ANTICONCENTRATION VERSUS THE NUMBER OF SUBSET SUMS

VISHESH JAIN, ASHWIN SAH, AND MEHTAAB SAWHNEY

ABSTRACT. Let $\vec{w} = (w_1, \ldots, w_n) \in \mathbb{R}^n$. We show that for any $n^{-2} \le \epsilon \le 1$, if

 $\#\{\vec{\xi} \in \{0,1\}^n : \langle \vec{\xi}, \vec{w} \rangle = r\} \ge 2^{-\epsilon n} \cdot 2^n$

for some $r \in \mathbb{R}$, then

$$\#\{\langle \vec{\xi}, \vec{w} \rangle : \vec{\xi} \in \{0, 1\}^n\} \le 2^{O(\sqrt{\epsilon}n)}$$

This exponentially improves a recent result of Nederlof, Pawlewicz, Swennenhuis, and Węgrzycki and leads to a similar improvement in the parameterized (by the number of bins) runtime of bin packing.

1. INTRODUCTION

For $\vec{w} := (w_1, \ldots, w_n) \in \mathbb{R}^n$ and a real random variable ξ , recall that the Lévy concentration function of \vec{w} with respect to ξ is defined for all $r \ge 0$ by

$$\mathcal{L}_{\xi}(\vec{w},r) = \sup_{\tau \in \mathbb{R}} \mathbb{P}[|w_1\xi_1 + \dots + w_n\xi_n - \tau| \le r],$$

where ξ_1, \ldots, ξ_n are i.i.d. copies of ξ . In combinatorial settings (where $\vec{w} \in \mathbb{Z}^n$) a particularly natural and interesting case is when r = 0 and ξ is a Bernoulli random variable, i.e., $\xi = 0$ with probability 1/2 and $\xi = 1$ with probability 1/2. For lightness of notation, we will denote this special case by

$$\rho(\vec{w}) = \mathcal{L}_{\text{Rad}}(\vec{w}, 0) = \sup_{\tau \in \mathbb{R}} \mathbb{P}[\langle \vec{w}, \vec{\xi} \rangle = \tau].$$

In this note, we study the following question.

Question 1.1. For a vector $\vec{w} = (w_1, \ldots, w_n) \in \mathbb{R}^n$ with $\rho(\vec{w}) \geq \rho$, how large can the range

$$\mathcal{R}(\vec{w}) = \{w_1\xi_1 + \dots + w_n\xi_n : \xi_i \in \{0, 1\}\}$$

be?

The two extremal examples here are $\vec{w} = (0, 0, ..., 0)$, which corresponds to $\rho(\vec{w}) = 1$, $|\mathcal{R}(\vec{w})| = 1$ and $\vec{w} = (1, 10, ..., 10^{n-1})$, which corresponds to $\rho(\vec{w}) = 2^{-n}$, $|\mathcal{R}(\vec{w})| = 2^n$. Motivated by these examples, one may ask if there is a smooth trade-off between $\rho(\vec{w})$ and $|\mathcal{R}(\vec{w})|$. This turns out not to be the case. Indeed, for any $\epsilon > 0$, Wiman [6] gives an example of a $\vec{w} \in \mathbb{Z}^n$ for which $|\mathcal{R}(\vec{w})| \ge 2^{(1-\epsilon)n}$ and $\rho(\vec{w}) \ge 2^{-0.7447n}$. At the other end of the spectrum, when $\rho(\vec{w}) \ge 2^{-\epsilon n}$, the so-called inverse Littlewood–Offord theory [4,5] heuristically suggests that \vec{w} is essentially contained in a low-rank generalized arithmetic progression of 'small' volume so that $|\mathcal{R}(\vec{w})|$ is also 'small'. However, the number of 'exceptional elements' in the inverse Littlewood–Offord theorems (cf. [3]) is unfortunately too large to be able to rigorously establish such a statement.

