affine half-spaces, we have

L′(H) = L(H)±O(qdn−c/(2d)).
(2) For any R ⊆ R

d obtained as the region between two affine hyperplanes at distance n−c, we

have L(R) = O(qdn−c/(2d)).

Here, the constants suppressed by the asymptotic notation in Lemma 4.6 are allowed to depend
on the fixed parameters c and d.

Proof of Lemma 4.6. Let Q = (−q, q]d, and note that L(Q) = L′(Q)±O(n−c) = 1−O(n−c). As in

the proof of the base case of Proposition 4.3 (in Section 4.1), we consider a family B of O(qdnc/2)

half-open boxes with side lengths at most D = n−c/(2d) that partition Q.
For the first point, let B+ ⊆ B be the subcollection of boxes which intersect H, and let B− ⊆ B

be the subcollection of boxes fully included in H, so that |B+ \ B−| = O((q/D)d−1). We then
observe that |L′(H)− L(H)| is bounded by

O
(
|B+ \B−|Ddq + |B|n−c + L(Qc)

)
= O

(
qdn−c/(2d)

)
.

For the second part, let B+ be the subcollection of boxes that intersect R, so |B+| = O((q/D)d−1).
We similarly observe that

L(R) = O
(
|B+|(Ddq + n−c) + L(Qc)

)
= O

(
qdn−c/(2d)

)
. �

Second, we isolate the part of the proof of Lemma 4.5 in which we approximated the Kolmogorov
distance via small boxes.

Lemma 4.7. For fixed c > 0 and d ∈ N, there exists a c′ = c′(c, d) > 0 for which the following
holds. Let L,L′ be probability distributions on R

d, where L′ is (possibly) a random object. Let

Q = (−q, q]d ⊆ R
d be a box for q ≥ 1, and let B be a partition of it into at most qdnc/2 boxes with

side lengths at most n−c/(2d). Suppose the following conditions are satisfied.

(1) For each B ∈ B, we have |L′(B)− L(B)| ≤ n−c with probability at least 1− n−c.
(2) L(Qc) ≤ n−c, and L′(Qc) ≤ n−c with probability at least 1− n−c.
(3) For each box B ∈ B with side lengths at least n−c, we have L(B) ≤ q vol(B).

Then, with high probability, we have dK(L,L′) ≤ qdn−c
′

. �

We will also need some lemmas for working with random graphs with constrained degree se-
quences. These lemmas will be deduced from powerful enumeration theorems due to McKay and
Wormald [22] and Canfield, Greenhill, and McKay [12]. Before stating these lemmas, we define a
notion of ‘closeness’ between two degree sequences. This definition is chosen to be convenient for
the proof Proposition 4.3; it has two cases which will both arise in different parts of the proof.

Definition 4.8. Consider a pair of sequences (a(v))v∈V and (b(w))w∈W . Let Â, B̂ be the uniform
measures on these sequences (obtained by choosing a random element of each of these sequences).
We say that (a(v))v∈V and (b(w))w∈W are proximate if at least one of the following two conditions
holds.

(1) There is a bijection ψ : V →W such that
∑

v∈V |a(v)− b(ψ(v))| = O(|V |).
11



(2) ||V | − |W || ≤ n1−Ω(1) and dK(Â, B̂) ≤ n−Ω(1).

We are now ready to state the promised pair of lemmas. We defer the details of their proofs
to Appendix A. The first of these lemmas is for the non-bipartite setting. Recall that ≃ means
equality up to a multiplicative factor (1 +O(n−Ω(1))).

Lemma 4.9. Let (dw)w∈W be a sequence with even sum on a set W of n vertices such that

• dw = n/2±O(
√
n log n) for each w ∈W ,

• ∑w∈T dw = n|T |/2±O(n3/2) for all T ⊆W , and

• ∑w∈W (dw − n/2)2 = O(n2).

Such a sequence is a graphic sequence for all sufficiently large n. Let G be a uniformly random graph
on W with this degree sequence. Then, for any fixed v ∈W and S ⊆W satisfying |S|, n−|S| = Ω(n),
the following hold.

(1) For any integer 0 ≤ t ≤ |S|, parameterising t = |S|/2 + τ
√
n, if |τ | > n1/10, then we have

P(degS(v) = t) ≤ exp(−Ω(τ2)),

and if |τ | ≤ n1/10, then we have

P(degS(v) = t) ≤ exp
(
O
(
|τ |+

√
log n

))
P(Z = t),

where Z = |R ∩ S| for a random subset R ⊆W of size dv, i.e.,

Z ∼ Hypergeometric(n, |S|, dv).
(2) Let us write

P(degS(v) = t) = p(v, (dw)w∈S , (dw)w/∈S , t)

as a function of v, the relevant degree sequences, and t. Then, for t = |S|/2 ± O(
√
n log n)

and the other parameters as constrained above, this function p(·) depends continuously on
its parameters, in the following sense: if

• |t− t′|, |dv − d′v′ | ≤ n1/2−Ω(1),
• (dw)w∈S and (d′w)w∈S′ are proximate, and
• (dw)w∈W\S and (d′w)w∈W ′\S′ are proximate,

then

p(v, (dw)w∈S, (dw)w∈W\S, t) ≃ p(v′, (d′w)w∈S′ , (d′w)w∈W ′\S′ , t′),

recalling that ≃ denotes equality up to a multiplicative factor of 1± n−Ω(1).

Next, the second of the promised pair of lemmas is for the bipartite setting.

Lemma 4.10. Let ((dv)v∈V , (dw)w∈W ) be a pair of sequences with identical sums on a bipartition
V ∪W with |V |, |W | = Θ(n) such that

• dv = |W |/2±O(
√
n log n) for all v ∈ V and dw = |V |/2±O(

√
n log n) for all w ∈W ,

• ∑v∈T dv = |W ||T |/2 ± O(n3/2) for all T ⊆ V and
∑

w∈T dw = |V ||T |/2 ± O(n3/2) for all
T ⊆W , and

• ∑v∈V (dv − |W |/2)2 = O(n2) and
∑

w∈W (dw − |V |/2)2 = O(n2).

Such a pair of sequences form a bipartite-graphic sequence for all sufficiently large n. Let G be a
uniformly random bipartite graph between V and W with this degree sequence. Then, for any fixed
u ∈ V and S ⊆W satisfying |S|, n − |S| = Ω(n), the following hold.

(1) For any integer 0 ≤ t ≤ |S|, parameterising t = |S|/2 + τ
√
n, if |τ | > n1/10, then we have

P(degS(u) = t) ≤ exp(−Ω(τ2)),
12



and if |τ | ≤ n1/10, then we have

P(degS(u) = t) ≤ exp
(
O
(
|τ |+

√
log n

))
P(Z = t),

where Z = |R ∩ S| for a random subset R ⊆W of size dv, i.e.,

Z ∼ Hypergeometric(|W |, |S|, dv).
(2) Let us write

P(degS(u) = t) = p(u, (dv)v∈V , (dw)w∈S , (dw)w∈W\S , t)

as a function of u, the relevant degree sequences, and t. Then, for t = |S|/2 ± O(
√
n log n)

and the other parameters as constrained above, this function p(·) depends continuously on
its parameters, in the following sense: if

• |t− t′|, |du − d′u′ | ≤ n1/2−Ω(1),
• (dv)v∈V and (d′v)v∈V ′ are proximate,
• (dw)w∈S and (d′w)w∈S′ are proximate, and
• (dw)w∈W\S and (d′w)w∈W ′\S′ are proximate,

then

p(u, (dv)v∈V , (dw)w∈S, (dw)w∈W\S, t) ≃ p(u′, (d′v)v∈V , (d
′
w)w∈S′ , (d′w)w∈W ′\S′ , t′),

recalling that ≃ denotes equality up to a multiplicative factor of 1± n−Ω(1).

Finally, we require the following concentration properties of the edge-counts in a random graph.

