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MAJORITY DYNAMICS: THE POWER OF ONE

ASHWIN SAH AND MEHTAAB SAWHNEY

Abstract. Consider n = ℓ+m individuals, where ℓ ≤ m, with ℓ individuals holding an opinion A

and m holding an opinion B. Suppose that the individuals communicate via an undirected network
G, and in each time step, each individual updates her opinion according to a majority rule (that
is, according to the opinion of the majority of the individuals she can communicate with in the
network). This simple and well studied process is known as “majority dynamics in social networks”.
Here we consider the case where G is a random network, sampled from the binomial model G(n, p),

where (logn)−1/16 ≤ p ≤ 1−(log n)−1/16. We show that for n = ℓ+m with ∆ = m−ℓ ≤ (log n)1/4,
the above process terminates whp after three steps when a consensus is reached. Furthermore, we
calculate the (asymptotically) correct probability for opinion B to “win” and show it is

Φ

(

p∆
√
2

√

πp(1− p)

)

+O(n−c),

where Φ is the Gaussian CDF. This answers two conjectures of Tran and Vu and also a question
raised by Berkowitz and Devlin.

The proof technique involves iterated degree revelation and analysis of the resulting degree-
constrained random graph models via graph enumeration techniques of McKay and Wormald as
well as Canfield, Greenhill, and McKay.

1. Introduction

Considerable effort has been devoted to understanding exchange of opinions between individuals,
seeing as it plays a major role in all types of social interaction. Of course, no simple model can accu-
rately describe the behavior of many actors in complicated situations, so analysis and understanding
of natural models for this problem has generated significant interest. A natural model, which has
even been of interest in biophysics [17] and psychology [7], is so-called majority dynamics. It can be
briefly described as follows. Given n individuals, let the network G capture the set of interactions

between participants. For each participant i ∈ {1, . . . , n} with initial opinion A
(0)
i ∈ {±1}, at every

time step they adopt the majority opinion of their neighbors, that is, A
(t+1)
i = sign(

∑
j∼iA

(t)
j ). The

key object of study therefore is understanding the propagation of opinions and how the local struc-
ture of the network affects these dynamics. We refer the reader to [3, 21–23] for further references
regarding majority dynamics.

We now precisely define majority dynamics in terms of partitions of the graph G as this will
be our focus in order to analyze it. Additionally, following [23] we follow the convention that if a
participant’s neighborhood is equally split between opinions then they keep the same opinion.

Definition 1.1. Given a graph G with bipartition B0 ⊔ R0, the majority dynamics at time i are
computed as follows. Given Bi⊔Ri, a new partition Bi+1⊔Ri+1 by swapping precisely those vertices
with strictly more of their neighbors on the other side of the partition. We say a color blue or red
wins by step k if Bk = B0 ∪R0 or Rk = B0 ∪R0, respectively.

Our primary object of study in the paper concerns majority dynamics on random graphs G(n, p).
First considered by Benjamini, Chan, O’Donnell, Tamuz, and Tan [2], research has primarily focused
on establishing that majority dynamics terminates in a finite number of steps (see e.g. [10] and the

Sah and Sawhney were supported by NSF Graduate Research Fellowship Program DGE-1745302.
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very recent [8] aimed at understanding sparse graphs) or understanding the even finer question of
the distribution of which color majority dynamics terminates on [3, 23]

Our primary aim is to resolve a conjecture of Tran and Vu [23] which informally states that for
majority dynamics in G(n, 1/2) even a bias of a single extra voter is sufficient to influence the final
state by a positive probability. An essentially equivalent conjecture appears in subsequent work of
Berkowitz and Devlin [3, Conjecture 7].

Conjecture 1.2 ([23, Conjecture 7]). Majority dynamics on G(2n + ∆, 1/2) with sets R0 =
{v1, . . . , vn+∆} and B0 = {v′1, . . . , v′n} converges to Rk = R0∪B0 with probability at least 1/2+f(∆),
where f(∆) > 0, as n → ∞.

Tran and Vu [23] resolved this conjecture for (even) ∆ ≥ 12, and Berkowitz and Devlin [3]
resolved it for ∆ ≥ 3.

We resolve this conjecture in full.

Theorem 1.3. There is an absolute constant c > 0 so that the following holds. Let n ≥ 1. Let
0 ≤ ∆ ≤ (log n)1/4 and let n ≥ 1, (log n)−1/16 ≤ p ≤ 1 − (log n)−1/16. In majority dynamics on
G(2n + ∆, p) with |R0| = n + ∆, with probability at least 1 − O(n−c) there is a color with more
vertices at step 1 and that color wins by step 3. Furthermore, |R3| = 2n+∆ with probability

Φ

(
p∆

√
2√

πp(1− p)

)
+O(n−c)

where Φ is the cdf of N (0, 1).

Remark. In particular, the event that both colors have the same size at step 1 occurs with decaying
probability. The parameters (log n)−1/16, (log n)−1/4 can certainly be improved substantially but
we have chosen to focus on the dense regime.

We note that Theorem 1.3 additionally resolves [23, Conjecture 8] regarding monotonicity of
the limiting probabilities with respect to ∆, and the proof of Theorem 1.3 essentially answers
[3, Question 2] (see in particular Theorems 2.1 and 3.5 which provide fine information about the
sizes of the various parts after one and two days). We also note that this is the first work which gives
an exact limiting probability for a specific color winning when that probability is strictly between
0 and 1 (other than the simple symmetric case ∆ = 0).

We anticipate that the techniques of this paper combined with recent refined asymptotic enumer-
ation results of [15,16] can yield further refinements of work of [3,10]. In particular this may allow
precise understanding of the number of steps before reaching stability for wider ranges of sparse p
than currently known.

1.1. Strategy. The broad structure of this paper breaks into 2 phases. In the first we substantially
refine results of [3] in order to obtain a local limit theorem of how many vertices switched from
blue to red and red to blue jointly. Our techniques rely extensively on graph enumeration results
and models developed for degree sequences in G(n, p) by McKay and Wormald [20] and random
bipartite graphs by McKay and Skerman [18]. Technically, this fine-tuned local limit theorem is not
necessary to complete the analysis, and one can use a (non-joint) central limit theorem for the lead
[3, Theorem 1] along with a precise computation of its mean (using for example techniques similar
to Appendix A or [3, Lemma 12]).

The second and third days also use the graph enumeration techniques of McKay and Wormald
[19] which were extended to bipartite graphs by Canfield, Greenhill, and McKay [5]; however at
these stages we will only derive coarser information about the degree sequences and the number
of red and blue vertices. In particular, we prove that given a sufficiently large initial lead, on the
second day the number of red and blue vertices concentrate in intervals of length O(n1−η) for an

2



absolute constant η. Further, we show that the side leading will have developed a substantial lead
(of linear order). Then a final application of degree enumeration implies that with high probability
that the process terminates on the third day, because it is unlikely for any vertex to have a degree
so large that it overcomes the gap between sizes. (Simpler arguments in [2, 3, 23] show termination
by the fourth day without enumeration at this stage.)

For these two stages we rely on a modification of a concentration argument developed by the
Ferber, Kwan, Narayanan, and the authors [9] where a general framework for applying the second
moment method with McKay-Wormald [19] enumeration formulas were used to resolve a conjecture
of Füredi on the existence of “unfriendly” partitions in G(n, 1/2). The analysis here is substantially
simpler as we need to track fewer parameters to guarantee convergence to termination within a finite
time horizon. In particular, the analysis of the third day only requires a large-deviation bound on
the degrees of vertices from what is expected in a degree-constrained random graph model, and the
analysis of the second day has substantially simpler formulas due to the setting.

Acknowledgements. We thank Asaf Ferber, Vishesh Jain, Matthew Kwan, and Bhargav Narayanan
for discussions related to this project.

2. Day one

As mentioned, the analysis for the first day involves proving a local limit theorem for the sizes of
parts. Although a central limit theorem was shown by Berkowitz and Devlin [3] for the size of the
red partition after one step, we will require understanding of how many vertices switched from blue
to red and red to blue jointly, rather than the net amount. A central limit theorem may be derivable
from their method, which involves moments. We need only a joint central limit theorem but we
have chosen to demonstrate a local limit theorem to demonstrate the power of these techniques,
and due to its independent interest. In particular, enumeration techniques allow one to reduce this
computation to a local limit theorem for certain binomial random variables and various question
about the model can be derived using these techniques.

The main result of this section is the following theorem. Its proof occupies Sections 2.1 to 2.4.

Theorem 2.1. There exists constants C, c > 0 such that the following holds. Let n ≥ 2, let
0 ≤ ∆ ≤ (log n)1/4 and let (log n)−1/4 ≤ p ≤ 1− (log n)−1/4. Let

√
n

4π
x′ = x−

(
1

2
+

p(∆− 1) + 1/2

2
√

πp(1− p)n

)
n,

√
n

4π
y′ = y −

(
1

2
+

p(−∆− 1) + 1/2

2
√

πp(1− p)n

)
n.

In majority dynamics on G(2n+∆, p) with |R0| = n+∆, we have that

P[|R0 ∩R1| = x ∧ |B0 ∩B1| = y]

=
2

n
√
π(2 + π)

exp

(
− (1 + π)(x′)2 − 2(x′y′) + (1 + π)(y′)2

2π(2 + π)

)
+O(n−1−c).

Furthermore for |x′| or |y′| ≥ C
√
log n we have that

P[|R0 ∩R1| = x ∧ |B0 ∩B1| = y] ≤ n−5.

2.1. Initial estimates. We will first need some initial estimates regarding specific distributions
which will show up when computing our local limit theorem. First, we record the probability that
one binomial is greater than a different binomial with similar parameters. We defer its proof,
which consists mainly of binomial manipulations and applications of well-known local central limit
theorems, to Appendix A.
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Lemma 2.2. There is c > 0 so that the following holds. We are given n ≥ 2, τ ∈ Z of magnitude at
most 2(log n)1/4, and (log n)−1/4 ≤ p ≤ 1− (log n)−1/4. Suppose that q = p+α/n and q′ = p+β/n

with |α|, |β| ≤ 40
√

p(1− p) log n. Then

P[Bin(n+ τ, q) ≥ Bin(n, q′)] =
1

2
+

pτ + 1/2 + α− β

2
√

πp(1− p)n
+O(n−3/4).

Next, we need to understand the mean and standard deviation of certain conditioned binomial
random variables. The level of control required can be deduced from the Berry-Esseen theorem.

Lemma 2.3. There is c > 0 so that the following holds. We are given n ≥ 2, τ ∈ Z of magnitude at
most 2(log n)1/4, and (log n)−1/4 ≤ p ≤ 1−(log n)−1/4. Suppose that q, q′ ∈ p±40

√
p(1− p) log n/n.

Let X ∼ Bin(n + τ, q) and Y ∼ Bin(n, q′). Let X+ be X conditional on X > Y while X− be X
conditional on X ≤ Y . Then

EX+ = pn+

√
p(1− p)n

π
+O(n1/4), VarX+ =

(
1− 1

π

)
p(1− p)n+O(n3/4)

EX− = pn−
√

p(1− p)n

π
+O(n1/4), VarX− =

(
1− 1

π

)
p(1− p)n+O(n3/4).

Proof. By Berry-Esseen, the joint distribution (X − pn, Y − pn)/
√

p(1− p)n has cumulative dis-

tribution function differing from N (0, I2) by O(1/
√

np(1− p)) pointwise. (Note that τ is small, so
the shifts are negligible.) Let Z1, Z2 ∼ N (0, 1). We see that

EX+ = E[X|X ≥ Y ] = pn+
√

p(1− p)n
E[X1X≥Y ]

P[X ≥ Y ]

= pn+
√

p(1− p)n
E[Z11Z1≥Z2 ] +O(n−1/4)

1
2 +O(n−1/4)

= pn+

√
p(1− p)n

π
+O(n1/4).