Nevertheless, in a recent work on the parameterized complexity of the bin packing problem (see Section 1.1), Nederlof, Pawlewics, Swennenhuis and Węgrzycki [2] showed that for any $\epsilon > 0$,

$$\rho(\vec{w}) \ge 2^{-\epsilon n} \implies |R(\vec{w})| \le 2^{\delta(\epsilon)n},$$

where

$$\delta(\epsilon) = O\left(\frac{\log\log(\epsilon^{-1})}{\sqrt{\log(\epsilon^{-1})}}\right). \tag{1.1}$$

In particular, $\delta(\epsilon) \to 0$ as $\epsilon \to 0$. Moreover, we must have $\delta(\epsilon) \ge (2 - o(1))\epsilon$, as can be seen by considering

$$\vec{w} = (C_1, \dots, C_1, C_2, \dots, C_2, \dots, C_{n/k}, \dots, C_{n/k}) \in \mathbb{R}^n,$$

where each C_i is repeated k times, and C_i is sufficiently small compared to C_{i+1} for all i. Indeed, for such \vec{w} , we have $\rho(\vec{w}) = 2^{-(\frac{1}{2} + o_k(1))\frac{n}{k}\log_2 k}$ while $|\mathcal{R}(\vec{w})| \leq 2^{(1+o_k(1))\frac{n}{k}\log_2 k}$.

We conjecture that this example is essentially the worst possible, so that $\delta(\epsilon) \leq 2\epsilon$. We are able to show that

$$\delta(\epsilon) = O(\sqrt{\epsilon}),\tag{1.2}$$

thereby obtaining an exponential improvement over (1.1). More precisely,

Theorem 1.2. Let $\epsilon > 0$. For any $n \ge \epsilon^{-1/2}$ and any $\vec{w} \in \mathbb{R}^n$ satisfying $\rho(\vec{w}) \ge \exp(-\epsilon n)$, we have

$$|\mathcal{R}(\vec{w})| \le \exp(C_{1,2}\epsilon^{1/2}n),$$

where $C_{1,2}$ is an absolute constant.

We prove this theorem in Section 2.

1.1. Application to bin packing. The bin packing problem is a classic NP-complete problem whose decision version may be stated as follows: given n items with weights $w_1, \ldots, w_n \in [0, 1]$ and m bins, each of capacity 1, is there a way to assign the items to the bins without violating the capacity constraints? Formally, is there a map $f : [n] \to [m]$ such that $\sum_{i \in f^{-1}(j)} w_i \leq 1$ for all $j \in [m]$?

Björklund, Husfeldt, and Koivisto [1] provided an algorithm for solving bin packing in time $O(2^n)$ where the tilde hides polynomial factors in n. It is natural to ask whether the base of the exponent may be improved at all i.e. is there a (possibly randomized) algorithm to solve bin packing in time $\tilde{O}(2^{(1-\epsilon)n})$ for some absolute constant $\epsilon > 0$?

In recent work, Nederlof, Pawlewics, Swennenhuis and Węgrzycki [2] showed that this is true provided that the number of bins m is fixed. More precisely, they showed that there exists a function $\sigma : \mathbb{N} \to \mathbb{R}^{>0}$ and an algorithm for solving bin packing which, on instances with m bins, runs in time $\tilde{O}(2^{(1-\sigma(m))n})$, where \tilde{O} hides polynomials in n as well as exponential factors in m. Their analysis, which crucially relies on (1.1), gives a very small value of $\sigma(m)$ satisfying

$$\sigma(m) \le 2^{-1/m^9}.$$
 (1.3)

Using Theorem 1.2 instead of (1.1) in a black-box manner in the analysis of [2], we exponentially improve the bound on $\sigma(m)$.

Corollary 1.3. With notation as above, the algorithm of [2] solves bin packing instances with m bins in time $\tilde{O}(2^{(1-\sigma(m))n})$ for $\sigma \colon \mathbb{N} \to \mathbb{R}^{>0}$ satisfying

$$\sigma(m) = \tilde{\Omega}(m^{-12}), \tag{1.4}$$

where $\tilde{\Omega}$ hides logarithmic factors in m.