Lemma 4.11. There are absolute constants C, c > 0 such that if G ∼ G(n, 1/2) is a random graph,
then with probability at least 1− 2 exp(−cn) we have for all disjoint S, T that

(1)
∑

v∈T (degS(v) − |S|/2)2 ≤ Cn2,

(2)
∑

v∈T (degT (v)− (|T | − 1)/2)2 ≤ Cn2,

(3) |∑v∈T (degS(v)− |S|/2)| ≤ Cn3/2, and

(4) |∑v∈T (degT (v)− (|T | − 1)/2)| ≤ Cn3/2. �

The proof of Lemma 4.11 is an immediate application of the union bound, similar to the proof
of Lemma 2.1, so we omit the details.

Now we are ready to finish the proof of Proposition 4.3 by establishing its inductive step.

4.3. Proof of the inductive step. Consider k− 1 iterations of the α-swap process, giving rise to
a partition of the vertices into sets Vx, for x ∈ {0, 1}k , as defined in Definition 4.1. An additional
iteration of the α-swap process will refine this to a partition into sets Vx, for x ∈ {0, 1}k+1; to
emphasise the difference between these two partitions we write Wx instead of Vx when x ∈ {0, 1}k .

By the inductive hypothesis, there are real numbers πx ≥ α4(k−1)/2 and distributions Lx for
x ∈ {0, 1}k such that the following properties are satisfied with high probability.

B1 For each x ∈ {0, 1}k , we have

||Wx| − πxn| ≤ n1−cα,k−1 .

B2 For each x ∈ {0, 1}k , we have

dK(L̂x,Lx) ≤ n−cα,k−1 .

B3 For each vertex v ∈ V (G) and each x ∈ {0, 1}k , we have

|degWx
(v)− |Wx|/2| ≤ Cα,k−1n

1/2
√

log n.

B4 For each x ∈ {0, 1}k , and each box B with side lengths n−cα,k−1 we have

Lx(B) ≤ vol(B) exp(Cα,k−1

√
log n).
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Here, we remind the reader that L̂x is an empirical distribution measuring the degrees of vertices
in Wx into the various sets Wy. Also, we remark that although B4 as written only concerns boxes
with side lengths exactly n−cα,k , a simple covering argument shows that the same conclusion holds
when B is a box with side lengths at least n−cα,k , up to losing constants.

Next, let

R =
(
(Wx)x∈{0,1}k , (degWx

(v))v∈V (G),x∈{0,1}k
)

record the part and degree information after k − 1 iterations of the α-swap process, so B1 to B4

are all really properties of R. Let E be the event that all the conclusions of Lemma 4.11 hold for
all disjoint subsets of vertices S and T . By Lemma 4.11, we have

P(Ec) = E [P(Ec |R)] ≤ e−cn

for some universal c > 0, so by Markov’s inequality, with high probability, R has the property that

B5 P(E |R) ≥ 1− e−(c/2)n.

Now, let us condition on an outcome of R satisfying B1 to B5; we say that such an outcome
is well-behaved. It suffices to prove that, in the resulting conditional probability space, A1 to A4

hold with high probability. Note that, conditionally, G is now a random graph with certain degree
constraints. To be precise, for each x ∈ {0, 1}k , the induced subgraph G[Wx] is uniform over all
graphs in which each v ∈ Wx has degree degWx

(v), and for each pair of distinct x, y ∈ {0, 1}k ,
the subgraph G[Wx,Wy] (consisting of the edges of G between Wx and Wy) is uniform over all
bipartite graphs in which each v ∈Wx has degree degWy

(v) and each v ∈Wy has degree degWx
(v).

Furthermore, all these random subgraphs of the form G[Wx], G[Wx,Wy] are independent, and B1,
B3 and B5 in particular ensure that either Lemma 4.9 or Lemma 4.10 apply to all these subgraphs.

Recalling that we have performed k−1 iterations of the α-swap procedure so far, we now consider
the effect of a kth α-swap. Recall that this α-swap has two steps. First, the ⌊αn⌋ unfriendliest
vertices on each side are swapped. The information recorded in R is enough to determine the
outcome of this first step. Second, a random set of ⌊α4n⌋ vertices on each side are swapped; let S
be the random pair of sets that are swapped in this second step, and note that S is independent
from G conditional on the partition at that time.

For the remainder of this proof, asymptotic notation should be understood to be treating k, α

as fixed constants, so, for example, the inequality in B2 can be described as saying dK(L̂x,Lx) ≤
n−Ω(1).

4.3.1. Concentration of the part sizes. First we prove that A1 holds with high probability. Let
Si = {z ∈ {0, 1}k : zk = i}, and recall that the bisection resulting from the first k − 1 iterations of
the α-swap process has parts Ak−1 =

⋃
z∈S0

Wz and Bk−1 =
⋃
z∈S1

Wz. (Recall there is an index
shift between Ak−1 and zk, as in Definition 4.1.)

Consider any z ∈ {0, 1}k , and let W ′
z be the portion of Wz that is swapped during the first step

of the kth α-swap (i.e., these vertices are among the ⌊αn⌋ unfriendliest vertices in their part of the
bisection Ak−1 ∪Bk−1; this is determined by the outcome of R we have conditioned on). It suffices

to prove that |W ′
z| = π′zn ± n1−Ω(1), for some π′z that does not depend on the specific choice of R

that we are conditioning on (but demanding no lower bound on π′z). Indeed, for any b ∈ {0, 1}, the
second part of the α-swap process (in which we randomly swap sets A′, B′ of ⌊α4n⌋ vertices on both

sides) will then, with high probability, yield |V(z,b)| = π(z,b)n± n1−Ω(1), where

π(z,b) =

{
α4π′z + (1− α4)(πz − π′z) if zk = b

α4(πz − π′z) + (1− α4)π′z if zk 6= b

≥ α4πz ≥ α4 · α4(k−1)/2 = α4k/2.
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Here we have used B1 and a Chernoff bound for the hypergeometric distribution; see for example [18,
Theorem 2.10].

To this end, we study the sets W ′
z. Assume without loss of generality that zk = 0 (i.e., W ′

z ⊆
Ak−1). Let A′ be the set of the ⌊αn⌋ unfriendliest vertices in Ak−1 (so W ′

z =Wz ∩A′), and let A(ζ)

be the set of vertices in Ak−1 with friendliness at most ζ
√
n. We will approximate A′ with A(ζ), for

an appropriate choice of ζ.
For ζ ∈ R, define the affine half-space

Hζ =



d ∈ R

{0,1}k :
∑

y∈S0

dy −
∑

y∈S1

dy ≤ ζ



 .

Then, |A(ζ)| =∑y∈S0
|Wy|L̂y(Hζ). Let us set

f(ζ) =
∑

y∈S0

πyLy(Hζ).

By the second point in Lemma 4.6, the function f satisfies a Lipschitz-like property: if |ζ − ζ ′| ≤
n−Ω(1) then |f(ζ) − f(ζ ′)| ≤ n−Ω(1). Since limζ→−∞ f(ζ) = 0 and limζ→∞ f(ζ) =

∑
y∈S0

πy =

1/2 + o(1), there is some ζα such that |f(ζα)− α| ≤ n−Ω(1).

By the first point in Lemma 4.6, we then have ||A′| − |A(ζα)|| ≤ n1−Ω(1). That is to say, the set

A′ differs from the set A(ζα) by only n1−Ω(1) elements (noting that either A′ ⊆ A(ζ) or A(ζ) ⊆ A′

always). Again using the first point in Lemma 4.6, it follows that

|W ′
z| = |Wz ∩A′| = |Wz ∩A(ζα)| ± n1−Ω(1) = |Wz|L̂(Hζα)± n1−Ω(1) = π′zn± n1−Ω(1),

as desired, where π′z = πzL(Hζα).

4.3.2. Some intermediate empirical degree distributions. For a vertex v, define the degree vector

~g(v) =
(
(degWy

(v) − |Wy|/2)/
√
n
)
y∈{0,1}k

(4.3)

(which is determined by R), and recall that for z ∈ {0, 1}k , L̂z is the uniform measure on the

sequence (~g(v))v∈Wz . For b ∈ {0, 1}, let D̂(z,b) be the uniform measure on (~g(v))v∈V(z,b) (which de-

pends on R,S, but not the remaining randomness of G). This can be thought of as an ‘intermediate’

empirical degree distribution between L̂z and L̂(z,b), where we consider the degrees from vertices in
V(z,b) into the sets Wy.