The error terms O(n−1/4) come from integrating the discrepancy in cumulative distribution functions

over the region where (X − pn, Y − pn)/
√

p(1− p)n is bounded by O(
√
log n) and using a large

deviation bound for binomials outside. Similarly,

E(X+ − pn)2 = E[(X − pn)2|X ≥ Y ] = p(1− p)n
E[Z2

11Z1≥Z2 ] +O(n−1/4)
1
2 +O(n−1/4)

= p(1− p)n+O(n3/4).

Therefore

VarX+ = E[(X+ − pn)2]− (E[X+ − pn])2 =

(
1− 1

π

)
p(1− p)n+O(n3/4).

Above, we used E[Z11Z1≥Z2 ] = 1/(2
√
π) and E[Z2

11Z1≥Z2 ] = 1/2. The computation for X− is
exactly analogous so we omit it. �

Next, we need a local limit theorem for sums of these conditioned binomial random variables.
The proof uses log-concavity of binomial distributions, along with a technique of Bender [1] which
upgrades a Berry-Essen quality central limit theorem for a log-concave variable into a local central
limit theorem. Though it follows by directly citing such results, we spell out the details in order to
quantify the bounds.
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Proposition 2.4. There is c > 0 so that the following holds. We are given n ≥ 2, m, τk, τ
′
k ∈ Z

of magnitude at most 2(log n)1/4, and (log n)−1/4 ≤ p ≤ 1 − (log n)−1/4. Suppose that qk, q
′
k ∈

p ± 40
√

p(1− p) log n/n. Let Xk ∼ Bin(n + τk, qk) and Yk ∼ Bin(n + τ ′k, q
′
k). Let X+

k be Xk

conditional on Xk > Yk while X−
k be Xk conditional on Xk ≤ Yk. Fix some i ∈ [n + m] and

sequence ǫk ∈ {±1}, and let

S =
i∑

k=1

ǫkX
−
k +

n+τ ′∑

k=i+1

ǫkX
+
k .

Then

P[S = s] =
1√
2πσS

exp

(
− (s− µS)

2

2σ2
S

)
+O

(
1

n1/5σS

)

for all i ∈ [n+m] and s ∈ Z, if µS and σS are the mean and variance of S.

Proof. Note that Xk, Yk have probabilities converging to that of a normalized Gaussian, by a local
limit theorem. Combining with tail bounds, we easily see that X+

k has well-behaved (centered)

moments: its variance is Θ(p(1 − p)n) and its centered third moment is Θ((p(1 − p)n)3/2). The
same holds for X−

k . Therefore, the Berry-Esseen theorem shows that the cumulative distribution

functions of S and N (µS , σ
2
S) differ by O(1/

√
n) everywhere.

Next, note that Xk, Yk have log-concave probability mass functions (on Z) by log-concavity of
binomials, hence (Xk, Yk) has a jointly log-concave probability mass function in the sense that

p(a, b)p(c, d) ≤ p

(⌊
a+ c

2

⌋
,

⌊
b+ d

2

⌋)
p

(⌈
a+ c

2

⌉
,

⌈
b+ d

2

⌉)
.

Conditioning on a convex set preserves log-concavity in this sense, hence (Xk, Yk) conditional on
Xk ≥ Yk as well as conditional on Xk < Yk both have log-concave probability mass functions. By
[11, Theorem 1.2] (which is essentially reproves to [13, Theorem 1.4] but allows functions to be
0), we see that the marginals of a distribution which is log-concave in this sense are log-concave.
Therefore X+

k , X−
k have log-concave probability mass functions.

Finally, convolutions of log-concave sequences are log-concave, so S has log-concave probability
mass function. We established earlier that it satisfies a quantitative central limit theorem. We now
quantify an argument of Bender [1] in order to deduce the desired result.

Let mS be the mode of S. Above this value, the probability mass is nonincreasing, while below
it is nondecreasing. First suppose that s > mS + n−1/4σS. We see that

P[S = s] ≤ 1

⌈n−1/4σS⌉
P[s ≤ S < s+ n−1/4σS ]

=
1

⌈n−1/4σS⌉
P[s ≤ N (µS, σ

2
S) < s+ n−1/4σS ] +O(n−1/4σ−1

S )

=
1√
2πσS

exp

(
− (s− µS)

2

2σ2
S

)
+O(n−1/5σ−1

S ).

The last line follows since (s − µS)
2/(2σ2

S) is either stable up to a multiplicative factor of (1 +

O(n−1/5)) upon changing s by ±n−1/4σS or is super-polynomially small (hence absorbed into the
additive error term, since σ2

S = Θ(p(1 − p)n2) is polynomial). The lower bound is analogous.

Furthermore, this holds for s < mS − n−1/4σS by an identical argument. Therefore,

P[S = s] =
1√
2πσS

exp

(
− (s− µS)

2

2σ2
S

)
+O(n−1/5σ−1

S )

as long as s /∈ mS ± n−1/4σS.
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Finally, suppose that mS ≤ s ≤ mS + n−1/4σS (the symmetric case is analogous). We have

P[S = s] ≥ P[S = s+ ⌈n−1/4σS⌉]

=
1√
2πσS

exp

(
− (s+ ⌈n−1/4σS⌉ − µS)

2

2σ2
S

)
+O(n−1/5σ−1

S )

=
1√
2πσS

exp

(
− (s− µS)

2

2σ2
S

)
+O(n−1/5σ−1

S ),

where the last equality uses a similar argument to above. This is in fact enough to demonstrate that
|mS−µS| = O(n−1/5σS) (since if it were too far, then the sequence would have an increase-decrease
pattern twice).

Finally, we obtain an upper bound via log-concavity:

P[S = s] ≤ P[S = s+ ⌈n−1/4σS⌉]2
P[S = s+ 2⌈n−1/4σS⌉]

=
1√
2πσS

exp

(
− (s − µS)

2

2σ2
S

)
+O(n−1/5σ−1

S )

by an analogous computation and the fact that mS , µS are close. The result follows. �

2.2. Degree sequence models. We now define a plethora of degree sequence models for random
graphs that will be needed for the computations. At a high level, the work of McKay and Wormald
[20] and McKay and Skerman [18] demonstrate that degrees of random graphs look independent
conditional on, for example, total edge count. These models provide a way to encapsulate these
facts quantitatively.

Definition 2.5 (Degree sequence domains). Let In = {0, . . . , n−1}n, En be the even sum sequences
in this set, and Iℓn be the sum ℓ sequences. We will typically denote elements of these sets by d. Let
Im,n = {0, . . . , n}m ×{0, . . . ,m}n, Em,n be the sequences with equal sums on both sides, and Eℓ

m,n

be the sequences with equal sums ℓ. We will typically denote elements of these sets by s of length
m and t of length n. We will denote random variable versions of these by capital boldface instead.

Definition 2.6 (True degree models). Dn
p is the degree sequence distribution of G(n, p), which is

a random variable supported on En ⊆ In. Dm,n
p is the degree sequence distribution of a bipartite

graph with m vertices on one side and n on the other, each edge included independently with
probability p, which is a random variable supported on Em,n ⊆ Im,n.

Definition 2.7 (Independent degree models). Bn
p is the distribution of n independent Bin(n−1, p)

random variables, supported on In. Bm,n
p is the distribution of m independent Bin(n, p) and n

independent Bin(m, p) variables, supported on Im,n.

Definition 2.8 (Conditioned degree models). En
p is the distribution of Bn

p conditioned on having

even sum, supported on En. Em,n
p is the distribution of Bm,n

p conditioned on having equal sums on
both sides, supported on Em,n.

Definition 2.9 (Integrated degree models). In
p is the distribution sampled as follows. Sample

p′ ∼ N (p, p(1 − p)/(n2 − n)), conditional on being in (0, 1). Then sample from En
p′ . Im,n

p is the

distribution sampled as follows. Sample p′ ∼ N (p, p(1 − p)/(2mn)), conditional on being in (0, 1).
Then sample from Em,n

p′ .

We are now ready to state the necessary results.

Theorem 2.10 (From [19, Theorem 3(ii)], [20, Theorem 3.6]). There is c > 0 and a growing

function so that the following holds. Let n ≥ 2 and suppose (log n)−1/4 ≤ p ≤ 1− (log n)−1/4. There

is an event Bn
p ⊆ In such that PDn

p
[Bn

p ] = n−ω(1) and uniformly for all d ∈ In \Bn
p we have

PDn
p
[D = d] = (1 +O(n−c))PIn

p
[D = d]

6



Theorem 2.11 (From [18, Theorem 1(a)]). There is c > 0 so that the following holds. Suppose

m,n ≥ 2 are such that m = O(n
√
log n) and n = O(m

√
logm). Suppose that (log n)−1/4 ≤ p ≤

1 − (log n)−1/4. Then there is an event Bm,n
p ⊆ Im,n such that PDm,n

p
[Bm,n

p ] = O(exp(−nc)) and

uniformly for (s, t) ∈ Im,n \B we have

PDm,n
p

[S = s ∧T = t] = (1 +O(n−1/3))PIm,n
p

[S = s ∧T = t].

2.3. Computing a local limit result.

2.3.1. Transferring to an independent model. Now consider sampling G(2n+∆, p) and revealing the
degrees among each part R0 and B0 as well from vertices in R0 to B0 and vice versa. We swap vertices
purely based on this degree information. Since the sizes of the swapped parts are measurable with
respect to this, which has distribution coming from three independent Erdős-Renyi graph models,
we see by Theorems 2.10 and 2.11 that up to a multiplicative factor of 1 +O(n−c) and an additive

error of n−ω(1) it is enough to compute the relevant probabilities if the models on the parts are

In+∆
p , In

p , and In+∆,n
p instead. We let d be the degree sequence of size n + ∆, d′ be the one of

length n, and s, t be of length m = n+∆ and n.
At this point it is useful to define R0 = {n+1, . . . , 2n+∆} and B0 = [n] as usual and define the

swapped sets R1, B1 purely as functions of a triple of degree sequences (d,d′, (s, t)) from In+∆, In,
and In+∆,n. (We define it in the obvious way so as to apply even if the total sum in In is not even,
or the sums across both sides in In+∆,n are not equal.)

With this in mind, the transference described above can be written quantitatively as

PDn+∆
p ,Dn

p

Dn+∆,n
p

[|R0 ∩R1| = x ∧ |B0 ∩B1| = y] = (1 +O(n−c))PIn+∆
p ,In

p

In+∆,n
p

[|R0 ∩R1| = x ∧ |B0 ∩B1| = y]

+O(n−ω(1)). (2.1)

Furthermore,

PIn+∆
p ,In

p

In+∆,n
p

[|R0 ∩R1| = x ∧ |B0 ∩B1| = y]

=
1∫

q0,q1,q2∈[0,1] dµ(q0, q1, q2)

∫

q0,q1,q2∈[0,1]
PEn+∆

q0
,En

q1

En+∆,n
q2

[|R0 ∩R1| = x ∧ |B0 ∩B1| = y]dµ(q0, q1, q2)

=

∫

q0,q1,q2∈p±20
√

p(1−p) logn/n
PEn+∆

q0
,En

q1

En+∆,n
q2

[|R0 ∩R1| = x ∧ |B0 ∩B1| = y]dµ(q0, q1, q2) +O(n−10),

(2.2)

where µ denotes the measure of three independent Gaussians centered at p with variances p(1 −
p)/((n + ∆)2 − (n + ∆)), p(1 − p)/(n2 − n), and p(1 − p)/(2n(n + ∆)). The last line follows
since such Gaussians lie in (0, 1) with exponentially good probability, and in fact are of size p ±
20
√

p(1− p) log n/n with probability at least 1− n−10.
At this point, we have nearly reached a model with independent Bernoulli sequences. However,

we must condition on being even sum or having equal sum across two sides. To deal with this, we
iteratively apply Bayes’s rule to reduce to understanding genuinely independent random variables.
This technique is closely related that in the proof given for [18, Theorem 8]. We have

PEn+∆
q0

,En
q1

En+∆,n
q2

[|R0 ∩R1| = x ∧ |B0 ∩B1| = y]

7



=
PBn+∆

q0
,Bn

q1
,Bn+∆,n

q2
[|R0 ∩R1| = x ∧ |B0 ∩B1| = y ∧ |D|/2, |D′|/2 ∈ Z ∧ |S| = |T|]
PBn+∆

q0
,Bn

q1
,Bn+∆,n

q2
[|D|/2, |D′|/2 ∈ Z ∧ |S| = |T|] .