We remark that the conjecturally optimal bound $\delta = O(\epsilon)$, plugged into the analysis of [2], would lead to $\sigma(m) = \tilde{\Omega}(m^{-6})$. 1.2. Notation. We use Ber(1/2) to denote the balanced $\{0, 1\}$ Bernoulli distribution and Bin(k) to denote the binomial distribution on k trials with parameter 1/2. Recall that Bin(k) is the sum of k independent Ber(1/2) random variables. We also use the following standard additive combinatorics notation: $C + D = \{c + d : c \in C, d \in D\}$ is the sumset (if C, D are subsets of the same abelian group), and for a positive integer $k, k \cdot C = C + \cdots + C$ (k times) is the iterated sumset.

2. Proof of Theorem 1.2

We begin by recording the following key comparison bound, which will be proved at the end of this section.

Lemma 2.1. Let $n \ge k \ge C_{2,1}$, where $C_{2,1}$ is an absolute constant and let $\delta > 0$. For any $A \subseteq \{0,1\}^n$ with $|A| \le \exp(\delta n)$, the following holds. Let $\vec{x}, \vec{b} \sim \operatorname{Bin}(k)^{\otimes n}$ be independent n-dimensional random vectors. Then,

$$\mathbb{E}_{\vec{x}}\left[\sup_{\vec{a}\in A} \frac{\mathbb{P}_{\vec{b}}[\vec{b}=\vec{x}-\vec{a}]}{\mathbb{P}_{\vec{b}}[\vec{b}=\vec{x}]}\right] \le \exp\left(C_{2.1}\left(\frac{1}{k} + \sqrt{\frac{\delta}{k}}\right)n\right).$$

Let \vec{w} be as in Theorem 1.2. Let τ be such that $\mathbb{P}[\langle \vec{w}, \vec{\xi} \rangle = \tau] = \rho(\vec{w})$, where $\vec{\xi}$ is a random vector with i.i.d. Ber(1/2) components. Let

$$B = \{\vec{\xi} \in \{0, 1\}^n : \langle \vec{w}, \vec{\xi} \rangle = \tau\}.$$

In particular, $|B| \ge \exp(-\epsilon n) \cdot 2^n$. Let $|\mathcal{R}(\vec{w})| = \exp(\delta n)$. For each $r \in \mathcal{R}(\vec{w})$, let $\vec{\xi}(r)$ be a fixed (but otherwise arbitrary) element of $\{0, 1\}^n$ such that $\langle \vec{w}, \vec{\xi}(r) \rangle = r$. Let

$$A = \{\vec{\xi}(r) \in \{0,1\}^n : r \in \mathcal{R}(\vec{w})\}$$

Note that, by definition, for any distinct $\vec{a}_1, \vec{a}_2 \in A$, we have that $\langle \vec{w}, \vec{a}_1 \rangle \neq \langle \vec{w}, \vec{a}_2 \rangle$ and that $|A| = |\mathcal{R}(\vec{w})| = \exp(\delta n)$.

We will make use of the simple, but crucial, observation from [2] that A and $k \cdot B$ have a full sumset for all $k \geq 1$.

Lemma 2.2 ([2, Lemma 4.2]). The map $(\vec{a}, \vec{c}) \mapsto \vec{a} + \vec{c}$ from $A \times (k \cdot B)$ to $A + k \cdot B$ is injective.

Proof. Indeed, if $\vec{a}_1 + (\vec{b}_1^{(1)} + \dots + \vec{b}_k^{(1)}) = \vec{a}_2 + (\vec{b}_1^{(2)} + \dots + \vec{b}_k^{(2)})$, where $\vec{a}_i \in A$ and $\vec{b}_j^{(i)} \in B$, then taking the inner product of both sides with \vec{w} and using $\langle \vec{w}, \vec{b} \rangle = \tau$ for all $b \in B$, we see that $\langle \vec{w}, \vec{a}_1 \rangle = \langle \vec{w}, \vec{a}_2 \rangle$, which implies that $\vec{a}_1 = \vec{a}_2$ by the definition of A.