The considerations in the previous section give us quite strong control over the D̂(z,b). Indeed, for

any box B ⊆ R
{0,1}k let Wz(B) be the set of all v ∈ Wz with ~g(v) ∈ B, and as in the last section,

assume without loss of generality that zk = 0. Let ρ′z(B) = πzLz(B∩Hζα), so that |Wz(B)∩W ′
z| =

ρ′z(B)n ± n1−Ω(1), and a concentration inequality for the hypergeometric distribution shows that

with probability 1−O(1/n) over the randomness of S, we have |Wz(B)∩V(z,b)| = ρz(B)n±n1−Ω(1),
where

ρ(z,b)(B) =

{
α4ρ′z(B) + (1− α4)(πzLz(B)− ρ′z(B)) if zk = b,

α4(πzLz(B)− ρ′z(B)) + (1− α4)ρ′z(B) if zk 6= b.

Since D̂(z,b)(B) = |Wz(B) ∩ V(z,b)|/|V(z,b)|, A1 implies that D̂(z,b)(B) = D(z,b)(B) ± n−Ω(1), where
D(z,b) is the probability distribution for which D(z,b)(S) is proportional to ρ(z,b)(S) for all boxes

S ⊆ R
{0,1}k . Recalling B3 and B4, and partitioning the big box

Q =
(
−Cα,k−1

√
log n,Cα,k−1

√
log n

]2k
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into nc/2+o(1) boxes with side lengths n−c/(2·2
k) for a sufficiently small c > 0, it follows from

Lemma 4.7 that dK(D̂(z,b),D(z,b)) ≤ n−Ω(1) with high probability over the randomness of S.

4.3.3. Controlling the outlier degrees. We next prove that A3 holds with high probability. In addi-
tion to our conditioning on R, in this subsection we also condition on an outcome of S such that
each |Vx| = Ω(n); we may of course do this, since, as we have just observed, this occurs with high
probability.

Fix an arbitrary x ∈ {0, 1}k+1 and y ∈ {0, 1}k . We wish to show that with high probability, for
every v ∈ Wy we have

∣∣degVx(v)− |Vx|/2
∣∣ ≤ Cα,k

√
n log n, for some Cα,k > 0. This suffices, since

we will then be able to take the union bound over all O(1) choices of x, y. This follows from part (1)
of Lemma 4.9 and part (1) of Lemma 4.10 along with a Chernoff bound for the hypergeometric
distribution and a union bound over v ∈ Wy: if z = (x1, . . . , xk) satisfies z = y, then we consider
the constrained-degree random graph G[Wy], and if we instead have z 6= y, then we consider the
constrained-degree bipartite graph G[Wy,Wz].

4.3.4. Defining the ideal distributions. We shall address A4 first before turning to A2 (which is by
far the most involved of the four properties). Therefore, at this juncture, we take a moment to
say something about how we will define the distributions Lx for x ∈ {0, 1}k+1. First, for specific

outcomes of R,S (which determine the sets Vx for x ∈ {0, 1}k+1), we let LR,S
x be the distribution

obtained by choosing a random v ∈ Vx and sampling its degree vector

~d(v) =
(
(degVy(v)− |Vy|/2)/

√
n
)
y∈{0,1}k+1

according to the remaining randomness in G. We will later show that if R is well-behaved, and

S also satisfies certain properties that hold with high probability, then LR,S
x is actually not very

sensitive to the specific choice of R and S, whence we will be able to prove that A2 holds with high

probability when we take Lx to be any such LR,S
x .

4.3.5. Anticoncentration. Here, we show that A4 holds. As in Section 4.3.3, we condition on a
well-behaved outcome of R as well as on an outcome of S such that each |Vx| = Ω(n). By the above

discussion, it suffices to show that LR,S
x satisfies the anticoncentration property in A4. The rough

idea for establishing this involves combining Lemmas 4.9 and 4.10 (which provide anticoncentration
subject to the remaining randomness in G) with the anticoncentration property in B4 coming from
the outcome of the process so far.

Fix a vertex v ∈Wz for some z ∈ {0, 1}k . By part (1) of Lemma 4.9 and part (1) of Lemma 4.10,
for y ∈ {0, 1}k and t ∈ N, parameterising t = |V(y,0)|/2 + τ

√
n and writing dv = degWy

(v), we have

P

(
degV(y,0)(v) = t

)
≤ exp

(
O
(√

log n
))

n−1/2

uniformly in t. Indeed, when applying Lemma 4.9, this holds with room to spare when |τ | >
|V(y,0)|1/10 = Ω(n1/10), and when |τ | ≤ |V(y,0)|1/10, we may see that we uniformly have

P

(
degV(y,0)(v) = t

)
≤ exp

(
O
(
|τ |+

√
log n

)) (|V(y,0)|
t

)(|V c
(y,0)

|
dv−t

)
(m−1
dv

)

≤ exp
(
O
(√

log n
))

n−1/2

by anticoncentration for the hypergeometric distribution.
Since we are conditioning on R,S, the degree-constrained random graph G[Wz ] and the degree-

constrained bipartite graphs G[Wz,Wy] are all independent, so the 2k different degrees {degV(y,0)(v) :
16



y ∈ {0, 1}k} are all independent as well. Thus, we obtain the uniform joint anticoncentration bound

P

(
degV(y,0)(v) = ty ∀ y ∈ {0, 1}k

)
≤ exp

(
O
(√

log n
))(

n−1/2
)2k

.

Note that for each y ∈ {0, 1}k , the degrees degV(y,0)(v) and degV(y,1)(v) are certainly not inde-

pendent, since degV(y,0)(v) + degV(y,1)(v) = degWy
(v) is determined by R. Nonetheless, our joint

anticoncentration bound does imply that for any box B ⊆ R
{0,1}k+1

with side lengths D ≥ 1/
√
n,

we have

P

(
~d(v) ∈ B

)
≤ exp

(
O
(√

log n
))

D2k . (4.4)

Note that vol(B) = D2k+1
, so (4.4) only provides ‘half as much anticoncentration’ as we desire for

A4. So far, we have only considered anticoncentration of ~d(v) when v is a fixed vertex; we will next
establish the remainder of our anticoncentration and A4 proper by allowing v to vary and appealing
to B2 and B4.

Recall the definition of the degree vectors ~g(v) and the empirical distributions D̂(z,b) from Section 4.3.2.

Each D̂(z,b) is obtained from L̂z by conditioning on an event that holds with probability Ω(1), so
B4 implies the same anticoncentration property for these intermediate empirical distributions, i.e.,

D̂x(B) ≤ exp
(
O
(√

log n
))

vol(B). (4.5)

for all boxes B ⊆ R
{0,1}k+1

with side lengths at least n−c, where c = cα,k−1, and all x ∈ {0, 1}k+1.

Now, let π : R{0,1}k+1 → R
{0,1}k be the projection map (dx)x∈{0,1}k+1 7→ (d(y,0) + d(y,1))y∈{0,1}k .

Note that ~g(v) = π(~d(v)) for all v, and note that if B ⊆ R
{0,1}k+1

is a box with side lengths n−c,
then π(B) is contained in a box with side lengths 2n−c. So, by (4.4) and (4.5), we have

LR,S
x (B) =

∑

{v∈Vx:~g(v)∈π(B)}

1

|Vx|
· P
(
~d(v) ∈ B

)

≤ D̂x(π(B)) sup
v∈Vx

P

(
~d(v) ∈ B

)

≤ exp
(
O
(√

log n
))

(2n−c)2
k

(n−c)2
k

≤ exp
(
O
(√

log n
))

vol(B)

for all x ∈ {0, 1}k+1, as desired.