(2.3)

At this point, every event being considered is essentially coming from a sum of independent binomials
or counting inequalities between independent binomials, so one should expect that these probabilities
can be computed precisely. We can in fact do this, although we choose to iteratively simplify the
expression by removing portions that “act independent”.

2.3.2. Removing evenness. First, reveal Bn+∆,n
q2 , that is, S and T. Further reveal R0 ∩ R1 and

B0 ∩ B1. Clearly the remaining randomness is as follows: for v ∈ R0 ∩ R1, we sample dv ∼
Bin(n + ∆, p0)|≥sv , and similar for the other three parts. Note that with probability at least

1− 2 exp(−Ω(n)) there are at least n/4 vertices v ∈ R0 with si ∈ pn± 100
√

p(1− p)n and at least

n/4 vertices v ∈ B0 with ti ∈ pn± 100
√

p(1− p)n. For such vertices, regardless of whether it was
revealed to be in R0 ∩ R1 or R0 \ R1 (and similar for blue vertices), we see that the conditional
distribution of its degree is some conditioned binomial that is easily checked to be equidistributed
(mod 2) up to say an error of O(n−1/4). If we reveal the degrees of every other vertex, then add up
n/4 of these random variables, we obtain equidistribution (mod 2) where both values are attained
with probability 1/2 +O(exp(−n)). Therefore the numerator and denominator satisfy

PBn+∆
q0

,Bn
q1

,Bn+∆,n
q2

[|R0 ∩R1| = x ∧ |B0 ∩B1| = y ∧ |D|/2, |D′|/2 ∈ Z ∧ |S| = |T|]
PBn+∆

q0
,Bn

q1
,Bn+∆,n

q2
[|D|/2, |D′|/2 ∈ Z ∧ |S| = |T|]

=
(14 +O(exp(−n)))PBn+∆

q0
,Bn

q1
,Bn+∆,n

q2
[|R0 ∩R1| = x ∧ |B0 ∩B1| = y ∧ |S| = |T|] +O(exp(−Ω(n)))

(14 +O(exp(−n)))PBn+∆,n
q2

[|S| = |T|] +O(exp(−Ω(n)))

=
PBn+∆

q0
,Bn

q1
,Bn+∆,n

q2
[|R0 ∩R1| = x ∧ |B0 ∩B1| = y ∧ |S| = |T|]

PBn+∆,n
q2

[|S| = |T|] +O(exp(−Ω(n))). (2.4)

In the last line, we used that the final denominator probability is large. This can be seen since it
is the chance that two samples of Bin(n(n +∆), q2) equal each other. Being the same distribution
supported on [0, n(n+∆)], we see this occurs with probability at least 1/(n(n+∆)+1) by Cauchy-
Schwarz.

2.3.3. Computing the numerator. In fact, this denominator can be computed precisely using a lo-
cal limit theorem for binomial random variables. We therefore focus attention on computing the
numerator. We have

PBn+∆
q0

,Bn
q1

,Bn+∆,n
q2

[|R0 ∩R1| = x ∧ |B0 ∩B1| = y ∧ |S| = |T|]

=
∑

|A|=x,|B|=y

PB[R0 ∩R1 = A ∧B0 ∩B1 = B]PB[|S| = |T||R0 ∩R1 = A ∧B0 ∩B1 = B]. (2.5)

We can exactly compute the distribution of |R0 ∩ R1| and |B0 ∩ B1|, which are independent. We
make the following definitions for convenience going forward:

• qi = p+ αi/n for 0 ≤ i ≤ 2, where |αi| ≤ 20
√

p(1− p) log n;
• Xk ∼ Bin(n+∆− 1, q0) and Yk ∼ Bin(n, q2) for k ∈ [n+∆];
• Y −

k is the distribution of Yk conditional on Yk ≤ Xk and Y +
k is conditional on Yk > Xk;

• Zk ∼ Bin(n+∆, q2) and Wk ∼ Bin(n− 1, q1) for k ∈ [n];
• Z−

k is Zk conditioned on Zk ≤ Wk and Z+
k is conditioned on Zk > Wk;

• r = P[X1 ≥ Y1] and b = P[W1 ≥ Z1].
8



We have

|R0 ∩R1| =
n+∆∑

k=1

1[Xk ≥ Yk] ∼ Bin(n+∆, r),

|B0 ∩B1| =
n∑

k=1

1[Wk ≥ Zk] ∼ Bin(n, b).

Additionally, we can compute the distributions of |S| and |T| conditional on A = R0 ∩ R1 and
B = B0 ∩ B1, which are independent. It actually only depends on the sizes. If we condition on
|A| = x and |B| = y, we have

|S| ∼
x∑

k=1

Y −
k +

n+∆∑

k=x+1

Y +
k ,

|T| ∼
y∑

k=1

Z−
k +

n∑

k=y+1

Z+
k .

At this point, computing the probability that |S| − |T| = 0 amounts to proving a local central limit
theorem for all possible mixed sums and differences of these independent random variables. We
have already done this in Proposition 2.4. Explicitly, this means that for |A| = x and |B| = y that

PB[|S| = |T||R0 ∩R1 = A ∧B0 ∩B1 = B] =
1√

2πσx,y
exp

(
µ2
x,y

2σ2
x,y

)
+O(n−1/5σ−1

x,y)

where µx,y, σ
2
x,y are the mean and variance of |S| − |T| conditional on |A| = x and |B| = y.

By Lemma 2.3, we have

σ2
x,y =

(
2− 2

π

)
p(1− p)n2 +O(n7/4).

Therefore, let σ =
√

(2− 2/π)p(1 − p)n and note that for |A| = x and |B| = y we have

PB[|S| = |T||R0 ∩R1 = A ∧B0 ∩B1 = B] =
1√
2πσ

exp

(
µ2
x,y

2σ2

)
+O(n−1/5σ−1).

It remains to understand µx,y. We have

µx,y = xEY −
k + (n+∆− x)EY +

k − yEZ−
k − (n − y)EZ+

k .

Claim 2.12. If |x− n/2|, |y − n/2| ≤ √
n log n we have

µx,y =

(
α1 − α0 − 2p∆

π

)
n+ 2

√
p(1− p)n

π
(x− y) +O(n4/5).

Proof. From Lemma 2.3 we have

EY +
k = pn+

√
p(1− p)n

π
+O(n1/4) = EZ+

k ,

EY −
k = pn−

√
p(1− p)n

π
+O(n1/4) = EZ−

k .

The error terms are not good enough to do a direct replacement. However, from Lemma 2.2 we
have

r = P[X1 ≥ Y1] =
1

2
+

p(∆− 1) + 1/2 + α0 − α2

2
√

πp(1− p)n
+O(n−3/4),

9



b = P[W1 ≥ Z1] =
1

2
+

p(−∆− 1) + 1/2 + α1 − α2

2
√

πp(1− p)n
+O(n−3/4)

and additionally, by definition,

rEY −
k + (1− r)EY +

k = EYk = pn+ α2,

bEZ−
k + (1− b)EZ+

k = EZk = pn+ α2 + p∆+ α2∆/n.

Therefore

µx,y − (n+∆)(pn+ α2) + n(pn+ α2 + p∆+ α2∆/n)

= (x− r(n+∆))(EY −
k − EY +

k )− (y − bn)(EZ−
k − EZ+

k )

= (x− r(n+∆)) · 2
√

p(1− p)n

π
− (y − bn) · 2

√
p(1− p)n

π
+O(n4/5)

= 2

√
p(1− p)n

π
((x− rn)− (y − bn)) +O(n4/5).

We deduce

µx,y − 2

√
p(1− p)n

π
(x− y) +O(n4/5)

= −2

√
p(1− p)n

π
n

(
p(∆− 1) + 1/2 + α0 − α2

2
√

πp(1− p)n
− p(−∆− 1) + 1/2 + α1 − α2

2
√

πp(1− p)n

)

=

(−2p∆+ α1 − α0

π

)
n. �

We now make the following definitions.

• Recall that σ =
√

(2− 2/π)p(1 − p)n.
• We have

r∗ = r∗(α0, α1, α2) =
1

2
+

p(∆− 1) + 1/2 + α0 − α2

2
√

πp(1− p)n
,

b∗ = b∗(α0, α1, α2) =
1

2
+

p(−∆− 1) + 1/2 + α1 − α2

2
√

πp(1− p)n
,

which are within O(n−3/4) of r, b by Lemma 2.3.
• We let

µ∗(α0, α1, α2, x, y) =

(
α1 − α0 − 2p∆

π

)
n+ 2

√
p(1− p)n

π
(x− y),

which satisfies µx,y = µ∗(α0, α1, α2, x, y) + O(n4/5) for |x − n/2|, |y − n/2| ≤ √
n log n by

Claim 2.12.

Now, continuing (2.5), we find for |x− n/2|, |y − n/2| ≤ √
n log n that

PBn+∆
q0

,Bn
q1

,Bn+∆,n
q2

[|R0 ∩R1| = x ∧ |B0 ∩B1| = y ∧ |S| = |T|]

= P[|R0 ∩R1| = x]P[|B0 ∩B1| = y]

(
1√
2πσ

exp

(
µ2
x,y

2σ2

)
+O(n−1/5σ−1)

)

= φrn,r(1−r)n(x)φbn,b(1−b)n(y)φ0,σ2(µx,y) +O(n−2−1/5)

= φr∗n,n/4(x)φb∗n,n/4(y)φ0,σ2(µ∗) +O(n−2−1/5) (2.6)
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where φa,b denotes the pdf of the Gaussian with mean a and variance b. In the second line we used
that the conditional probability in (2.5) given R0∩R1 and B0∩B1 depends only on their sizes. The
third line used a local limit theorem for binomials and appropriately expanding out error terms.
The fourth line is just manipulation of established error terms in ways that we have seen already.
Note that this equality is actually true if either x or y deviates by at least

√
n log n from n/2 as

then the probability |R0 ∩ R1| = x and |B0 ∩ B1| = y is super-polynomially small. Therefore, this
equation is true in general.

It is also worth mentioning by similar logic that if either |x − n/2| ≥ C
√
log n or |y − n/2| ≥

C
√
log n then

PBn+∆
q0

,Bn
q1
,Bn+∆,n

q2
[|R0 ∩R1| = x ∧ |B0 ∩B1| = y ∧ |S| = |T|] ≤ PB[|R0 ∩R1| = x] = O(n−10). (2.7)

2.4. Putting it together. Finally, note that the denominator of (2.4) is the probability that two
samples of Bin(n(n+∆), q2) subtract to 0. This satisfies a local limit theorem (e.g. by [6]) and has
mean 0 and variance 2q2(1− q2)n(n+∆) = 2p(1− p)n2(1 +O(n−1/2)), so

PBn+∆,n
q2

[|S| = |T|] = 1

2
√

πp(1− p)n
+O(n−5/4). (2.8)

Putting together (2.1), (2.2), (2.3), (2.4), and (2.6) along with (2.8), we obtain for some absolute
c > 0 that

PDn+∆
p ,Dn

p

Dn+∆,n
p

[|R0 ∩R1| = x ∧ |B0 ∩B1| = y]

=

∫

|α0|,|α1|,|α2|≤20
√

p(1−p) logn

φr∗n,n/4(x)φb∗n,n/4(y)φ0,σ2(µ∗)

1/(2
√

πp(1− p)n)
dν(α0, α1, α2) +O(n−1−c).