We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2. Let $k \ge 2$ be a parameter which will be chosen later depending on ϵ . By Lemma 2.2, for each $\vec{x} \in \{0, \ldots, k+1\}^n$ for which there exist $\vec{a} \in A$ and $\vec{c} \in k \cdot B$ with $\vec{a} + \vec{c} = \vec{x}$, there exists a unique such choice $\vec{a} = \vec{a}(\vec{x}) \in A$.

Now, let \vec{a} be uniform on A, let $\vec{b}_1, \ldots, \vec{b}_k$ be uniform on B, and let $\vec{v}_1, \ldots, \vec{v}_k$ be uniform on $\{0,1\}^n$. Let $C_i \subseteq \{0,\ldots,k+1\}^n$ be the set of vectors with i coordinates equal to k+1. For $\vec{x} \in \{0,\ldots,k+1\}^n$, we let $\vec{x}^* \in \{0,\ldots,k\}^n$ denote the vector obtained by setting every occurrence of k+1 in \vec{x} to k. We have

$$1 = \mathbb{P}[\vec{a} + \vec{b}_1 + \dots + \vec{b}_k \in \{0, \dots, k+1\}^n]$$
$$= \sum_{i=0}^n \sum_{\vec{x} \in C_i} \mathbb{P}[\vec{a} + \vec{b}_1 + \dots + \vec{b}_k = \vec{x}]$$

$$\leq \sum_{i=0}^{n} \sum_{\vec{x}\in C_{i}} \mathbb{P}[\vec{a}=\vec{a}(\vec{x})]\mathbb{P}[\vec{b}_{1}+\dots+\vec{b}_{k}=\vec{x}-\vec{a}(\vec{x})]$$

$$\leq \frac{1}{|A|} \sum_{i=0}^{n} \sum_{\vec{x}\in C_{i}} \left(\frac{2^{n}}{|B|}\right)^{k} \mathbb{P}[\vec{v}_{1}+\dots+\vec{v}_{k}=\vec{x}-\vec{a}(\vec{x})]$$

$$\leq \frac{e^{k\epsilon n}}{|A|} \sum_{i=0}^{n} \sum_{\vec{x}\in C_{i}} \mathbb{P}[\vec{v}_{1}+\dots+\vec{v}_{k}=\vec{x}^{*}] \sup_{\vec{a}\in A} \frac{\mathbb{P}[\vec{v}_{1}+\dots+\vec{v}_{k}=\vec{x}-\vec{a}]}{\mathbb{P}[\vec{v}_{1}+\dots+\vec{v}_{k}=\vec{x}^{*}]}$$

$$= \frac{e^{k\epsilon n}}{|A|} \sum_{i=0}^{n} (1/2^{k})^{i} \sum_{S\in \binom{[n]}{i}} \mathbb{E}_{\vec{x}\sim \operatorname{Bin}(k)^{\otimes ([n]\setminus S)} \times \{k+1\}^{S}} \left[\sup_{\vec{a}\in A} \frac{\mathbb{P}[\vec{v}_{1}+\dots+\vec{v}_{k}=\vec{x}-\vec{a}]}{\mathbb{P}[\vec{v}_{1}+\dots+\vec{v}_{k}=\vec{x}^{*}]} \right].$$

Let A_S be the set of elements in $A \subseteq \{0,1\}^n$ whose support contains S. Let

$$A'_{S} = \{ \vec{a}' \in \{0,1\}^{[n] \setminus S} : \exists \vec{a} \in A_{S} \text{ with } \vec{a}|_{[n] \setminus S} = \vec{a}' \}$$