4.3.6. Concentration of the empirical degree distributions. In this subsection we use a second mo-
ment calculation as in Section 4.1 to show that, if we condition on appropriate outcomes of R and
S, then with high probability, for any x ∈ {0, 1}k+1, we have

dK

(
L̂x,LR,S

x

)
≤ n−Ω(1).

This does not quite finish the proof; we still need to rule out the possibility of these different

distributions LR,S
x for different (but still typical) outcomes of R and S being Kolmogorov-far. We

shall however later prove that the distributions LR,S
x , for appropriate R,S, are all Kolmogorov-close

to each other; it will then follow that A2 holds with high probability.
As in the previous two subsections, we condition on a well-behaved outcome of R and an outcome

of S for which |Vx| = Ω(n) for all x ∈ {0, 1}k+1. Fix an x ∈ {0, 1}k+1, and as before, let Q =

(−Cα,k
√
log n,Cα,k

√
log n]2

k+1
, where Cα,k is as chosen in Section 4.3.3, so that say Lx(Qc) ≤ n−2.
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We wish to apply Lemma 4.5. To this end, we shall, for an arbitrary pair of vertices u and v,
study conditional probabilities of the form

P

(
degV(z,b)(v) = t

∣∣∣NWz(u) = T
)
,

where z ∈ {0, 1}k , b ∈ {0, 1}, and T is a set of degWz
(u) elements of Wz \ {u}. Let R(z,b) ={

t :
∣∣t− |V(z,b)|/2

∣∣ ≤ Cα,k
√
n log n

}
. We will show that for such data u, v, z, b, and each t ∈ R(z,b),

the value of the above conditional probability is not very sensitive to the choice of T .
Let y ∈ {0, 1}k be such that v ∈ Wy. As usual, we need to consider separately the case where

y = z and where y 6= z; in the former case, we study the degree-constrained random graph G[Wy],
and in the latter case we study the degree-constrained random bipartite graph G[Wy,Wz].

If y = z, then having conditioned on the event NWy(u) = T , now G[Wy \ {u}] is a random graph
with a particular degree sequence, namely, the degree sequence where we delete u if it is in Wy,
and then decrement the degree of every vertex in T by one. Considering how this degree sequence
varies for different choices of T, T ′, it follows from part (2) of Lemma 4.9 (and the first part of
Definition 4.8) that for each u, v, z, b as above, each t ∈ R(z,b), and each such pair T, T ′, we have

P

(
degV(z,b)(v) = t

∣∣∣NWz(u) = T
)
≃ P

(
degV(z,b)(v) = t

∣∣∣NWz(u) = T ′
)
.

We obtain the same conclusion if z 6= y by considering the bipartite graph G[Wy,Wz], except now
relying on Lemma 4.10.

The above argument implies that for all u, v, z, b, t as above, we in fact have

P

(
degV(z,b)(v) = t

∣∣∣NWz(u) = T
)
≃ P

(
degV(z,b)(v) = t

)
.

Observing that all the random subgraphs of the form G[Wy], G[Wy ,Wz] are independent, we deduce
that for any ~τ , ~σ ∈ Q, we have

P(~d(v) = ~τ ∧ ~d(u) = ~σ) ≃ P(~d(v) = ~τ)P(~d(u) = ~σ).

Therefore we can apply Lemma 4.5, using A4 (which we have already proved) and the fact that
Lx(Qc) ≤ 1/n2 for all x ∈ {0, 1}k+1, to conclude that A2 holds with high probability.

4.3.7. Sensitivity to the conditioned information. To finish, we wish to show that for all x ∈
{0, 1}k+1, well-behaved R and R′, and almost all outcomes S and S ′, we have

dK

(
LR,S
x ,LR′,S′

x

)
≤ n−Ω(1).

This will complete the proof of the inductive step of Proposition 4.3.

Recall the definitions of the degree vectors ~g(v) and the intermediate degree distributions D̂x, Dx

from Section 4.3.2. In that subsection, we showed for all well-behaved R that, with high probability

over S, we have dK(D̂x,Dx) = n−Ω(1). Let c (depending on α, k) be sufficiently small such that

dK(D̂x,Dx) ≤ n−c with high probability, and let us now call an outcome of S well-behaved if this is
the case for all x ∈ {0, 1}k+1.

Let π : R{0,1}k+1 → R
{0,1}k be the projection map (dx)x∈{0,1}k+1 7→ (d(y,0) + d(y,1))y∈{0,1}k , as was

the case in Section 4.3.5. If we condition on any R,S, then for any v ∈ Vx and any ~τ ∈ R
{0,1}k+1

with ~g(v) = π(~τ), we have

P(~d(v) = ~τ) =
∏

y∈{0,1}k
P(degV(y,0)(v) = ty),

where (ty − |V(y,0)|/2)/
√
n = τy. Now, probabilities of the form P(degVx(v) = t) are actually not

very sensitive to the specific choice of v, t,R,S, in the following sense. Suppose R,S,R′,S ′ are all
18



well-behaved, and for some y ∈ {0, 1}k , let v ∈ WR
y and v′ ∈ WR′

y be vertices in the ‘same part’

with respect to R and R′. Moreover, suppose that
∥∥∥~gR(v)− ~gR

′

(v′)
∥∥∥
∞

≤ n1/2−Ω(1).

Then for any x ∈ {0, 1}k+1 and t, t′ = πxn/2± n1/2−Ω(1), by part (2) of Lemma 4.9 and part (2) of
Lemma 4.10 (and using the second part of Definition 4.8), we have

P

(
deg

VR,S
x

(v) = t
∣∣∣R,S

)
≃ P

(
deg

V R′,S′

x
(v′) = t′

∣∣∣R′,S ′
)
. (4.6)

Now, consider well-behaved data R,S,R′,S ′, and fix some x ∈ {0, 1}k+1. Our next objective is to

construct an injective mapping φ between V R,S
x and V R′,S′

x that maps a vertex v ∈ V R,S
x to a vertex

φ(v) ∈ V R′,S′

x with ‘roughly the same statistics’ as v. This will allow us to compare probabilities
conditional on the outcomes (R,S) with probabilities conditional on the outcomes (R′,S ′).

First, let Q = (−Cα,k
√
log n,Cα,k

√
log n]2

k+1
, so by the same considerations as in Section 4.3.3,

we know that

LR,S
x (Qc) ≤ 1/n and LR′,S′

x (Qc) ≤ 1/n.

Now, partition Q into a collection B of n−c/2+o(1) boxes with side lengths n−c/(2·2
k+1). Since

R,S,R′,S ′ are all well-behaved, we have

dK

(
D̂R,S
x , D̂R′,S′

x

)
≤ n−c.

Also, we may assume with no loss of generality that c is sufficiently small, and in particular, that

c < cα,k, so by A1, we have |V R,S
x | = |V R′,S′

x |±n1−c. It follows that, for each B ∈ B, if we consider
the sets

V R,S
x (B) = {v ∈ V R,S

x : ~g(v) ∈ π(B)} and V R′,S′

x (B) = {v ∈ V R′,S′

x : ~g(v) ∈ π(B)},

then we have

|V R,S
x (B)| = |V R′,S′

x (B)| ±O
(
n1−c

)
.

Now, let

m(B) = min
{
|V R,S
x (B)|, |V R′,S′

x (B)|
}
,

and let U ⊆ V R,S
x be obtained by choosing m(B) elements from each V R,S

x (B) for B ∈ B, so that

|U | ≥ |V R,S
x | −O

(
n1−c/2+o(1)

)
.

Let φ : U → V R′,S′

x be an injection such that φ(v) ∈ V R′,S′

x (B) for each v ∈ U ∩ V R,S
x (B). Each

B ∈ B has ℓ∞-diameter O(n−c/(2·2
k+1)), so applying (4.6) and summing over points in B, we see

for all v ∈ U that

P

(
~d(v) ∈ B |R,S

)
= (1± n−c

′

)P
(
~d(φ(v)) ∈ B |R′,S ′

)
,

for some c′ > 0 depending on c and k. Now, if we coarsen B into a partition B
′ of n−c

′/2+o(1)

boxes with side lengths at most n−c
′/(2·2k+1), then we easily see that the conditions of Lemma 4.7

are satisfied, and we deduce that dK(LR,S
x ,LR′,S′

x ) ≤ n−Ω(1) as desired. This finishes the inductive
proof of Proposition 4.3.
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Appendix A. Probabilities in degree-constrained graph models

We start by showing how Lemma 4.9 follows from a series of results of increasing precision about
random graphs with specified degree sequences.