=

∫

α0,α1,α2∈R

φr∗n,n/4(x)φb∗n,n/4(y)φ0,σ2(µ∗)

1/(2
√

πp(1− p)n)
dν(α0, α1, α2) +O(n−1−c).

where ν denotes the product measure of three independent Gaussians centered at 0 with variances
p(1− p), p(1 − p), p(1 − p)/2, respectively. Note that the difference between sampling the α values
from ν or the q values from µ is negligible.

Equivalently, we can sample βi = αi/
√

p(1− p) from Gaussians with variances 1, 1, 1/2 for i =
0, 1, 2, respectively. We have

∫

α0,α1,α2∈R

φr∗n,n/4(x)φb∗n,n/4(y)φ0,σ2(µ∗)

1/(2
√

πp(1− p)n)
dν(α0, α1, α2)

=
2
√

πp(1− p)n

(
√
2π)5(

√
π)(n/4)

√
(2− 2/π)p(1 − p)n

∫

β
e
− 2(x−r∗n)2+2(y−b∗n)2

n
− (µ∗)2

(4−4/π)p(1−p)n2 −
β2
0+β2

1+2β2
2

2 dβ.

When the values of r∗, b∗, µ∗ are substituted in, this becomes a Gaussian integral in β0, β1, β2.
Let √

n

4π
x′ = x−

(
1

2
+

p(∆− 1) + 1/2

2
√

πp(1− p)n

)
n,

√
n

4π
y′ = y −

(
1

2
+

p(−∆− 1) + 1/2

2
√

πp(1− p)n

)
n.

Then we deduce

− 2(x− r∗n)2 + 2(y − b∗n)2

n
− (µ∗)2

(4− 4/π)p(1 − p)n2
− β2

0 + β2
1 + 2β2

2

2
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= − 1

2πp(1− p)
(x′

√
p(1− p)− α0 + α2)

2 − 1

2πp(1− p)
(y′

√
p(1− p)− α1 + α2)

2

− 1

4π(π − 1)p(1 − p)
((x′ − y′)

√
p(1− p) + α1 − α0)

2 − β2
0 + β2

1 + 2β2
2

2

= − 1

2π
(x′ − β0 + β2)

2 − 1

2π
(y′ − β1 + β2)

2 − 1

4π(π − 1)
(x′ − y′ + β1 − β0)

2 − β2
0 + β2

1 + 2β2
2

2
.

Changing variables via αi =
√

p(1− p)βi therefore yields
∫

α0,α1,α2∈R

φr∗n,n/4(x)φb∗n,n/4(y)φ0,σ2(µ∗)

1/(2
√

πp(1− p)n)
dν(α0, α1, α2)

=
1

π2
√
π − 1n

∫

β
e
− 1

2π
(x′−β0+β2)2− 1

2π
(y′−β1+β2)2− 1

4π(π−1)
(x′−y′+β1−β0)2−β2

0+β2
1+2β2

2
2 dβ

=
2

n
√
π(2 + π)

exp

(
− (1 + π)(x′)2 − 2(x′y′) + (1 + π)(y′)2

2π(2 + π)

)
.

Furthermore, if either |x − n/2| ≥ C
√
log n or |y − n/2| ≥ C

√
log n for appropriate C > 0 then

we obtain a bound of size O(n−5), which is easily seen using (2.7) along with Section 2.3.3. (2.1),
(2.2), (2.3), (2.4), and (2.8). This completes the proof of Theorem 2.1.

3. Tracking the remainder

Now we adapt the approach of Ferber, Kwan, Narayanan, and the authors [9] to analyze the
remainder of the majority dynamics process. Note that it is key that we computed what the leads
were after day one at the scale of

√
n, since the techniques in that work only constrain objects at

the scale O(n1−η). However, essentially the same set of coarse data that is tracked in that work,
along with the information from Theorem 2.1, will allow us to perform an analysis of the remaining
process via iterated revelation.

3.1. Tracking degree parameters. We first define the parameters that will be tracked, which
are basically the joint degree distributions of each part of the graph to each of the other parts.

Given k ≥ 1 and x ∈ {0, 1}k of the form (x0, . . . , xk−1), let Vx = ∩k−1
i=0Xi(x) where Xi(0) = Ri

and Xi(1) = Bi. Additionally, for v ∈ B0 ∪R0 let

deg(k) v = ((degVx
v − p|Vx|)/

√
p(1− p)n)x∈{0,1}k .

Finally, for x ∈ {0, 1}k let Lx be the distribution of deg(k) v if we sample a uniform v ∈ Vx (implicitly
assuming it is nonempty).

It will be helpful to recall the following definition of Kolmogorov distance.

Definition 3.1. If L and L′ are probability distributions on R
d, the Kolmogorov distance dK(L,L′)

is the supremum of |L(A)−L′(A)| over all sets A = (−∞, a1]×· · ·×(−∞, ad], where a1, . . . , ad ∈ R.

3.2. Additional data from day one. We now quickly derive certain coarse degree statistics arising
from day one. These results are substantially less delicate than the previous section.

Lemma 3.2. There are C, c > 0 such that the following holds. Let n ≥ 2, let 0 ≤ ∆ ≤ (log n)1/4

and let (log n)−1/4 ≤ p ≤ 1− (log n)−1/4. For each x ∈ {0, 1} we have dK(Lx,N (0, I2)) ≤ n−c with
probability 1−O(n−5) under majority dynamics on G(2n+∆, p) with |R0| = n+∆. Furthermore,

Lx is supported on [−C
√
log n,C

√
log n] with probability 1− O(n−5). (Hence we can choose L̂x to

have the same support.)
12



Remark. A version of the above result when p = 1/2 and ∆ = 0 with a weaker probability bound
appears in [9, Section 4.1], which is also sufficient for our purposes.

Sketch. It suffices to check it for x = 0, as the remaining case is analogous. The support claim
is immediate by a union bound over all vertices. The Kolmogorov distance claim follows from
the degree models in Section 2. Specifically, consider the reduction from the true degree sequence
model to the independent degree model, and then note that regardless of the revealed q0, q1, q2 in
p±20

√
p(1− p) log n/n, each vertex in R0 has joint degree distribution extremely close to a correctly

normalized Gaussian. Everything is now independent, so Chernoff on the number of vertices with
degrees pn +

√
p(1− p)n[x, x + n−c], ranging over a polynomial-sized set of values x proves the

desired result. We must divide by the probability that the number of edges within each part is even
and that the number of edges in the bipartite part agrees across both sides, as in Sections 2.3.2
and 2.3.3, but these are polynomial probabilities which do not affect the bound significantly. �

3.3. Data from day two. We are now in position to derive the necessary data for day two. We
show that given a substantial lead after day one that this leads grows to a linear size on the following
day with high probability. To do this we reveal certain information and condition on certain high
probability outcomes.

E1 Reveal all degB0
v and degR0

v values, which is enough to execute day one and determine
R1, B1.

E2 Furthermore, we assume that this revelation satisfies Lemma 3.2 and we let |R0 ∩ R1| = x
and |B0 ∩B1| = y, defining

√
n

4π
x′ = x−

(
1

2
+

p(∆− 1) + 1/2

2
√

πp(1− p)n

)
n,

√
n

4π
y′ = y −

(
1

2
+

p(−∆− 1) + 1/2

2
√

πp(1− p)n

)
n.

as in the statement of Theorem 2.1.
E3 We may assume that our revelation gave rise to values x′, y′ = O(

√
log n) with probability

at least 1− n−5 by Theorem 2.1.
E4 Finally, the number of edges between the two parts in the initial partition is pn(n + ∆) +

O(n3/2−1/5) with super-polynomially high probability, so we may assume that our revelation
gave rise to such a number of edges. Similarly within each part, we may assume we have
p
(
n
2

)
+O(n3/2−1/5) edges.

In order to execute day two, we reveal degT v for T ∈ {R0 ∩ R1, R0 ∩ B1, B0 ∩ R1, B0 ∩ B1}.
Depending on the total degree from v to R1 and B1, as well as whether v ∈ B1 or R1 in the case of
ties, we know where v lands in the next step.

Claim 3.3. There is an absolute c > 0 such that the following holds. Given revelations and as-
sumptions E1 to E4, over the remaining randomness for each x ∈ {0, 1}3 the number of vertices in
Vx is concentrated at a scale O(n1−c). In particular, Vx is in an interval of length O(n1−c) around
its mean with probability at least 1− n−c.

This implies that |R2| and |B2| are concentrated.
To do this, we attempt to understand the degree distribution better. First, let

βR
i =

degR0
vi − p(n+∆− 1)√

p(1− p)(n+∆− 1)
, βB

i =
degB0

vi − pn√
p(1− p)n

for i ∈ R0 and

βR
j =

degR0
vj − p(n+∆)√

p(1− p)(n+∆)
, βB

j =
degB0

vj − p(n− 1)√
p(1− p)(n− 1)
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for j ∈ B0.
Given v ∈ R0 ∪B0, look at

deg(1) v = (α0, α1), deg(2) v = (ρ00, ρ01, ρ10, ρ11)

where αi = (degVi
v−p|Vi|)/

√
p(1− p)n and ρij = (degVij

v−p|Vij |)/
√

p(1− p)n. Note that α0, α1

are determined given the revealed information, and that

ρ00 + ρ01 = α0, ρ10 + ρ11 = α1

hold. Furthermore ρ00 and ρ01 are independent given the revealed information, and their probability
distributions can be determined by Appendix B.1 and Appendix B.2, respectively.

By the first parts of Proposition B.4 and Proposition B.7, we see that with super-polynomially
high probability the ρij are bounded by (log n)25/

√
p(1− p). Therefore we may assume that all ver-

tices satisfy such a bound when revealing the new joint distribution of degrees. Furthermore, using
the conditions on x′, y′, in both cases we will be able to apply Proposition B.5 or Proposition B.8,
as long as we verify the necessary condition regarding

∑
β (in the notation of those propositions).

Specifically, one needs for v ∈ R0 that
∑

i∈R0\v
βR
i = O(n5/6) =

∑

j∈B0

βR
j

while for v ∈ B0 one needs ∑

i∈R0

βB
i = O(n5/6) =

∑

j∈B0\v
βB
j .

This follows since we assumed the number of edges between the two parts in the initial partition is
pn(n+∆) +O(n3/2−1/5), and similar for within each of the two parts.

Now Proposition B.5 and Proposition B.8 show for v ∈ R0 that

P[ρ00 = γ] =

√
2 +O(n−1/10)√
πp(1− p)n

exp

(
− 1

2

(
2γ − α0 −

∑
i∈V00

βR
i

n/2

)2)
,

P[ρ10 = γ] =

√
2 +O(n−1/10)√
πp(1− p)n

exp

(
− 1

2

(
2γ − α1 −

∑
j∈V10

βR
j

n/2

)2)
, (3.1)

absorbing negligible errors such as the difference of ∆ between the number of vertices of R0 and B0.
Note that if we reveal the neighborhood of v, then any w ∈ R0 will have essentially the same

conditional distribution (the effect of revealing this neighborhood is to slightly adjust some degrees,
which negligibly affects

∑
j∈R10

βj , for instance).
Using this observation, a second-moment computation demonstrates that the number of vertices

v ∈ R0 ∩R1 with

ρ00 + ρ10 − ρ01 − ρ11 ≥
p√

p(1− p)n
(|V01|+ |V11| − |V00| − |V10|) =

p√
p(1− p)n

(|B1| − |R1|) (3.2)

is concentrated (which corresponds to v ∈ R0 ∩R1 being in R2 after day two is revealed). We forgo
the computational details (for similar arguments of this form, see [9, Section 4.3.6]). The other
cases are analogous. This completes the justification of Claim 3.3.