Recall that $|A| = \exp(\delta n)$. Abusing notation so that the supremum of an empty set is 0, can continue the above chain of inequalities to get that

$$\begin{split} 1 &\leq \frac{e^{k\epsilon n}}{|A|} \sum_{i=0}^{n} (1/2^{k})^{i} \sum_{S \in \binom{[n]}{i}} \mathbb{E}_{\vec{x} \sim \operatorname{Bin}(k)^{\otimes([n] \setminus S)} \times \{k+1\}^{S}} \left[\sup_{\vec{a} \in A} \frac{\mathbb{P}[\vec{v}_{1} + \dots + \vec{v}_{k} = \vec{x} - \vec{a}]}{\mathbb{P}[\vec{v}_{1} + \dots + \vec{v}_{k} = \vec{x}^{*}]} \right] \\ &= \frac{e^{k\epsilon n}}{|A|} \sum_{i=0}^{n} (1/2^{k})^{i} \sum_{S \in \binom{[n]}{i}} \mathbb{E}_{\vec{x} \sim \operatorname{Bin}(k)^{\otimes([n] \setminus S)}} \left[\sup_{\vec{a} \in A_{S}} \frac{\mathbb{P}[\vec{v}_{1} + \dots + \vec{v}_{k} = \vec{x} - \vec{a} \times \{0\}^{S}]}{\mathbb{P}[\vec{v}_{1} + \dots + \vec{v}_{k} = \vec{x} \times \{k\}^{S}]} \right] \\ &= \frac{e^{k\epsilon n}}{|A|} \sum_{i=0}^{n} (1/2^{k})^{i} \sum_{S \in \binom{[n]}{i}} \mathbb{E}_{\vec{x} \sim \operatorname{Bin}(k)^{\otimes([n] \setminus S)}} \left[\sup_{\vec{a} \in A_{S}} \frac{\mathbb{P}[\vec{v}_{1} + \dots + \vec{v}_{k} = \vec{x} - \vec{a}]}{\mathbb{P}[\vec{v}_{1} + \dots + \vec{v}_{k} = \vec{x} - \vec{a}]} \right] \\ &\leq \frac{e^{k\epsilon n}}{|A|} \left(\sum_{i=0}^{n/2} + \sum_{S \in \binom{[n]}{i}} \mathbb{E}_{\vec{x} \sim \operatorname{Bin}(k)^{\otimes([n] \setminus S)}} \left(\max_{\ell} \frac{\binom{k}{\ell \pm 1}}{\binom{k}{\ell}} \right)^{i} \right) \\ &\leq \frac{e^{k\epsilon n}}{|A|} \left(\sum_{i=0}^{n/2} + \sum_{i=n/2}^{n} 2^{-ki} \cdot 2^{n} \cdot \left(\max_{\ell} \frac{\binom{k}{\ell \pm 1}}{\binom{k}{\ell}} \right)^{i} \right) \\ &\leq \frac{e^{k\epsilon n}}{|A|} \left(\sum_{i=0}^{n/2} 2^{-ki} \exp(C_{2.1}(k^{-1} + \delta^{1/2}k^{-1/2})n) + 2^{-kn/4} \right) \\ &\leq \exp(-\delta n) \exp\left(O(k\epsilon + k^{-1} + \delta^{1/2}k^{-1/2})n\right) \end{split}$$

by Lemma 2.1 applied to A_S , as long as $n/2 \ge k \ge C_{2.1} \ge 10$. Hence,

$$\delta \le C(k\epsilon + k^{-1} + \delta^{1/2}k^{-1/2})$$

for some absolute constant C > 0. Now letting $k = \epsilon^{-1/2}/2$ (note that this satisfies $2k = \epsilon^{-1/2} \le n$), we find that

$$\delta = O(\epsilon^{1/2}),$$

as desired.

The proof of Lemma 2.1 relies on the following preliminary estimate.