Proposition A.1. Let (dw)w∈W be a sequence with even sum on a set W of n vertices such that,

defining βw by dw = (n− 1)/2 + βw
√

(n− 1)/2, we have

• |βw| ≤ log n for each w ∈W , and

• ∑w∈W β2w ≤ n(log n)1/9.

Such a sequence is a graphic sequence for all sufficiently large n. Let G be a uniformly random graph
with this degree sequence on the vertex set W . Consider any fixed v ∈ W , any fixed subset S ⊆ W
of size h satisfying min(h, n−h) ≥ n/(log n)1/8, and an integer t ∈ [0, dv ]. If |t− h/2| > n3/5, then
we have

P(degS(v) = t) ≤ exp(−Ω((t− h/2)2/n)). (A.1)

If |t− h/2| ≤ n3/5 on the other hand, then we have

P(degS(v) = t) = (1±O(n−1/10))

(
h
t

)(
n−h−1
dv−t

)
(n−1
dv

) exp(Λ1 − Λ2 − Λ3 + Λ4), (A.2)

where Λ1, Λ2, Λ3 and Λ4 are given by

Λ1 =
1

2n2

(
∑

i∈W
βi

)(
∑

i∈W
βi − 2nβv

)
,

Λ2 =
∑

i∈S\v

(
1− 2t

h

)
βi√
n− 1

+
∑

i∈Sc\v

(
1− 2(dv − t)

(n− h)

)
βi√
n− 1

,

Λ3 =
1

2

∑

i∈W\v

β2i
n− 1

, and

Λ4 =
1

2nh

∑

i,j∈S\v
(βi − βj)

2 +
1

2n(n− h)

∑

i,j∈Sc\v
(βi − βj)

2,

the sums in the definition of Λ4 being over all (unordered) two-element subsets.

First, we deduce Lemma 4.9 from Proposition A.1. To this end, we need the following lemma
comparing the moments of distributions that are bounded and Kolmogorov-close.
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Lemma A.2. Fix a constant c > 0. Let (av)v∈V and (bu)u∈U be two sequences of Ω(n) real numbers

with ||V | − |U || ≤ n1−c satisfying |av|, |bu| < q, and such that the uniform measures Â, B̂ on the two

lists satisfy dK(Â, B̂) ≤ n−c. Then, for all k ∈ N, we have

∣∣∣∣∣
∑

v∈V
akv −

∑

u∈U
bku

∣∣∣∣∣ = O(qkn1−c).

Proof. First, note that

1

|V |
∑

v∈V
akv =

∫ q

0
ktk−1(1− Â ((−∞, t])) d t−

∫ 0

−q
ktk−1Â((−∞, t]) d t

=

∫ q

0
ktk−1(1− B̂ ((−∞, t])) d t−

∫ 0

−q
ktk−1B̂((−∞, t]) d t±O(qkn−c)

=
1

|U |
∑

u∈U
bku ±O(qkn−c).

The desired result now follows from the fact that |V | = (1±O(n−c))|U |. �

We are now ready for the proof of Lemma 4.9

Proof of Lemma 4.9. We shall estimate the probabilities in question using Proposition A.1. Indeed,
the hypothesis in the statement of Lemma 4.9, in the language of Proposition A.1, may be stated
as

• |βw| = O(
√
log n) (and hence |βw| ≤ log n) for each w ∈W ,

• |∑w∈T βw| = O(n) for all T ⊆W , and

• ∑w∈W β2w = O(n),

whence it is clear that Proposition A.1 applies.
For part (1) of Lemma 4.9, we may argue as follows. If |t−h/2| > n3/5, then (A.1) gives us what

we need. If |t− h/2| ≤ n3/5, we claim that (A.2) implies the bound in part (1) of Lemma 4.9. To
see this, it suffices to verify in this regime that each of |Λ1|, |Λ2|, |Λ3| and |Λ4| are O(|τ |+√

log n),
where τ is defined by t = h/2 + τ

√
n.

Using the facts that |∑i∈W βi| = O(n), and
∑

i∈W β2i = O(n), we may bound |Λ1| by

|Λ1| =
∣∣∣∣∣
1

2n2

(
∑

i∈W
βi

)(
∑

i∈W
βi − 2nβv

)∣∣∣∣∣

≤ 1

2n2

(
∑

i∈W
βi

)2

+
|βv |
n

∣∣∣∣∣
∑

i∈W
βi

∣∣∣∣∣

= O(1) +O(|βv |) = O
(√

log n
)
.
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Next, we bound |Λ2| using the facts that h, n − h = Ω(n), |∑i∈S\v βi| = O(n) and |∑i∈Sc\v βi| =
O(n) by

|Λ2| ≤

∣∣∣∣∣∣

∑

i∈S\v

(
1− 2t

h

)
βi√
n− 1

∣∣∣∣∣∣
+

∣∣∣∣∣∣

∑

i∈Sc\v

(
1− 2(dv − t)

(n− h)

)
βi√
n− 1

∣∣∣∣∣∣
,

≤ O (|τ |/n)

∣∣∣∣∣∣

∑

i∈S\v
βi

∣∣∣∣∣∣
+O

(
|τ |/n +

√
log n/n

)
∣∣∣∣∣∣

∑

i∈Sc\v
βi

∣∣∣∣∣∣

= O(|τ |+
√

log n).

Finally, since
∑

i∈W β2i = O(n), it is immediate that |Λ3| = O(1), and it follows from the facts that∑
i∈W β2i = O(n), |∑i∈S\v βi| = O(n) and |∑i∈Sc\v βi| = O(n) that |Λ4| = O(1) as well.

For part (2) of Lemma 4.9, it is sufficient to verify that the expression in (A.2) is polynomially-
stable when the parameters in question vary by the amounts specified in the statement of Lemma 4.9;
here, we say that an expression is polynomially-stable if it varies by at most a multiplicative factor
of 1± n−Ω(1). This may be done term by term, as we outline below.

Suppose (d′w)w∈W ′ , |W ′| = n′, v′ ∈ W ′, S′ ⊆ W ′, |S′| = h′ and t′ satisfy the hypothesis in the
statement of the lemma, and additionally, are such that

• |t− t′|, |dv − d′v′ | ≤ n1/2−Ω(1),
• (dw)w∈S and (d′w)w∈S′ are proximate, and
• (dw)w∈W\S and (d′w)w∈W ′\S′ are proximate.

• |n− n′|, |h− h′| ≤ n1−Ω(1), this being a consequence of the previous two points.

In the regime where h, n−h = Ω(n), d = n/2±O(
√
n log n), t = h/2±O(

√
n log n), the expression

(
h

t

)(
n− h− 1

d− t

)(
n− 1

d

)−1

is polynomially-stable when n and h vary by n1−Ω(1), and d and t vary by n1/2−Ω(1), which in
particular tells us that

(
h

t

)(
n− h− 1

dv − t

)(
n− 1

dv

)−1

≃
(
h′

t′

)(
n′ − h′ − 1

d′v′ − t′

)(
n′ − 1

d′v′

)−1

.

This can be seen via a careful (and rather tedious) application of Stirling’s approximation, or
alternately, by using a sufficiently precise form of the de Moivre—Laplace normal approximation,
as in [34] for example.

Next, we need to verify that each of exp(Λ1), exp(−Λ2), exp(−Λ3) and exp(Λ4) are similarly
polynomially-stable, and this may be accomplished in a straightforward manner using Lemma A.2.
To illustrate, we spell out the details for exp(−Λ3) below.

Recall that

Λ3 =
1

2

∑

i∈W\v

β2i
n− 1

=
1

2

∑

i∈W

β2i
n− 1

±O(log n/n).