We quickly record that for v ∈ B0, one obtains instead

P[ρ00 = γ] =

√
2 +O(n−1/10)√
πp(1− p)n

exp

(
− 1

2

(
2γ − α0 −

∑
i∈V00

βB
i

n/2

)2)
,

P[ρ10 = γ] =

√
2 +O(n−1/10)√
πp(1− p)n

exp

(
− 1

2

(
2γ − α1 −

∑
j∈V10

βB
j

n/2

)2)
. (3.3)
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Claim 3.4. There is an absolute c > 0 such that the following holds. Given revelations and as-
sumptions E1 to E4, over the remaining randomness we have

E|R0 ∩R2| = nPZ∼N (0,2)

[
Z ≥ 2√

π
+

√
p

(1− p)n
(|B1| − |R1|)

]
+O(n1−c)

and

E|B0 ∩R2| = nPZ∼N (0,2)

[
Z ≥ − 2√

π
+

√
p

(1− p)n
(|B1| − |R1|)

]
+O(n1−c),

while also E|Vx1x2x3 | = E|Vx1x′
2x3

|+O(n1−c) for all x1, x
′
1, x2, x3 ∈ {0, 1}.

For this we note that if v has parameters (α0, α1) defined above then

ρ00 + ρ10 − ρ01 − ρ11 = (2ρ00 − α0) + (2ρ10 − α1),

which is the sum of two independent discrete Gaussians of standard deviation 1 and discretiza-
tion 2/

√
p(1− p)n by (3.1) and (3.3). A simple computation shows the sum of two such discrete

Gaussians with the given error terms (and tail bounds) is a corresponding discrete Gaussian. In
particular, we see for v ∈ R0 that

P[(2ρ00−α0)+(2ρ10−α1) = τ ] =
1√

p(1− p)n

1√
4π

exp

(
−1

4

(
τ−

∑
i∈V00∪V10

βR
i

n/2

)2)
+O(n−1/2−1/12)

for τ on an appropriate integer lattice of discretization 2/
√

p(1− p)n. A similar formula with βB
i

holds for v ∈ B0. For any v ∈ R0 we see that

P[(3.2) for v] = PZ∼N (0,2)

[
Z ≥

∑
i∈V00∪V10

βR
i

n/2
+

√
p

(1− p)n
(|B1| − |R1|)

]
+O(n−1/13)

hence

E|R0 ∩R2| = nPZ∼N (0,2)

[
Z ≥

∑
i∈V00∪V10

βR
i

n/2
+

√
p

(1− p)n
(|B1| − |R1|)

]
+O(n12/13).

Here the error term comes from the earlier term, as well as the possibility of vertices that are
exactly balanced (of which there are few by the given computations) which may go a different way
depending on its day one (not day zero) affiliation.

Similarly, for any v ∈ B0 we have

P[(3.2) for v] = PZ∼N (0,2)

[
Z ≥

∑
i∈V00∪V10

βB
i

n/2
+

√
p

(1− p)n
(|B1| − |R1|)

]

and thus

E|B0 ∩R2| = nPZ∼N (0,2)

[
Z ≥

∑
i∈V00∪V10

βB
i

n/2
+

√
p

(1− p)n
(|B1| − |R1|)

]
+O(n12/13).

Finally, it suffices to compute the average of these βR
i and βB

i quantities over V00 ∪V10 = R1. From
Lemma 3.2 we know that the empirical normalized joint degree distributions for R0 and B0 are close
to N (0, I2). Therefore the degree distribution of R1 is close to that of (Z1, Z2) ∼ N (0, I2) conditional

on Z1 ≥ Z2 (where Z1 corresponds to the parameter (degR0
v − p(n + ∆))/

√
p(1− p)(n +∆)).

Therefore the expected value of this ensemble is within O(n−c) of

E[Z1|Z1 ≥ Z2] =
1√
π
.

This shows ∑
i∈V00∪V10

βR
i

n
=

1√
π
+O(n−c) =

∑
i∈V00∪V10

βB
i

n
.
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Then the first part of Claim 3.4 follows.
The second part of Claim 3.4 follows from that fact that all of the expressions for probabilities

above based on v are independent of the values (α0, α1), so we can sum over v ∈ R0∩R1, for instance,
by just summing over those v ∈ R0 which have α0 > α1, of which there are n/2 +O(

√
n(log n)) by

E2.
Putting Claims 3.3 and 3.4 together and simplifying the sum of the expectations in Claim 3.4,

we obtain the following information about the distribution of the sizes after day two.

Theorem 3.5. There is an absolute c > 0 such that the following holds. Given revelations and
assumptions E1 to E4, over the remaining randomness we have

|R2| = n+ n

∫ η

−η

1√
2π

exp

(
− 1

2

(
u−

√
2

π

)2)
du+O(n1−c)

with probability at least 1− n−c, where η =
√

p/(2(1 − p)n)(|R1| − |B1|).

Remark. The integral is a signed integral. In particular its sign is the same as η.

3.4. Finishing on day three. To finish we now use rather coarse consequences of degree enumer-
ation to prove that every vertex is of the appropriate color. Note that Theorem 2.1 tells us the
distribution of the lead |R1| − |B1|, and Theorem 3.5 tells us, in terms of the lead after day one,
what the lead after day two is concentrated at. Furthermore, if the lead at day one is sufficiently
positive then so will be the lead at day two with high probability. For example, for p ≤ 1/2 a lead
of

√
n yields a lead of Ω(n

√
p).

Using arguments in [2, 3, 23] one can immediately prove that the side leading after day two has
colored all the vertices in two further days. This along with Theorems 2.1 and 3.5 will immediately
justify Theorem 1.3 except that we can only guarantee it ends by day four. The arguments in
[2, 3, 23] appear not sufficiently refined to deliver the day three result.

Proof of Theorem 1.3. Make revelations as in E1 to E4. Then reveal the information deg(2) v for
all v ∈ R0 ∪B0, which allows us to determine the parts up to the end of day two. Reveal such that
Claims 3.3 and 3.4 and Theorem 3.5 are satisfied. Let

η =

√
p

2(1− p)n
(|R1| − |B1|)

and note

|R2| − |B2| = 2n

∫ η

−η

1√
2π

exp

(
− 1

2

(
u−

√
2

π

)2)
du+O(n1−c)

from Theorem 3.5, for some small absolute constant c ∈ (0, 1/4).
We wish to show that over all of the randomness (including the revealed randomness), if η > 0

then red will win in 3 days while if η < 0 then red will win in 3 days.
First if η ≥ 10 +

√
2 log p then |B2| ≤ pn/5. We see that red wins after day three with extremely

high probability since the initial graph has minimum degree at least pn/2 with probability at least
1−O(exp(−Ω(pn))), and this forces every vertex to have more neighbors on the red side than blue
side after day two is finished.

Similarly, if −η ≥ 10 +
√
2 log p then blue wins after day three with extremely high probability.

The case |η| ≤ n−c/2 occurs with probability O(n−c/4) by the local limit theorem of Theorem 2.1,
so we ignore it.

Finally, without loss of generality we consider the case n−c/2 < η < 10 +
√
2 log p (the opposite

case being analogous except with red and blue switched).
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Now to determine what happens on day three, we reveal deg(3) v for all v ∈ R0 ∪B0. This comes
from another ensemble of degree-constrained distributions, so we apply the results of Appendix B
again, between all pairs of the four parts Vx for x ∈ {0, 1}2. First, by Claims 3.3 and 3.4 we have

|Vx| ≥ nPZ∼N (0,2)[Z ≥ 2√
π
+ η

√
2] +O(n1−c) ≥ p2n ≥ n/(log n)1/8

for all x ∈ {0, 1}3. Thus we are in position to apply Propositions B.4 and B.7 (as this guarantees
the condition on the parameter h).

We need to check that the values β are indeed of size O((log n)2). This follows from the
results of Section 3.3; recall that we showed the ρij corresponding to each v was bounded by

(log n)25/
√

p(1− p) with super-polynomially high probability, and otherwise there was an exact
formula which guarantees the appropriate boundedness with super-polynomially high probability.

Now Propositions B.4 and B.7 show that with super-polynomially high probability, for all v ∈
R0 ∪B0 and x ∈ {0, 1}3 we have

degVx
v = p|Vx|+O(n1/2(log n)25).

Therefore

degR2
v − degB2

v = p(|R2| − |B2|) +O(n1/2(log n)25) ≥ n1−c/3

for all v ∈ R0 ∪B0 with high probability. Thus every vertex will be on the red side after day three,
as desired.

We have shown that with high probability (namely, as long as E1 to E4 hold and |η| > n−c/2,
and over the randomness of certain degree revelations over three days), some color has the lead after
the first day and it wins in three days. This probability is in fact polynomially good.

Finally, Theorem 2.1 tells us the probability that η > 0 to a high degree of accuracy, and simple
computation with normal distributions shows it is

PZ∼N (0,1)

[
Z ≤ p∆

√
2√

πp(1− p)

]
+O(n−c)

if c > 0 is a small enough absolute constant. We are done. �
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Appendix A. Miscellaneous calculations

We now include a proof of Lemma 2.2.

Proof of Lemma 2.2. We have

P[Bin(n+ τ, q) ≥ Bin(n, q′)]

=

n∑

i=0

n+τ∑

j=i

(
n+ τ

j

)(
p+

α

n

)j(
1− p− α

n

)n+τ−j(n
i

)(
p+

β

n

)i(
1− p− β

n

)n−i

=
n∑

i=0

n+τ∑

j=i

(
n+ τ

j

)
pj(1− p)n+τ−j

(
n

i

)
pi(1− p)n−i

×
(
1 +

α

pn

)j(
1− α

(1− p)n

)n+τ−j(
1 +

β

pn

)i(
1− β

(1− p)n

)n−i

=

n∑

i=0

n+τ∑

j=i

(
n+ τ

j

)
pj(1− p)n+τ−j

(
n

i

)
pi(1− p)n−i

×
(
1 +O

(
(log n)2

n

))
exp

(
jα

pn
− (n+ τ − j)α

(1− p)n
+

iβ

pn
− (n− i)β

(1− p)n

)
.

The last line comes from the bounds on α, β, p. Note that terms where |i−pn| ≥ C
√
p(1− p)n log n

or |j − pn| ≥ C
√
p(1− p)n log n can contribute at most O(1/n) to the total mass, if C is a large

enough constant. Let i = pn + x
√

p(1− p)n and j = pn + y
√

p(1− p)n where x, y range over
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appropriate values of magnitude at most C
√
log n. The exponential term in the above can be

expanded if i, j have the above bounded criterion, and otherwise the total contribution is negligible
anyway. We thus find that the above equals

n∑

i=0

n+τ∑

j=i

(
n+ τ

j

)
pj(1− p)n+τ−j

(
n

i

)
pi(1− p)n−i +O(n−1(log n)2)

+
n∑

i=0

n+τ∑

j=i

(
jα

pn
− (n+ τ − j)α

(1− p)n
+

iβ

pn
− (n− i)β

(1− p)n

)(
n+ τ

j

)
pj(1− p)n+τ−j

(
n

i

)
pi(1− p)n−i

= P[Bin(n+ τ, p) ≥ Bin(n, p)] +O(n−1(log n)2)

+
∑

x

∑

y≥x

(
yα+ xβ√
p(1− p)n

)(
n+ τ

j

)
pj(1− p)n+τ−j

(
n

i

)
pi(1− p)n−i

= P[Bin(n+ τ, p) ≥ Bin(n, p)] +
1√

p(1− p)n

∫ ∞

u=−∞

∫ ∞

v=u
(vα+ uβ)

1

2π
exp(−(u2 + v2)/2)dudv

+O((log n)2n−1)

= P[Bin(n+ τ, p) ≥ Bin(n, p)] +
EZ1,Z2∼N (0,1)[αZ1 + βZ2|Z1 ≥ Z2]

2
√

p(1− p)n
+O((log n)2n−1)

= P[Bin(n+ τ, p) ≥ Bin(n, p)] +
α− β

2
√

πp(1− p)n
+O((log n)2n−1)

In the second line we dropped the τ term as (τα)/((1 − p)n) is negligible, and in the third line we
used the multidimensional Berry-Esseen theorem. For the final line, we used

EZ1,Z2∼N (0,1)[Z1 − Z2|Z1 ≥ Z2] = EG∼N (0,2)|G| = 2√
π

and E[Z1 + Z2|Z1 ≥ Z2] = E[Z1 + Z2] = 0.
Now let m = min(n + τ, n). We compute by a local central limit theorem for |k| ≤ |τ | that for

two independent binomial samples,

PX,X′∼Bin(m,p)[X
′ = X + k] = PX,X′ [X ′ −X = k]

= (1 +O(n−1/4))
1√

4πp(1− p)m
exp

(
− k2

4p(1− p)m

)

=
1√

4πp(1− p)n
+O(n−3/4).