Lemma 2.3. If $1 \le s \le k/(16\pi)$, then

$$\mathbb{E}_{x \sim \operatorname{Bin}(k)} \left(\frac{x}{k+1-x}\right)^s \le \exp(10\pi s^2/k) + 2k^s (4/5)^k$$

Proof. We let $x \sim Bin(k)$ and $y = x - k/2 \sim Bin(k) - k/2$ throughout. We let $z \sim \mathcal{N}(0, k\pi/8)$. We have

$$\mathbb{E}_{x \sim \operatorname{Bin}(k)} \left(\frac{x}{k+1-x} \right)^s = \mathbb{E}_y \left(1 + \frac{2y-1}{k/2+1-y} \right)^s$$
$$\leq \mathbb{E}_y \left(1 + \frac{2y}{k/2+1-y} \right)^s \mathbb{1}_{|y| \le k/3} + k^s \mathbb{P}[|y| \ge k/3]$$
$$\leq \mathbb{E}_y \left(1 + \frac{2y}{k/2+1-y} \right)^s \mathbb{1}_{|y| \le k/3} + 2k^s (4/5)^k.$$

Since for $|y| \leq k/3$,

$$\frac{2y}{(k/2+1-y)} \le \frac{2y}{k/2+1} + \frac{8y^2}{(k/2+1)^2}$$

and using $(1+x) \leq \exp(x)$, we can continue the previous inequality as

$$\leq \mathbb{E}_{y} \left(1 + \frac{2y}{k/2 + 1} + \frac{8y^{2}}{(k/2 + 1)^{2}} \right)^{s} \mathbb{1}_{|y| \leq k/3} + 2k^{s} (4/5)^{k}$$
$$\leq \mathbb{E}_{y} \exp\left(\frac{4sy}{k+2} + \frac{32sy^{2}}{k^{2}}\right) + 2k^{s} (4/5)^{k}.$$

Now, let z_1, \ldots, z_k be i.i.d. $\mathcal{N}(0, 1)$ random variables. Then,

$$y \sim \frac{1}{2} \left(\operatorname{sgn} z_1 + \dots + \operatorname{sgn} z_k \right).$$

Moreover, for any $-k \le \ell \le k$,

$$\mathbb{E}[z_1 + \dots + z_k \mid \operatorname{sgn}(z_1) + \dots + \operatorname{sgn}(z_k) = \ell] = \sqrt{\frac{2}{\pi}}\ell$$

In particular, under this coupling of y, z_1, \ldots, z_k , we have

$$\mathbb{E}[z_1 + \dots + z_k \mid y] = \sqrt{\frac{8}{\pi}}y$$

Let $z = z_1 + \cdots + z_k$, so that $z \sim \mathcal{N}(0, k)$. Then, by the convexity of

$$f(r) = \exp\left(\frac{4sy}{k+2} + \frac{32sy^2}{k^2}\right),$$

and using Jensen's inequality, we have

$$\mathbb{E}_{y}f(y) = \mathbb{E}_{y,z_{1},...,z_{k}}f(y)$$

$$= \mathbb{E}_{y,z_{1},...,z_{k}}f\left(\sqrt{\frac{\pi}{8}}\mathbb{E}[z \mid y]\right)$$

$$\leq \mathbb{E}_{z}f(\sqrt{\pi}z/\sqrt{8})$$

$$= \mathbb{E}_{w\sim\mathcal{N}(0,1)}\exp\left(\frac{s\sqrt{2k\pi}}{k+2}w + \frac{4s\pi}{k}w^{2}\right)$$

$$= \left(1 - \frac{8\pi s}{k}\right)^{-1/2}\exp\left(\frac{\pi s^{2}k^{2}}{(k+2)^{2}(k-8\pi s)}\right)$$

$$\leq \exp\left(\frac{8\pi s}{k} + \frac{2\pi s^2}{k}\right)$$
$$\leq \exp(10\pi s^2/k).$$