Our goal is to show, with β′i defined by d′i = (n′ − 1)/2 + β′i
√

(n′ − 1)/2 for i ∈W ′, that

Λ′
3 =

1

2

∑

i∈W ′\v′

(β′i)
2

n′ − 1
=

1

2

∑

i∈W ′

(β′i)
2

n′ − 1
±O(log n/n)

is close enough to Λ3 to ensure exp(−Λ3) ≃ exp(−Λ′
3).
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Since (dw)w∈S and (d′w)w∈S′ are proximate, we claim that

∣∣∣∣∣
∑

i∈S
β2i −

∑

i∈S′

(β′i)
2

∣∣∣∣∣ ≤ n1−Ω(1).

This is true with room to spare if the two sequences are proximate on account of the first part of
Definition 4.8, since in this case, we know that

∑

i∈S

∣∣∣βi − β′ψ(i)

∣∣∣ = O(
√
n)

for some bijection ψ : S → S′, from which it follows that

∣∣∣∣∣
∑

i∈S
β2i −

∑

i∈S′

(β′i)
2

∣∣∣∣∣ ≤
(
max
i∈S

∣∣∣βi + β′ψ(i)

∣∣∣
)(∑

i∈S

∣∣∣βi − β′ψ(i)

∣∣∣
)

= O(
√
n log n).

If the two sequences are proximate on account of the second part of Definition 4.8, then since
|n−n′| ≤ n1−Ω(1), it is easily checked that the Kolmogorov distance between the uniform measures

on (βi)i∈S and (β′i)i∈S′ is at most n−Ω(1), so by Lemma A.2 (with k = 2 and q = log n), we have

∣∣∣∣∣
∑

i∈S
β2i −

∑

i∈S′

(β′i)
2

∣∣∣∣∣ ≤ n1−Ω(1)

as claimed. Reasoning similarly about the proximate pair (dw)w∈W\S and (d′w)w∈W ′\S′ , we deduce
that

∣∣∣∣∣∣

∑

i∈W\S
β2i −

∑

i∈W ′\S′

(β′i)
2

∣∣∣∣∣∣
≤ n1−Ω(1)

as well. Putting these pair of estimates together shows that |Λ3 − Λ′
3| ≤ n−Ω(1), whence it is clear

that exp(−Λ3) ≃ exp(−Λ′
3).

The details in the other three cases (i.e., for Λ1, Λ2 and Λ4) are similar, and we leave them to
the reader. �

Proposition A.1 follows from the following more general statement, the proof of which will be
given in Appendix C once we have collected the requisite machinery in Appendix B.

Proposition A.3. Let (dw)w∈W be a sequence with even sum on a set W of n vertices such that,

defining βw by dw = (n − 1)/2 + βw
√

(n− 1)/2, we have |βw| ≤ log n for each w ∈ W . Such
a sequence is a graphic sequence for all sufficiently large n. Let G be a uniformly random graph
with this degree sequence on the vertex set W . For any fixed v ∈ W , S ⊆ W of size h satisfying
min(h, n− h) ≥ n/(log n)1/8, and an integer t ∈ [0, dv ], we have

P(degS(v) = t) = (1±O(n−1/6))

(h−1S(v)
t

)(n−h−1Sc(v)
dv−t

)
(
n−1
dv

) exp(Λ1 − Λ3)ET [exp(−ΛT )] ,
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where T = T1 ∪ T2 is a random set chosen by picking T1 uniformly from
(S\v
t

)
and T2 uniformly

from
(Sc\v
dv−t

)
, and where Λ1, Λ3 and ΛT are given by

Λ1 =
1

2n2

(
∑

i∈W
βi

)(
∑

i∈W
βi − 2nβv

)
,

Λ3 =
1

2

∑

i∈W\v

β2i
n− 1

, and

ΛT =
∑

i∈W\v
(−1)1T (i) βi√

n− 1
.

To proceed, we will need to understand expressions as appearing in the right side of Proposition A.3.
To this end, we state two general results about sums of random variables constrained to live on a
slice.

Lemma A.4. Let a1, . . . , an ∈ R and let X =
∑n

i=1 aiξi, where ξ = (ξ1, . . . , ξn) is uniform on the
subset of {0, 1}n with sum s. Writing η2 =

∑n
i=1 a

2
i − (

∑n
i=1 ai)

2/n, we have

P(|X − E[X]| ≥ t) ≤ 2 exp(−t2/(4η2))

and

E

[
eX−E[X]

]
≤ 2eO(η2).

Proof. The first part follows from the Azuma–Hoeffding, as outlined in [19, Lemma 2.2], for example.
The second part follows from integrating the first; see [32, Proposition 2.5.2]. �

Lemma A.5. Let a1, . . . , an ∈ R and let X =
∑n

i=1 aiξi, where ξ = (ξ1, . . . , ξn) is uniform on the

subset of {0, 1}n with sum s such that min(s, n− s) ≥ n(log n)−2. Suppose that |ai| ≤ n−1/2(log n)2

and η2 =
∑n

i=1 a
2
i − (

∑n
i=1 ai)

2/n ≤ √
log n. Then we have

E
[
eX
]
= exp

(
E[X] +

1

2
Var[X] ±O(n−1/9)

)
.

Proof. Writing σ2 = Var[X], we clearly have

σ2 =
∑

i 6=j
aiaj(E[ξiξj ]− E[ξi]E[ξj]) +

∑

i

a2i (E[ξ
2
i ]− E[ξi]

2)

=
∑

i 6=j
aiaj

(
s(s− 1)

n(n− 1)
− s2

n2

)
+
∑

i

a2i

(
s

n
− s2

n2

)
=
s(n− s)

n(n− 1)
η2.

First, by Lemma A.4, we have

P[|X − E[X]| ≥ t] ≤ 2 exp(−t2/(4η2))
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for all t ≥ 0. Now

E

[
eX−E[X]

]
=

∫ ∞

−∞
etP(X − E[X] ≥ t)dt

=

∫ 8η
√
logn

−∞
etP(X − E[X] ≥ t)dt+O

(∫ ∞

8η
√
logn

et−t
2/(4η2)dt

)

=

∫ 8η
√
logn

−∞
etP[X − E[X] ≥ t]dt+O

(∫ ∞

8η
√
logn

e−t
2/(8η2)dt

)

=

∫ 8η
√
logn

−∞
etP[X − E[X] ≥ t]dt+O(n−4).

If σ ≤ n−1/8, then η is similarly bounded and we obtain an upper bound of the form 1 +O(n−1/9).

Combining with EeX ≥ eEX , the result follows. If σ > n−1/8, then a combinatorial central limit
theorem of Bolthausen [11] shows that

dK(X − E[X],N (0, σ2)) = O

(
n∑

i=1

|ai|3/σ3
)

= O(n−2/17).

This allows us the replace the integrand above with the cumulative distribution function of a Gauss-
ian, and we easily derive

E

[
eX−E[X]

]
= e

σ2

2 ±O
(
n−2/17eη

√
logn

)
= exp(σ2/2±O(n−1/9)). �

Proposition A.1 is now easily deduced from Proposition A.3.

Proof of Proposition A.1. With T = T1 ∪ T2 a random set chosen by picking T1 uniformly from(
S\v
t

)
and T2 uniformly from

(Sc\v
dv−t

)
, we have

ET [ΛT ] = ET


 ∑

i∈W\v
(−1)1T (i) βi√

n− 1




=
∑

i∈S\v

(
1− 2t

h

)
βi√
n− 1

+
∑

i∈Sc\v

(
1− 2(dv − t)

(n− h)

)
βi√
n− 1

±O(n−1/3)

= Λ2 ±O(n−1/3),

where the small additive error term comes from the fact that whether v ∈ S or v ∈ Sc slightly
change the fractions listed above, but not by much.