Thus if 0 < k ≤ |τ | we have by symmetry that

2PX,X′∼Bin(m,p)[X
′ ≥ X + k] + (2k − 1)

(
1√

4πp(1− p)n
+O(n−3/4)

)
= 1

hence

PX,X′∼Bin(m,p)[X
′ ≥ X + k] =

1

2
− 2k − 1

4
√

πp(1− p)n
+O(n−3/4)

for all 0 < k ≤ |τ |. In fact this holds for |k| ≤ |τ | by a similar argument. Therefore if τ ≥ 0 we have

P[Bin(n+ τ, p) ≥ Bin(n, p)] = Ek∼Bin(τ,p)[PX,X′∼Bin(m,p)[X
′ ≥ X − k]]

= Ek∼Bin(τ,p)

[
1

2
+

2k + 1

4
√

πp(1− p)n
+O(n−3/4)

]
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=
1

2
+

2pτ + 1

4
√

πp(1− p)n
+O(n−3/4).

A similar argument shows the same formula for τ < 0.
Putting it all together, we see

P[Bin(n+ τ, q) ≥ Bin(n, q′)] =
1

2
+

pτ + 1/2 + α− β

2
√

πp(1− p)n
+O(n−3/4). �

Appendix B. Probabilities in degree-constrained models

We will first require slight modifications of [9, Propositions A.1, A.6].

B.1. Graph model. First we compute the probability of having certain neighborhood sizes in a
degree-constrained model of graphs. This result follows from a delicate but straightforward argument
that utilizes graph enumeration results from [19] (the bipartite model, discussed later, utilizes
bipartite graph enumeration results from [5]). We state those results precisely in Appendix B.3.

Proposition B.1. There are ǫB.1, CB.1 > 0 so the following holds. Let n ≥ CB.1 and (log n)−1/4 ≤
p ≤ 1 − (log n)−1/4. Let d ∈ En such that each dw = pn + O(

√
p(1− p)n

1/2+ǫB.1). Let G be a
uniformly random graph on vertex set W = {v1, . . . , vn} with this degree sequence. Consider a size

h subset V ⊆ W satisfying min(h, n − h) ≥ n/(log n)1/8, and an integer t ∈ [0, dn]. For w ∈ W ,

define βw by dw = p(n− 1) + βw
√

p(1− p)(n− 1). Then

P[degV (vn) = t]

= (1 +O(n−1/6)) exp

(
(
∑n

i=1 βi)(
∑n

i=1 βi − 2nβn)

2n2

)(h−1V (vn)
t

)(n−h−1V c(vn)
dn−t

)
(
n−1
dn

) ×

E
S1∼(V \vn

t )
S2∼(V

c\vn
dn−t )

S=S1∪S2

exp

(
−

√
p

1− p

∑

i∈W\vn

(
− 1− p

p

)
1S(i) βi√

n− 1
− 1

2

∑

i∈W\vn

(
1− p

p

)21S(i)−1 β2
i

n− 1

)
.

Here S1, S2 are uniform over their respective domains.

We will defer the proof of this to Appendices B.3 and B.4. We now turn to various consequences
of this formula. To proceed, we will need to understand expressions as appearing in the right side of
Proposition B.1. To this end, we state the following general results about sums of random variables
constrained to live on a slice.

Lemma B.2. Let a1, . . . , an ∈ R and let X =
∑n

i=1 aiξi, where ξ = (ξ1, . . . , ξn) is uniform on the
subset of {0, 1}n with sum s. Furthermore assume that η2 =

∑n
i=1 a

2
i − (

∑n
i=1 ai)

2/n. We have

P[|X − EX| ≥ t] ≤ 2 exp(−t2/(4η2))

and
EeX−EX ≤ 2eO(η2).

Proof. The first part is by Azuma-Hoeffding (see [14, Lemma 2.2] for a detailed proof). The second
part follows from integrating the first (see [24, Proposition 2.5.2]). �

Lemma B.3. Let a1, . . . , an ∈ R and let X =
∑n

i=1 aiξi, where ξ = (ξ1, . . . , ξn) is uniform on
the subset of {0, 1}n with sum s such that min(s, n − s) ≥ n(log n)−2. Furthermore assume that

|ai| ≤ n−1/2(log n)2 and η2 =
∑n

i=1 a
2
i − (

∑n
i=1 ai)

2/n ≤ √
log n. We have

EeX = exp

(
EX +

1

2
VarX +O(n−1/9)

)
.
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Proof. Let µ = EX and σ2 = VarX. Clearly

σ2 =
∑

i 6=j

aiaj(E[ξiξj]− EξiEξj) +
∑

i

a2i (Eξ
2
i − (Eξi)

2)

=
∑

i 6=j

aiaj

(
s(s− 1)

n(n− 1)
− s2

n2

)
+

∑

i

a2i

(
s

n
− s2

n2

)
=

s(n− s)

n(n− 1)
η2.

First by Lemma B.2 we have

P[|X − EX| ≥ t] ≤ 2 exp(−t2/(4η2))

for all t ≥ 0. Now

EeX−EX =

∫ ∞

−∞
etP[X − EX ≥ t]dt =

∫ 8η
√
logn

−∞
etP[X − EX ≥ t]dt+O

(∫ ∞

4η
√
logn

et−t2/(4η2)dt

)

=

∫ 8η
√
logn

−∞
etP[X − EX ≥ t]dt+O

(∫ ∞

8η
√
logn

e−t2/(8η2)dt

)

=

∫ 8η
√
logn

−∞
etP[X − EX ≥ t]dt+O(n−4).

If σ ≤ n−1/8, then η is similarly bounded and we obtain an upper bound of the form 1 +O(n−1/9).

Combining with EeX ≥ eEX , the result follows. The result follows. If σ > n−1/8 then a combinatorial
central limit theorem of Bolthausen [4] shows

dK(X − EX,N (0, σ2)) = O

( n∑

i=1

|ai|3/σ3

)
= O(n−2/17).

This allows us the replace the integrand above with the CDF of a Gaussian, and we easily derive

EeX−EX = e
σ2

2 +O(n−2/17) ·O(eη
√
logn) = exp(σ2/2 +O(n−1/9)). �

We now use this information to explicitly compute the formula in Proposition B.1 under some
slight additional hypotheses.

Proposition B.4. Assume the hypotheses of Proposition B.1. Assume additionally that βw =
O((log n)2) for all w ∈ W . Then if |t− ph| ≥ n1/2(log n)25 we have

P[degV (vn) = t] ≤ exp(−Ω((t− ph)2/n)).

If |t− ph| ≤ n3/5 and furthermore (
∑n

i=1 β
2
i )/n ≤ (log n)1/9 then we have

P[degV (vn) = t]

= (1 +O(n−1/10))

(h
t

)(n−h−1
dn−t

)
(
n−1
dn

) exp

[
(
∑n

i=1 βi)(
∑n

i=1 βi − 2nβn)

2n2

−
√

p

1− p

( ∑

i∈V \vn

(
1− t

ph

)
βi√
n− 1

+
∑

i∈V c\vn

(
1− dn − t

p(n− h)

)
βi√
n− 1

)
− 1

2

∑

i∈W\vn

β2
i

n− 1

+
1

2nh

∑

i<j∈V \vn
(βi − βj)

2 +
1

2n(n− h)

∑

i<j∈V c\vn
(βi − βj)

2

]
.
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Proof. We apply Proposition B.1. Let

X = −
√

p

1− p

∑

i∈W\vn

(
− 1− p

p

)
1S(i) βi√

n− 1
− 1

2

∑

i∈W\vn

(
1− p

p

)21S(i)−1 β2
i

n− 1
,

where S1 ∼
(V \vn

t

)
and S2 ∼

(V c\vn
dn−t

)
. The point will be that in typical cases X is a random variable

with sub-Gaussian tails, and that it is converging to a Gaussian, which are together enough to
compute its exponential moment. When t is far from ph, we will instead obtain a tail bound. We
have

EX

= −
√

p

1− p

∑

i∈V \vn

(
t(−(1− p))

hp
+

h− t

h

)
βi√
n− 1

+O(n−1/3)

−
√

p

1− p

∑

i∈V c\vn

(
(dn − t)(−(1− p))

(n− h)p
+

(n− h)− (dn − t)

n− h

)
βi√
n− 1

+O(n−1/3)

− 1

2

∑

i∈V \vn

(
t(1− p)

hp
+

(h− t)p

h(1− p)

)
β2
i

n− 1
+O(n−1/3)

− 1

2

∑

i∈V c\vn

(
(dn − t)(1− p)

(n− h)p
+

((n − h)− (dv − t))p

(n− h)(1 − p)

)
β2
i

n− 1
+O(n−1/3)

= −
√

p

1− p

( ∑

i∈V \vn

(
1− t

ph

)
βi√
n− 1

+
∑

i∈V c\vn

(
1− dn − t

p(n− h)

)
βi√
n− 1

)

− 1

2

∑

i∈W\vn

β2
i

n− 1
+O(n−1/3 + |t− ph|(log n)2/n).

The initial additive error terms O(n−1/3) come from the fact that vn ∈ V or vn ∈ V c slightly change
the fractions listed above, but not by much.

At this point, if |t− ph| ≥ n3/5, we have
(
h−1V (vn)

t

)(n−h−1V c(vn)
dn−t

)
(n−1

dn

) ≤ exp(−Ω((t− ph)2/n))

by tail bounds for the hypergeometric distribution (see e.g. [12, Theorem 2.10]). The initial ex-
ponential term is bounded by exp(O((log n)4)), and we are left with E exp(X). Now Lemma B.2
demonstrates E exp(X) ≤ exp(EX+O((log n)4)) since the coefficient variance in X is O((log n)4/n)
by the given conditions. But the above demonstrates

|EX| = O

( |t− ph|√
n

(log n)2
)
.

This immediately gives a bound of the claimed quality.
From now on we assume |t − ph| ≤ n3/5. Note that the error term computed on EX is now of

quality O(n−1/3) uniformly. We next compute the variance of X. It is straightforward to see that
X and

X ′ = −
√

p

1− p

∑

i∈W\vn

(
− 1− p

p

)
1S(i) βi√

n− 1

22



have |VarX −VarX ′| = O(n−1/4). From the proof of Lemma B.3, we see

VarX =
1

p(1− p)(n− 1)

(
t(h− t)

h(h− 1)

∑
i<j∈V \vn(βi − βj)

2

h

+
(dn − t)((n− h)− (dn − t))

(n− h)(n − h− 1)

∑
i<j∈V c\vn(βi − βj)

2

n− h

)
+O(n−1/4),

where we again use that the fraction t/|V \ vn| is close to t/h regardless of if vn ∈ V . Using

t = ph+O(n3/5) and dn = pn+O(
√

p(1− p)n(log n)2), we find

VarX =
1

nh

∑

i<j∈V \vn
(βi − βj)

2 +
1

n(n− h)

∑

i<j∈V c\vn
(βi − βj)

2 +O(n−1/4).