Finally, we can prove Lemma 2.1

Proof of Lemma 2.1. We may assume that $\delta \geq 2000/k$ since the statement for $\delta < 2000/k$ follows from the statement for $\delta = 2000/k$. Also, note that $\delta \leq \log 2$. For any $t \in \mathbb{R}$, we have

$$\begin{split} \mathbb{P}_{\vec{x}} \bigg[\sup_{\vec{a} \in A} \frac{\mathbb{P}_{\vec{b}}[\vec{b} = \vec{x} - \vec{a}]}{\mathbb{P}_{\vec{b}}[\vec{b} = \vec{x}]} \ge e^{tn} \bigg] &\leq |A| \sup_{\vec{a} \in A} \mathbb{P}_{\vec{x}} \bigg[\frac{\mathbb{P}_{\vec{b}}[\vec{b} = \vec{x} - \vec{a}]}{\mathbb{P}_{\vec{b}}[\vec{b} = \vec{x}]} \ge e^{tn} \bigg] \\ &\leq |A| \sup_{\vec{a} \in A} \inf_{s \ge 2} \exp(-stn) \mathbb{E}_{\vec{x}} \bigg[\bigg(\frac{\mathbb{P}_{\vec{b}}[\vec{b} = \vec{x} - \vec{a}]}{\mathbb{P}_{\vec{b}}[\vec{b} = \vec{x}]} \bigg)^s \bigg] \\ &= |A| \sup_{\vec{a} \in A} \inf_{s \ge 2} \exp(-stn) \prod_{i=1}^n \mathbb{E}_{x \sim \operatorname{Bin}(k)} \bigg[\bigg(\frac{\mathbb{P}[\operatorname{Bin}(k) = x - a_i]}{\mathbb{P}[\operatorname{Bin}(k) = x]} \bigg)^s \bigg] \\ &\leq |A| \inf_{s \ge 2} \exp(-stn) \bigg(\mathbb{E}_{x \sim \operatorname{Bin}(k)} \bigg(\frac{x}{k+1-x} \bigg)^s \bigg)^n. \end{split}$$

In the last line, we have used that

$$\mathbb{E}_{x \sim \operatorname{Bin}(k)} \left[\left(\frac{x}{k+1-x} \right)^{s} \right] \geq \left(\mathbb{E}_{x \sim \operatorname{Bin}(k)} \left[\frac{x^{2}}{(k+1-x)^{2}} \right] \right)^{s/2} \\ = \left(\sum_{\ell=0}^{k-1} \frac{\ell+1}{k-\ell} \binom{k}{\ell} 2^{-k} \right)^{s/2} \\ = \left(\sum_{\ell=0}^{k-1} \left(\frac{k+2}{k} + \frac{4(k+1)(\ell-k/2)}{k^{2}} + \frac{(k+1)(k-2\ell)^{2}}{k^{2}(k-\ell)} \right) \binom{k}{\ell} 2^{-k} \right)^{s/2} \\ \geq \left(\sum_{\ell=0}^{k-1} \left(\frac{k+2}{k} + \frac{4(k+1)(\ell-k/2)}{k^{2}} \right) \binom{k}{\ell} 2^{-k} \right)^{s/2} \\ = \left(\frac{k+2}{k} - \frac{3k+4}{k} 2^{-k} \right)^{s/2} \\ \geq 1$$

if $k \geq 3$. Therefore, by Lemma 2.3, we have

$$\begin{split} \mathbb{P}_{\vec{x}} \bigg[\sup_{\vec{a} \in A} \frac{\mathbb{P}_{\vec{b}}[\vec{b} = \vec{x} - \vec{d}]}{\mathbb{P}_{\vec{b}}[\vec{b} = \vec{x}]} \ge e^{tn} \bigg] \le |A| \inf_{s \ge 2} \exp(-stn) \bigg(\mathbb{E}_{x \sim \operatorname{Bin}(k)} \bigg(\frac{x}{k+1-x} \bigg)^s \bigg)^n \\ \le |A| \inf_{2 \le s \le k/(16\pi)} \exp(-stn) \bigg(\exp(10\pi s^2/k) + 2k^s (4/5)^k \bigg)^n \\ \le |A| \inf_{2 \le s \le k/(10\log k)} \exp(-stn) \bigg(\exp(12\pi s^2/k) \bigg)^n \\ \le \bigg| A| \exp\left(-\frac{kt^2n}{48\pi}\right) \qquad \text{if } \sqrt{\frac{96\pi\delta}{k}} \le t \le (\log k)^{-1} \\ |A| \exp\left(-\frac{kn}{48\pi (\log k)^2}\right) \qquad \text{if } (\log k)^{-1} \le t \le \log k. \end{split}$$