At this point, if |t− h/2| > n3/5, we have

(h−1S(v)
t

)(n−h−1Sc(v)
dv−t

)
(n−1
dv

) ≤ exp(−Ω((t− h/2)2/n))

by a standard tail bound for the hypergeometric distribution (see [18, Theorem 2.10], for example).
Since |βw| ≤ log n for each w ∈W , clearly both |Λ1| and |Λ3| are O((log n)2), whence exp(Λ1−Λ3) ≤
exp(O((log n)4)), and we are left with estimating E[exp(−ΛT )]. Now Lemma A.4 demonstrates

E[exp(−ΛT )] ≤ exp(E[−ΛT ] +O((log n)2))
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since the coefficient variance in −ΛT is O((log n)2/n) by the given conditions. The above explicit
expression for E[ΛT ] demonstrates that

|E[−ΛT ]| = O

( |t− h/2|(log n)2√
n

)

when |t− h/2| > n3/5. These estimates together immediately yield a bound of the claimed quality.

From now on we assume |t − h/2| ≤ n3/5. We next compute the variance of ΛT . Following the
computation in the proof of Lemma A.5, we see

Var[ΛT ] =
4

(n− 1)

(
t(h− t)

h(h− 1)

∑
i,j∈S\v(βi − βj)

2

h

+
(dv − t)((n − h)− (dv − t))

(n− h)(n − h− 1)

∑
i,j∈Sc\v(βi − βj)

2

n− h

)
+O(n−1/4),

these sums being over all (unordered) two-element subsets; here, we again use the fact that the

fraction t/|S \ v| is close to t/h regardless of if v ∈ S or v ∈ Sc. Now using t = h/2 ± n3/5 and
dv = n/2 +O(

√
n(log n)), we find

Var[ΛT ] =
1

nh

∑

i,j∈S\v
(βi − βj)

2 +
1

n(n− h)

∑

i,j∈Sc\v
(βi − βj)

2 ±O(n−1/4)

= 2Λ4 ±O(n−1/4).

Note that Var[ΛT ] ≤
∑n

i=1 β
2
i /min(h, n−h) = O(n(log n)1/9/min(h, n−h)), and apply Lemma A.5

to the two slices defining v. Note that the condition η2 ≤ √
log n follows from the inequalities

(n/h)(log n)1/9 <
√
log n and the relation between σ2 and η2 in the proof of Lemma A.5. Therefore

E[exp(−ΛT )] = exp

(
E[−ΛT ] +

1

2
Var[ΛT ]±O(n−1/9)

)

= exp
(
−Λ2 + Λ4 ±O(n−1/9)

)
.

Plugging this last estimate into Proposition A.3, we obtain

P(degS(v) = t) = (1±O(n−1/10))

(h
t

)(n−h−1
dv−t

)
(n−1
dv

) exp(Λ1 − Λ2 − Λ3 + Λ4),

as desired, using the fact that the product of binomials in question changes by a small factor
depending on whether v ∈ S or v ∈ Sc, a factor which is nonetheless subsumed by the error term
with room to spare. �

The proof of Lemma 4.10 is analogous to the argument above, so in this case, we only record the
appropriate intermediate results needed, and omit the details.

Lemma 4.10 may be deduced from the following result in the same fashion as Lemma 4.9 was
from Proposition A.1.

Proposition A.6. Let ((dv)v∈V , (dw)w∈W ) be a pair of sequences with identical sums on a biparti-

tion V ∪W with |V | = m, |W | = n such that, defining αv by dv = (n − 1)/2 + αv
√

(n− 1)/2 for

v ∈ V and βw by dw = (n− 1)/2 + βw
√

(n− 1)/2 for w ∈W , we have

• (log n)−1/4 ≤ m/n ≤ (log n)1/4,
• |αv| ≤ log n for each v ∈ V and |βw| ≤ log n for each w ∈W , and
• (n/m)

∑
w∈W β2w ≤ n(log n)1/9.
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Then it is a bipartite-graphic degree sequence (for n large). Let G be a uniformly random graph with
this degree sequence on the vertex set W . Consider any fixed u ∈ V , any fixed subset S ⊆W of size
h satisfying min(h, n − h) ≥ n/(log n)1/8, and an integer t ∈ [0, du]. If |t − h/2| > n3/5, then we
have

P(degS(u) = t) ≤ exp(−Ω((t− h/2)2/n)). (A.3)

If |t− h/2| ≤ n3/5 on the other hand, then we have

P(degS(u) = t) = (1±O(n−1/10))

(h
t

)(n−h
du−t

)
( n
du

) exp(Λ1 − Λ2 − Λ3 + Λ4), (A.4)

where Λ1, Λ2, Λ3 and Λ4 are given by

Λ1 =
1

2mn

(
∑

i∈W
βi

)(
∑

i∈W
βi − 2

√
mnαu

)
,

Λ2 =
∑

i∈S

(
1− 2t

h

)
βi√
m

+
∑

i∈W\S

(
1− 2(dv − t)

(n− h)

)
βi√
m
,

Λ3 =
1

2

∑

i∈W

β2i
m
, and

Λ4 =
1

2mh

∑

i,j∈S
(βi − βj)

2 +
1

2m(n− h)

∑

i,j∈W\S
(βi − βj)

2,

the sums in the definition of Λ4 being over all (unordered) two-element subsets. �

As before, Proposition A.6 itself is a consequence of the following result, whose proof will be
sketched in Appendix C once we have collected the requisite machinery in Appendix B.

Proposition A.7. Let ((dv)v∈V , (dw)w∈W ) be a pair of sequences of identical sums on a bipartition

V ∪W with |V | = m, |W | = n such that, defining αv by dv = (n− 1)/2 + αv
√

(n− 1)/2 for v ∈ V

and βw by dw = (n− 1)/2 + βw
√

(n− 1)/2 for w ∈W , we have

• (log n)−1/4 ≤ m/n ≤ (log n)1/4,
• |αv| ≤ log n for each v ∈ V and |βw| ≤ log n for each w ∈W .

Such a pair of sequences form a bipartite-graphic sequence for all sufficiently large n. Let G be a
uniformly random graph with this degree sequence on the vertex set W . For any fixed u ∈ V , S ⊆W
of size h satisfying min(h, n− h) ≥ n/(log n)1/8, and an integer t ∈ [0, du], we have

P(degS(u) = t) = (1±O(n−1/8))

(h
t

)(n−h
du−t

)
( n
du

) exp(Λ1 − Λ3)ET [exp(−ΛT )] ,

where T = T1 ∪ T2 is a random set chosen by picking T1 uniformly from
(S
t

)
and T2 uniformly from(W\S

du−t
)
, and where Λ1, Λ3 and ΛT are given by

Λ1 =
1

2mn

(
∑

i∈W
βi

)(
∑

i∈W
βi − 2

√
mnαu

)
,

Λ3 =
1

2

∑

i∈W

β2i
m
, and

ΛT =
∑

i∈W
(−1)1T (i) βi√

m
.
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Appendix B. Graph enumeration results and related estimates

The main tools needed to prove Propositions A.3 and A.7 are the following enumeration theorems
of McKay and Wormald [22] and of Canfield, Greenhill, and McKay [12].

Theorem B.1. There exists a fixed constant ε > 0 such that the following holds. Consider a
sequence d = (d1, . . . , dn) with even sum such that, writing d = (1/n)

∑n
i=1 di, we have

• |di − d| ≤ n1/2+ε for 1 ≤ i ≤ n, and
• d ≥ n/ log n.

Writing m = dn/2 ∈ Z, µ = d/(n− 1), and γ22 = (1/(n− 1)2)
∑n

i=1(di − d)2, the number of labelled
graphs with degree sequence d is

(1±O(n−1/4)) exp

(
1

4
− γ22

4µ2(1− µ)2

)

×
(
n(n− 1)/2

m

)(
n(n− 1)

2m

)−1 n∏

i=1

(
n− 1

di

)
. �

Theorem B.2. There exists a fixed constant ε > 0 such that the following holds. Consider a pair of
sequences (s = (s1, . . . , sn), t = (t1, . . . , tm)) with identical sums such that, writing s = (1/n)

∑n
i=1 si

and t = (1/n)
∑m

i=1 ti, we have

• n/(log n)1/2 ≤ m ≤ n(log n)1/2,

• |si − s| ≤ n1/2+ε for 1 ≤ i ≤ n and |ti − t| ≤ m1/2+ε for 1 ≤ i ≤ m, and

• s ≥ n/(log n)1/2 and t ≥ m/(logm)1/2.