Note that VarX ≤ ∑n
i=1 β

2
i /min(h, n−h) = O(n(log n)1/9/min(h, n−h)). Now apply Lemma B.3

to the two slices defining X. Note that the condition η2 ≤ √
log n follows from the inequalities

(n/h)(p(1 − p))−1(log n)1/9 <
√
log n and the relation between σ2, η2 in the proof of Lemma B.3.

Therefore

EeX = exp
(
EX +

1

2
VarX +O(n−1/10)

)
.

Finally, using Proposition B.1, we obtain

P[degV (vn) = t]

= (1 +O(n−1/10))

(
h
t

)(
n−h−1
dn−t

)
(n−1

dn

) exp

[
(
∑n

i=1 βi)(
∑n

i=1 βi − 2nβn)

2n2

−
√

p

1− p

( ∑

i∈V \vn

(
1− t

ph

)
βi√
n− 1

+
∑

i∈V c\vn

(
1− dn − t

p(n− h)

)
βi√
n− 1

)
− 1

2

∑

i∈W\vn

β2
i

n− 1

+
1

2nh

∑

i<j∈V \vn
(βi − βj)

2 +
1

2n(n− h)

∑

i<j∈V c\vn
(βi − βj)

2

]
.

We used that the product of binomials changes by a small factor upon swapping between v ∈ V
and v ∈ V c.

�

Finally we note a massive simplification of this formula in the case when h is near n/2 and the
total number of edges is close to p

(n
2

)
.

Proposition B.5. Assume the hypotheses of the second part of Proposition B.4. Assume ad-
ditionally that |h − n/2| = O(

√
n log n) and

∑
i∈W βi = O(n5/6). Then for |γ| ≤ n1/10 with

ph+ γ
√

p(1− p)n ∈ Z, we have

P[degV (vn) = ph+ γ
√

p(1− p)n] =

√
2 +O(n−1/10)√
πp(1− p)n

exp

(
− 1

2

(
2γ − βn −

∑
i∈V βi

n/2

)2)
.

Proof. Apply Proposition B.4 to t = ph+ γ
√

p(1− p)n. First, since
∑n

i=1 βi = O(n3/4) and |βi| =
O((log n)2), we see that the initial exponential term is small. Next, we have from dn = p(n− 1) +

βn
√

p(1− p)(n− 1) and |h− n/2| = O(
√
n log n) that

−
√

p

1− p

( ∑

i∈V \vn

(
1− t

ph

)
βi√
n− 1

+
∑

i∈V c\vn

(
1− dn − t

p(n− h)

)
βi√
n− 1

)
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=
∑

i∈V \vn

γβi
n/2

+
∑

i∈V c\vn

(βn − γ)βi
n/2

+O(n−1/3)

=
2γ − βn
n/2

∑

i∈V \vn
βi +O(n−1/8)

Similarly, in the last three terms of the formula in Proposition B.4, we can replace h by n/2 and
n− 1 by n in return for a negligible additive error. Therefore the terms in the exponential add up
to

2γ − βn
n/2

∑

i∈V \vn
βi −

1

2

∑

i∈W\vn

β2
i

n
+

1

n2

∑

i<j∈V \vn
(βi − βj)

2 +
1

n2

∑

i<j∈V c\vn
(βi − βj)

2 +O(n−1/8)

=
2γ − βn
n/2

∑

i∈V \vn
βi +

1

n2

∑

i<j∈V \vn
(−2βiβj) +

1

n2

∑

i<j∈V c\vn
(−2βiβj) +O(n−1/8)

=
2γ − βn
n/2

∑

i∈V \vn
βi −

1

n2

( ∑

i∈V \vn
βi

)2

− 1

n2

( ∑

i∈V c\vn
βi

)2

+O(n−1/8)

=
2γ − βn
n/2

∑

i∈V \vn
βi −

2

n2

( ∑

i∈V \vn
βi

)2

+O(n−1/8).

Furthermore, the ratio of binomial coefficients can be computed as follows. If |a − pb| = O(b3/5)
then by Stirling’s formula,

pa(1− p)b−a

(
b

a

)

= (1 +O(b−1/2))
1√

2πp(1− p)b

( a

pb

)−a( b− a

(1− p)b

)−(b−a)

= (1 +O(b−1/2))
1√

2πp(1− p)b

(
1 +

a− pb

pb

)−a(
1− a− pb

(1− p)b

)−(b−a)

=
1 +O(b−1/6)√
2πp(1 − p)b

exp

(
− a

a− pb

pb
+

1

2
a
(a− pb

pb

)2
+ (b− a)

a− pb

(1− p)b
+

1

2
(b− a)

( a− pb

(1− p)b

)2
)

=
1 +O(b−1/6)√
2πp(1 − p)b

exp

(
− a

a− pb

pb
+

1

2
pb
(a− pb

pb

)2
+ (b− a)

a− pb

(1 − p)b
+

1

2
(b− pb)

( a− pb

(1− p)b

)2
)

=
1 +O(b−1/6)√
2πp(1 − p)b

exp

(
− (a− pb)2

2p(1− p)b

)
,

so that a local central limit theorem holds. This allows us to compute

(
h
t

)(
n−h−1
dn−t

)
(n−1

dn

) =
pt(1− p)h−t

(
h
t

)
pdn−t(1− p)(n−h−1)−(dn−t)

(
n−h−1
dn−t

)

pdn(1− p)(n−1)−dn)
(n−1

dn

)

=

√
2 +O(n−1/8)√
πp(1− p)n

exp

(
− (t− ph)2

2p(1 − p)h
− ((dn − t)− p(n− h− 1))2

2p(1− p)(n− h− 1)
+

(dn − p(n− 1))2

2p(1− p)(n − 1)

)

=

√
2 +O(n−1/8)√
πp(1− p)n

exp

(
− γ2 − (βn − γ)2 +

β2
n

2

)
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=

√
2 +O(n−1/8)√
πp(1− p)n

exp

(
− (2γ − βn)

2

2

)
.

Putting it all together in Proposition B.4 we obtain the result, noting that βn is small so a difference
of βn/(n/2) is negligible in the final formula. �

B.2. Bigraph model. Now we compute the probability of having certain neighborhood sizes in a
degree-constrained model of bipartite graphs. This time we use [5] to derive the necessary initial
probability computation.

Proposition B.6. There are ǫB.6, CB.6 > 0 so the following holds. Let n ≥ CB.6 and (log n)−1/4 ≤
p ≤ 1 − (log n)−1/4. Suppose (log n)−1/4 ≤ m/n ≤ (log n)1/4. Let (s, t) ∈ Em,n (so s has length

m) such that each sw = pn+O(
√

p(1− p)n
1/2+ǫB.6) and each tw = pm+O(

√
p(1− p)n

1/2+ǫB.6.
Let G be a uniformly random bigraph on vertex sets W ′ = {v′1, . . . , v′m} and W = {v1, . . . , vn} with
these degree sequences between the parts. Consider a size h subset V ⊆ W satisfying min(h, n−h) ≥
n/(log n)1/8, and an integer t ∈ [0, sm]. For w ∈ W , define βw by tw = pm+ βw

√
p(1− p)m. Let

sm = pn+ α
√

p(1− p)n. Then

P[degV (v
′
m) = t]

= (1 +O(n−1/8)) exp

(
(
∑n

i=1 βi)(
∑n

i=1 βi − 2
√
mnα)

2mn

)(h
t

)( n−h
sm−t

)
( n
sm

) ×

E S1∼(Vt )
S2∼(W\V

sm−t)
S=S1∪S2

exp

(
−

√
p

1− p

∑

i∈W

(
− 1− p

p

)
1S(i) βi√

m
− 1

2

∑

i∈W

(
1− p

p

)21S(i)−1 β2
i

m

)
.

Here S1, S2 are uniform over their respective domains.

As in Appendix B.1, there are various corollaries of this fact by computing out what the expec-
tation term yields. The proofs are exactly analogous to the ones given before and consist of routine
computation given those ideas. Therefore, we leave out the proofs and merely record the necessary
results.

Proposition B.7. Assume the hypotheses of Proposition B.1. Assume additionally that βw =
O((log n)2) for all w ∈ W and α = O((log n)2). Then if |t− ph| ≥ n1/2(log n)5 we have

P[degV (v
′
m) = t] ≤ exp(−Ω((t− ph)2/n)).

If |t− ph| ≤ n3/5 and furthermore (n/m) · (∑n
i=1 β

2
i /n) ≤ (log n)1/9 then we have

P[degV (v
′
m) = t]

= (1 +O(n−1/10))

(h
t

)( n−h
sm−t

)
(
n
sm

) exp

[
(
∑n

i=1 βi)(
∑n

i=1 βi − 2
√
mnα)

2mn

−
√

p

1− p

(∑

i∈V

(
1− t

ph

)
βi√
m

+
∑

i∈W\V

(
1− sm − t

p(n− h)

)
βi√
m

)
− 1

2

∑

i∈W

β2
i

m

+
1

2mh

∑

i<j∈V
(βi − βj)

2 +
1

2m(n− h)

∑

i<j∈V c

(βi − βj)
2

]
.

Remark. Note that in a random bipartite graph with part sizes m and n the condition on
∑n

i=1 β
2
i /n

can only hold when m and n are within a small power of log n factor.
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Proposition B.8. Assume the hypotheses of the second part of Proposition B.7. Assume ad-
ditionally that |h − n/2| = O(

√
n log n) and

∑n
i=1 βi = O(n5/6). Then for |γ| ≤ n1/10 with

ph+ γ
√

p(1− p)n ∈ Z, we have

P[degV (v
′
m) = ph+ γ

√
p(1− p)n] =

√
2 +O(n−1/10)√
πp(1− p)n

exp

(
− 1

2

(
2γ − α−

∑
i∈V βi√
mn/2

)2)
.

B.3. Computational preliminaries. Now we turn to justifying Propositions B.1 and B.6. We
first record the graph and bigraph enumeration results that will be used.

Theorem B.9 ([19]). There exists a fixed constant ε > 0 such that the following holds. Consider a
degree sequence d = (d1, . . . , dn) of length n such that each |di−d| ≤ n1/2+ε, where d = (1/n)

∑n
i=1 di

satisfies d ≥ n/ log n. Letting r = dn/2 ∈ Z, µ = d/(n − 1), and γ22 = (1/(n − 1)2)
∑n

i=1(di − d)2,
the number of labelled graphs with degree sequence d is

(1 +O(n−1/4)) exp

(
1

4
− γ22

4µ2(1− µ)2

)(
n(n− 1)/2

r

)(
n(n− 1)

2r

)−1 n∏

i=1

(
n− 1

di

)
.

Theorem B.10 ([5]). There exists a fixed constant ε > 0 such that the following holds. For a

pair of integers n,m ∈ N with n/(log n)1/2 ≤ m ≤ n(log n)1/2, fix a pair of degree sequences

s = (s1, . . . , sn), t = (t1, . . . , tm) such that each |si − s| ≤ n1/2+ε and |ti − t| ≤ m1/2+ε, where s =

(1/n)
∑n

i=1 si and t = (1/m)
∑m

i=1 ti satisfy s ≥ n/(log n)1/2 and t ≥ m/(logm)1/2. Let γ2(s)
2 =

(1/n2)
∑n

i=1(si − s)2, γ2(t)
2 = (1/m2)

∑m
i=1(ti − t)2 and µ =

∑n
i=1 si/(mn) =

∑m
i=1 ti/(mn). Let

r = µmn. Then the number of labelled bipartite graphs whose partition classes have degree sequences
s and t is

(1 +O(n−1/8)) exp

(
−1

2

(
1− γ2(s)

2

µ(1− µ)

)(
1− γ2(t)

2

µ(1− µ)

))(
mn

r

)−1 n∏

i=1

(
m

si

) m∏

i=1

(
n

ti

)
.