Here, the second case follows by plugging in $s = k/(10 \log k)$ and simplifying, and the first case follows from plugging in $s = kt/24\pi$ which satisfies $2 \le s \le k/10 \log k$ by the restriction on t and δ . Finally, since

$$0 \le \sup_{\vec{a} \in A} \frac{\mathbb{P}_{\vec{b}}[\vec{b} = \vec{x} - \vec{a}]}{\mathbb{P}_{\vec{b}}[\vec{b} = \vec{x}]} \le \left(\max_{\ell} \frac{\binom{k}{\ell \pm 1}}{\binom{k}{\ell}} \right)^n \le k^n,$$

we have

$$\begin{split} \mathbb{E}_{\vec{x}} \bigg[\sup_{\vec{a} \in A} \frac{\mathbb{P}_{\vec{b}}[\vec{b} = \vec{x} - \vec{a}]}{\mathbb{P}_{\vec{b}}[\vec{b} = \vec{x}]} \bigg] &= \int_{-\infty}^{\log k} \mathbb{P} \bigg[\sup_{\vec{a} \in A} \frac{\mathbb{P}_{\vec{b}}[\vec{b} = \vec{x} - \vec{a}]}{\mathbb{P}_{\vec{b}}[\vec{b} = \vec{x}]} \ge e^{tn} \bigg] n e^{tn} dt \\ &\leq \int_{1/\log k}^{\log k} \cdot + \int_{\sqrt{96\pi\delta/k}}^{1/\log k} \cdot + \int_{-\infty}^{\sqrt{96\pi\delta/k}} n e^{tn} dt \\ &\leq e^{\sqrt{96\pi\delta/kn}} + \int_{\sqrt{96\pi\delta/k}}^{1/\log k} |A| \exp\left(-\frac{kt^2n}{48\pi}\right) n e^{tn} dt \\ &\quad + \int_{1/\log k}^{\log k} |A| \exp\left(-\frac{kn}{48\pi(\log k)^2}\right) n e^{tn} dt \\ &\leq \exp\left(O(\sqrt{\delta/k})n\right) + \int_{\sqrt{96\pi\delta/k}}^{1/\log k} n e^{-tn} dt + 1 \\ &\leq \exp\left(O(\sqrt{\delta/k})n\right). \end{split}$$

References

- Andreas Björklund, Thore Husfeldt, and Mikko Koivisto, Set partitioning via inclusion-exclusion, SIAM Journal on Computing 39 (2009), 546–563.
- [2] Jesper Nederlof, Jakub Pawlewicz, Céline M. F. Swennenhuis, and Karol Węgrzycki, A Faster Exponential Time Algorithm for Bin Packing with a Constant Number of Bins via Additive Combinatorics, arXiv:2007.08204.
- [3] Hoi H. Nguyen and Van H. Vu, Small ball probability, inverse theorems, and applications, Erdős Centennial, Springer, 2013, pp. 409–463.
- Mark Rudelson and Roman Vershynin, The Littlewood-Offord problem and invertibility of random matrices, Advances in Mathematics 218 (2008), 600–633.
- [5] Terence Tao and Van H Vu, Inverse Littlewood-Offord theorems and the condition number of random discrete matrices, Annals of Mathematics (2009), 595–632.
- [6] Mårten Wiman, Improved constructions of unbalanced uniquely decodable code pairs, 2017.

DEPARTMENT OF STATISTICS, STANFORD UNIVERSITY, STANFORD CA 94305, USA *Email address*: visheshj@stanford.edu

DEPARTMENT OF MATHEMATICS, MASSACHUSETTS INSTITUTE OF TECHNOLOGY, CAMBRIDGE, MA 02139, USA *Email address*: {asah,msawhney}@mit.edu