Writing µ =
∑n

i=1 si/(mn) =
∑m

i=1 ti/(mn), γ2(s)
2 = (1/n2)

∑n
i=1(si − s)2 and γ2(t)

2 =
(1/m2)

∑m
i=1(ti − t)2, the number of labelled bipartite graphs whose partition classes have degree

sequences s and t is

(1±O(n−1/8)) exp

(
−1

2

(
1− γ2(s)

2

µ(1− µ)

)(
1− γ2(t)

2

µ(1− µ)

))

×
(
mn

mnµ

)−1 n∏

i=1

(
m

si

) m∏

i=1

(
n

ti

)
. �

We remark that these enumeration results are now known to hold under even broader conditions
on the degree sequences (i.e., d, s and t) due to works of Barvinok and Hartigan [6], and for
essentially all sparsities by recent work of Liebenau and Wormald [20, 21]. We refer the reader
to [33] for an excellent survey of these results.

In order to estimate the expressions in Theorems B.1 and B.2, we shall also require the following
estimates for binomial coefficients. These follow from sufficiently precise versions of Stirling’s ap-
proximation for the factorial. These estimates are nonetheless somewhat nonstandard, and so we
include proofs, following the exceptionally clean approach in [27].

Lemma B.3. We have the following pair of estimates.

(1) Let ∆1 = e − m(m − 1)/4 and ∆2 = (m − 1)/2 − d. If |∆1| = O(m3/2) and |∆2| =
O(

√
m logm), then

(m(m−1)/2
e

)(m(m−1)
2e

)−1

((m−1)(m−2)/2
e−d

)((m−1)(m−2)
2e−2d

)−1 = (1±O(m−2/5))2−(m−1) exp(−8(∆2
1 +∆1∆2m)/m3).
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(2) Let ∆1 = e − mn/2 and ∆2 = n/2 − d. If |∆1| ≤ O(m3/2), |∆2| ≤ O(
√
m logm), and

m = Θ(n), then
(
mn

e

)−1((m− 1)n

e− d

)
= (1±O(m−2/5))2−n exp(−2(2m∆1∆2 +∆2

1)/(m
2n)).

Proof. We first compute
( n
(n+i)/2

)
to sufficient precision when |i| ≤ n4/5. Note that

(
n

(n+ i)/2

)(
n

n/2

)−1

=

i/2∏

j=1

n/2− j + 1

n/2 + j
=

i/2∏

j=1

n/2− j

n/2 + j

i/2∏

j=1

n/2− j + 1

n/2− j
.

The final product above is (1 ± O(n−1/5)) and may be safely ignored. For the first of the two
products, note that

i/2∑

j=1

log((n/2 − j)/(n/2 + j)) =

i/2∑

j=1

−4j/n − 2(2j/n)3/3±O(n−1/5)

= −i2/(2n)− i4/(12n3)±O(n−1/5).

Now, we have ∆1 = e−m(m− 1)/2 and ∆2 = (m− 1)/2− d. Applying this to the first ratio of
binomial coefficients, we find that

(
m(m−1)/2

e

)(
m(m−1)

2e

)−1

((m−1)(m−2)/2
e−d

)((m−1)(m−2)
2e−2d

)−1 = (1±O(m−2/5))2−(m−1) exp(−8(∆2
1 +∆1∆2m)/m3),

proving the first estimate. Next, note that ∆1 = e−mn/2 and ∆2 = n/2− d, so
(
mn

e

)−1((m− 1)n

e− d

)
= (1±O(m−2/5))2−n exp(−2(2m∆1∆2 +∆2

1)/(m
2n)),

proving the second estimate. �

Appendix C. Proofs of the main technical estimates

With the results in Appendix B in hand, we are now ready to prove Propositions A.3 and A.7.
We start with Proposition A.3.

Proof of Proposition A.3. Given d = (dw)w∈W , v ∈W and T ⊆W \ v of size dv, we shall estimate
the probability of the neighbourhood of v in G being exactly T .

To this end, let dT = (dw − 1T (w))w∈W . As in Theorem B.1, let

d =
1

n

∑

i∈W
di, dT =

1

n− 1

∑

i∈W\v
di − 1T (i) =

nd− 2dv
n− 1

,

r =
dn

2
, rT =

dT (n− 1)

2
= r − dv,

µ =
d

n− 1
, µT =

dT
n− 2

=
n

n− 2
µ− 2dv

(n− 1)(n − 2)
,

γ22 =
1

(n− 1)2

∑

i∈W
(di − d)2, γ22(T ) =

1

(n− 2)2

∑

i∈W\v
(dT,i − dT )

2.

Note that d and dT both clearly satisfy the conditions of Theorem B.1 due to our hypotheses,
and that

γ22(T ) = γ22 ±O(n−1/4) and µT = µ±O(1/n),
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again, from the given hypotheses. Now define

Φ =

((n−1)(n−2)/2
r−dv

)((n−1)(n−2)
2r−2dv

)−1

(n(n−1)/2
r

)(n(n−1)
2r

)−1 2−(n−1)

and recall di = (n− 1)/2 + βi
√

(n− 1)/2. We have

r − 1

2

(
n

2

)
=

1

2

∑

i∈W
(di − (n − 1)/2) =

√
(n− 1)

4

∑

i∈W
βi.

From our hypotheses and the first estimate in Lemma B.3, we then deduce that

Φ = exp

(
(
∑

i∈W βi)(
∑

i∈W βi − 2nβn)

2n2
±O(n−1/6)

)

= exp(Λ1 ±O(n−1/6)).

The above estimates for γ22(T ) and µT imply that

exp
(
1
4 −

γ22 (T )

4µ2
T
(1−µT )2

)

exp
(
1
4 − γ22

4µ2(1−µ)2
) = 1±O(n−1/4),

and this fact in conjunction with Theorem B.1 yields

P[N(v) = T ] = (1±O(n−1/4))

(
(n−1)(n−2)/2

rT

)(
(n−1)(n−2)

2rT

)−1∏
i∈W\v

(
n−2

di−1T (i)

)

(
n(n−1)/2

r

)(
n(n−1)

2r

)−1∏
i∈W

(
n−1
di

)

= (1±O(n−1/4))
Φ2n−1

(
n−1
dv

)
∏

i∈T

di
n− 1

∏

i/∈T

n− 1− di
n− 1

= (1±O(n−1/4))
Φ(n−1
dv

)
∏

i∈T

(
1 +

βi√
n− 1

)∏

i/∈T

(
1− βi√

n− 1

)

=
Φ(n−1
dv

) exp


−

∑

i∈W\v
(−1)1T (i) βi√

n− 1
− 1

2

∑

i∈W\v

β2i
n− 1

±O(n−1/4)




=
Φ(n−1
dv

) exp
(
−ΛT − Λ3 ±O(n−1/4)

)
.

Since the above estimate holds for every choice of T ⊆W \ v, we may finish by noting that

(1±O(n−1/4))

(n−1
dv

)

Φ
(h−1S(v)

t

)(n−h−1Sc(v)
dv−t

)P[degS(v) = t] = exp(−Λ3)ET [exp(−ΛT )],

where T = T1 ∪ T2 is a random set chosen by picking T1 uniformly from
(S
t

)
and T2 uniformly from(W\S

dv−t
)
. Rearranging this, and recalling that Φ = exp(Λ1±O(n−1/6)), gives us the desired result. �

To finish, we outline the proof of Proposition A.7.

Proof of Proposition A.7. The proof of this proposition mirrors that of Proposition A.3, except now
using Theorem B.2 instead of Theorem B.1, and the second estimate in Lemma B.3 instead of the
first. Since the requisite calculations are routine (and are analogous to those spelled out in the proof
Proposition A.3), we leave the details of these calculations to the reader. �
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