We next compute a certain ratio of binomials that will show up when computing probabilities
via graph enumeration. An analogous result for p = 1/2 was shown in [9, Lemma B.3].

Lemma B.11. Suppose that n/(log n)1/2 ≤ m ≤ n(log n)1/2 and (log n)−1/4 ≤ p ≤ 1− (log n)−1/4.

• If r = pmn+∆1 and d = pm+∆2 where ∆1 = O(n8/5) and ∆2 = O(n3/5), then
(m(n−1)

r−d

)−1

(mn
r

)−1 pd(1− p)m−d = exp

(
∆1(∆1 − 2n∆2)

2p(1− p)mn2
+O(n−1/6)

)
.

• If r = p
(
n
2

)
+∆1 and d = p(n− 1) + ∆2 where ∆1 = O(n8/5) and ∆2 = O(n3/5), then

((n−1)(n−2)/2
r−d

)((n−1)(n−2)
2r−2d

)−1

(
n(n−1)/2

r

)(
n(n−1)

2r

)−1 pd(1− p)n−1−d = exp

(
2∆1(∆1 − n∆2)

p(1− p)n3
+O(n−1/6)

)
.

Proof. For the first expression, we have
(m(n−1)

r−d

)−1

(mn
r

)−1 pd(1− p)m−d

= (1 +O(n−1/2))

(
r−d

m(n−1)

)r−d(
1− r−d

m(n−1)

)m(n−1)−(r−d)

(
r

mn

)r(
1− r

mn

)mn−r pd(1− p)m−d

= (1 +O(n−1/2))
( n

n− 1

)m(n−1)(
1− d

r

)r−d(
1− m− d

mn− r

)m(n−1)−(r−d)(pmn

r

)d( (1− p)mn

mn− r

)m−d
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= exp

(
m− m

2(n − 1)
− d+

d2

r
− d2(r − d)

2r2
− (m− d) +

(m− d)2

mn− r
− (m− d)2(mn− r −m+ d)

2(mn− r)2

+
d(pmn− r)

r
− d(r − pmn)2

2r2
+

(m− d)(r − pmn)

mn− r
− (m− d)(r − pmn)2

2(mn− r)2
+O(n−1/6)

)

= exp

(
− m

2n
+

(pm)2

pmn
− (pm)2(pmn)

2(pmn)2
+

(m− pm)2

mn− pmn
− (m− pm)2(mn− pmn)

2(mn− pmn)2

+
d(pmn− r)

r
− d(r − pmn)2

2(pmn)2
+

(m− d)(r − pmn)

mn− r
− (m− d)(r − pmn)2

2(mn − pmn)2
+O(n−1/6)

)

= exp

(
m(r − dn)(r − pmn)

r(mn− r)
− 1

2

( d

p2
+

m− d

(1− p)2

)(r − pmn

mn

)2
+O(n−1/6)

)

= exp

(
m(r − dn)(r − pmn)

pmn(mn− pmn)
− m

2p(1− p)

(r − pmn

mn

)2
+O(n−1/6)

)

= exp

(
(r − pmn)(2(r − dn)− (r − pmn))

2p(1− p)mn2
+O(n−1/6)

)

We have used Stirling’s formula and that 1+x = exp(x−x2/2+O(x3)) repeatedly. Now using the
definition of ∆1,∆2 finishes. For the second expression, write

((n−1)(n−2)/2
r−d

)((n−1)(n−2)
2r−2d

)−1

(n(n−1)/2
r

)(n(n−1)
2r

)−1 pd(1− p)n−1−d =

(m1(n1−1)
r1−d1

)
−1

(m1n1
r1

)
−1 pd1(1− p)m1−d1

(m2(n2−1)
r2−d2

)
−1

(m2n2
r2

)
−1 pd2(1− p)m2−d2

where m1 = 2m2 = 2(n− 1) and n1 = n2 = n/2, and r1 = 2r2 = 2r and d1 = 2d2 = 2d. Now apply
the first part twice. �

B.4. Proof of Propositions B.1 and B.6. We first compute the graph version.

Proof of Proposition B.1. We have that our vertex is the last vertex vn, corresponding to degree
dn. Given S ⊆ W \ vn of size dn (which we abusively identify with a set of integers), let dS =
(d1 − 11∈S , . . . , dn−1 − 1n−1∈S). As in Theorem B.9, let

d =
1

n

n∑

i=1

di; dS =
1

n− 1

n−1∑

i=1

dS,i =
n

n− 1
d− 2dn

n− 1

r =
dn

2
; rS =

dS(n− 1)

2
= r − dn,

µ =
d

n− 1
; µS =

dS
n− 2

=
n

n− 2
µ− 2dn

(n− 1)(n − 2)
,

γ22 =
1

(n− 1)2

n∑

i=1

(di − d)2; γ22(S) =
1

(n− 2)2

n−1∑

i=1

(dS,i − dS)
2.

Note that d and each dS clearly satisfies the conditions of Theorem B.9 due to our given hy-
potheses. Note that

γ22(S) = γ22 +O(n−1/4), µS = µ+O(1/n)
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due to the given hypotheses. Now define

A =

((n−1)(n−2)/2
r−dn

)((n−1)(n−2)
2r−2dn

)−1

(
n(n−1)/2

r

)(
n(n−1)

2r

)−1 pdn(1− p)n−1−dn

and recall di = p(n− 1) + βi
√

p(1− p)(n − 1). We have

r − p

(
n

2

)
=

1

2

n∑

i=1

(di − p(n− 1)) =

√
p(1− p)(n− 1)

2

n∑

i=1

βi.

By the given hypotheses and Lemma B.11 we therefore derive

A = exp

(
(
∑n

i=1 βi)(
∑n

i=1 βi − 2nβn)

2n2
+O(n−1/6)

)

We therefore see from Theorem B.9 that

P[N(vn) = S]

= (1 +O(n−1/4))
exp

(
1
4 − γ2

2 (S)

4µ2
S(1−µS )2

) ((n−1)(n−2)/2
rS

)((n−1)(n−2)
2rS

)−1∏n−1
i=1

( n−2
di−1S(i)

)

exp
(
1
4 − γ2

2
4µ2(1−µ)2

) (n(n−1)/2
r

)(n(n−1)
2r

)−1∏n
i=1

(n−1
di

)

= (1 +O(n−1/4))

((n−1)(n−2)/2
rS

)((n−1)(n−2)
2rS

)−1∏n−1
i=1

( n−2
di−1S(i)

)

(n(n−1)/2
r

)(n(n−1)
2r

)−1 ∏n
i=1

(n−1
di

)

= (1 +O(n−1/4))
A(n−1
dn

)p−dn(1− p)−(n−1−dn)
∏

i∈S

di
n− 1

∏

i/∈S

n− 1− di
n− 1

= (1 +O(n−1/4))
A(
n−1
dn

)
∏

i∈S

(
1 + βi

√
1− p

p(n− 1)

)∏

i/∈S

(
1− βi

√
p

(1− p)(n− 1)

)

=
A(
n−1
dn

) exp
(
−

√
p

1− p

n−1∑

i=1

(
− 1− p

p

)
1S(i) βi√

n− 1
− 1

2

n−1∑

i=1

(
1− p

p

)21S(i)−1 β2
i

n− 1
+O(n−1/4)

)

for each S ∈
([n−1]

dn

)
. Therefore

(1 +O(n−1/4))

(n−1
dn

)

A
(h−1V (vn)

t

)(n−h−1V c(vn)
dn−t

)P[degV (vn) = t]

= E
S1∼(V \vn

t )
S2∼(V

c\vn
dn−t )

S=S1∪S2

exp

(
−
√

p

1− p

n−1∑

i=1

(
− 1− p

p

)
1S(i) βi√

n− 1
− 1

2

n−1∑

i=1

(
1− p

p

)21S(i)−1 β2
i

n− 1

)
,

where we are taking the uniform distribution for the sets S1, S2 over their domains. Rearranging
gives the desired result. �

Now we compute the bipartite version.

Proof of Proposition B.6. We have that our vertex is the last vertex v′m, corresponding to degree
sm. Given S ⊆ W of size sm (which we abusively identify with a set of integers), let tS =
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(t1 − 11∈S , . . . , tn − 1n∈S). As in Theorem B.10, let

t =
1

n

n∑

i=1

ti; tS =
1

n

n∑

i=1

tS,i = t− sm
n

r = tn; rS = tSn = r − sm,

µ =
t

m
; µS =

tS
m− 1

=
m

m− 1
µ− sm

(m− 1)n
,

γ22(t) =
1

n2

n∑

i=1

(ti − t)2; γ22(tS) =
1

n2

n∑

i=1

(tS,i − tS)
2.

Let s
′ be s restricted to the first m− 1 values, and let

s′ =
1

m− 1

m−1∑

i=1

si, γ22(s
′) =

1

(m− 1)2

m−1∑

i=1

(si − s′)2.

Note that (s, t) and each (s′, tS) clearly satisfy the conditions of Theorem B.10 due to our given
hypotheses. Note that

γ22(t) = γ22(tS) +O(n−1/4), µS = µ+O(n−3/4), γ22(s
′) = γ22(s) +O(n−1/4)

due to the given hypotheses.
Now define

A =

((m−1)n
r−sm

)−1

(mn
r

)−1 psm(1− p)n−sm

and recall ti = pm+ βi
√

p(1− p)m and sm = pn+ α
√

p(1− p)n. We have

r − pmn =

n∑

i=1

(ti − pm) =
√

p(1− p)m

n∑

i=1

βi.

By the given hypotheses and Lemma B.11 (with m,n switched) we therefore derive

A = exp

(
(
∑n

i=1 βi)(
∑n

i=1 βi − 2
√
mnα)

2mn
+O(n−1/6)

)

We therefore see from Theorem B.10 (with m and n switched) that

P[N(v′m) = S]

= (1 +O(n−1/8))
exp

(
−1

2

(
1− γ2(s′)2

µ(1−µ)

)(
1− γ2(tS)

2

µ(1−µ)

)) (
(m−1)n

r

)−1∏m−1
i=1

(
n
si

)∏n
i=1

(
m−1

ti−1S(i)

)

exp
(
−1

2

(
1− γ2(s)2

µ(1−µ)

)(
1− γ2(t)2

µ(1−µ)

)) (
mn
r

)−1∏m
i=1

(
n
si

)∏n
i=1

(
m
ti

)

= (1 +O(n−1/8))

((m−1)n
r

)−1 ∏m−1
i=1

(n
si

)∏n
i=1

( m−1
ti−1S(i)

)
(mn

r

)−1∏m
i=1

(n
si

)∏n
i=1

(m
ti

)

= (1 +O(n−1/8))
A(
n
sm

)p−sm(1− p)−(n−sm)
∏

i∈S

ti
m

∏

i/∈S

m− ti
m

= (1 +O(n−1/8))
A( n
sm

)
∏

i∈S

(
1 + βi

√
1− p

pm

)∏

i/∈S

(
1− βi

√
p

(1− p)m

)

=
A( n
sm

) exp
(
−

√
p

1− p

n∑

i=1

(
− 1− p

p

)
1S(i) βi√

m
− 1

2

n∑

i=1

(
1− p

p

)21S(i)−1β2
i

m
+O(n−1/8)

)
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for each S ∈
([n]
sm

)
. Therefore

(1 +O(n−1/8))

( n
sm

)

A
(h
t

)( n−h
sm−t

)P[degV (v′m) = t]

= E S1∼(Vt )
S2∼(W\V

sm−t)
S=S1∪S2

exp

(
−

√
p

1− p

n∑

i=1

(
− 1− p

p

)
1S(i) βi√

m
− 1

2

n∑

i=1

(
1− p

p

)21S(i)−1β2
i

m

)
,

where we are taking the uniform distribution for the sets S1, S2 over their domains. Rearranging
gives the desired result. �
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