
ar
X

iv
:2

00
3.

10
06

9v
3 

 [
cs

.D
S]

  1
4 

Ju
l 2

02
0

Fast and memory-optimal dimension reduction using Kac’s walk

Vishesh Jain

Stanford University

vishesh.vj@gmail.com

Natesh S. Pillai

Harvard University

pillai@fas.harvard.edu

Ashwin Sah

Massachusetts Institute of Technology

asah@mit.edu

Mehtaab Sawhney

Massachusetts Institute of Technology

msawhney@mit.edu

Aaron Smith

University of Ottawa

asmi28@uottawa.ca

Abstract

In this work, we analyze dimension reduction algorithms based on the Kac walk and discrete
variants.

• For n points in Rd, we design an optimal Johnson-Lindenstrauss (JL) transform based
on the Kac walk which can be applied to any vector in time O(d log d) for essentially the
same restriction on n as in the best-known transforms due to Ailon and Liberty [SODA,
2008], and Bamberger and Krahmer [arXiv, 2017]. Our algorithm is memory-optimal, and
outperforms existing algorithms in regimes when n is sufficiently large and the distortion
parameter is sufficiently small. In particular, this confirms a conjecture of Ailon and
Chazelle [STOC, 2006] in a stronger form.

• The same construction gives a simple transform with optimal Restricted Isometry Property
(RIP) which can be applied in time O(d log d) for essentially the same range of sparsity
as in the best-known such transform due to Ailon and Rauhut [Discrete Comput. Geom.,
2014].

• We show that by fixing the angle in the Kac walk to be π/4 throughout, one obtains
optimal JL and RIP transforms with almost the same running time, thereby confirming –
up to a log log d factor – a conjecture of Avron, Maymounkov, and Toledo [SIAM J. Sci.
Comput., 2010]. Our moment-based analysis of this modification of the Kac walk may
also be of independent interest.

http://arxiv.org/abs/2003.10069v3


1 Introduction

The aim of this paper is to design fast and simple dimensionality reduction algorithms with optimal
embedding dimension – specifically, fast Johnson-Lindenstrauss (JL) transforms and fast Restricted
Isometry Property (RIP) transforms – using the Kac walk and some of its discrete variants.

1.1 Fast Johnson-Lindenstrauss Transforms (FJLTs)

The classical lemma of Johnson and Lindenstrauss [20] asserts that for any collection of n points
x1, . . . , xn in Euclidean space Rd, and for any error parameter ǫ ∈ (0, 1), there exists a linear
transformation Φ : Rd → Rk, with k = O(ǫ−2 log n), such that for all i ∈ [n], ‖Φxi‖2 = (1±ǫ)·‖xi‖2.
At least for ǫ > d−0.49, the bound on k is known to be optimal up to constants ([24, 5]).

The early examples of optimal JL embeddings (i.e. JL embeddings with asymptotically opti-
mal embedding dimension) are (suitably rescaled) random Gaussian [15] and random Rademacher
matrices [1]. While achieving the optimal embedding dimension for essentially all settings of the
parameters d, n, ǫ, such embeddings are unfortunately too slow for many applications, since the time
to compute the image Φv of a fixed vector v ∈ Rd is in general O(dk) = O(ǫ−2d log n).

To address this issue, optimal JL embeddings for which the image Φv of a fixed vector v ∈ Rd

can be computed in time O(d log d) (we will often refer to this as the running time), under some
restrictions on n and ǫ, have been proposed, starting with the seminal work of Ailon and Chazelle
[2], who constructed a family of optimal JL embeddings with running time

O
(
d log d+min{ǫ−2d log n, ǫ−2 log3 n}

)
. (1.1)

In particular, for the d log d term to dominate the second term, we must have

n ≤ exp(Õ(ǫ2/3d1/3)), (1.2)

where Õ hides possible logarithmic factors in ǫ and d. At least for fixed ǫ, this restriction was signif-
icantly relaxed by Ailon and Liberty [3], who provided a different family of optimal JL embeddings
(for any γ > 0) with runtime

O(d log(ǫ−2 log n)) for all n ≤ exp(Oγ,ǫ(d
1/2−γ)). (1.3)

In a recent work of Bamberger and Krahmer [8], an optimal JL embedding, which is simpler than
the construction in [3], is provided with runtime

O(d log(ǫ−2 log n)) for all n ≤ exp(Õ(ǫ2d1/2)). (1.4)

Note that for the regime not covered by (1.2), the running time of O(d log(ǫ−2 log n)) in (1.3)
and (1.4) simplifies to O(d log d) as well.

Finally, we note that there is a separate line of work focused on designing optimal JL embeddings
with even faster running times on sparse vectors; since this is not the focus of the present work, we
omit further discussion, and refer the reader to [22], noting only that these sparse JL transforms
may be used to improve the first term inside the min in (1.1) to ǫ−1d log n.

1.2 The Restricted Isometry Property (RIP) and fast RIP transforms.

The design of JL embeddings with running time O(d log d) (albeit with suboptimal embedding
dimension) for n = exp(ωǫ(

√
d)) is based on the connection between JL transforms and transforms

satisfying the Restricted Isometry Property (RIP). We recall this important notion, which was first
isolated in the compressed sensing literature [11, 18].
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Definition 1.1. For a matrix A, define

δs(A) = sup
‖x‖2=1

x is s-sparse

|‖Ax‖22 − 1|.

We say that A has the Restricted Isometry Property (RIP) of order s and level δ if δs(A) ≤ δ.

Remark. It is known (see, e.g., [9]) that for any k × d matrix A, δs(A) &
√

(s log(d/s))/k. Hence,
we will informally say that a k × d matrix A is RIP-optimal at s if

δs(A) .

√
s log(d/s)

k
. (1.5)

As in the case of optimal JL transforms, the early constructions of optimal RIP transforms are
based on random subgaussian matrices (see, e.g., [9]). Once again, these transforms have the draw-
back of not supporting fast matrix-vector multiplication, leading to the study of fast (nearly) optimal
RIP transforms i.e. k × d matrices supporting matrix-vector multiplication in time O(d log d), and
which satisfy the RIP property of order s and level δ with s, δ, k related (possibly up to polyloga-
rithmic factors in d) as in (1.5).

Notably, improving on previous work of Candes and Tao [12], Rudelson and Vershynin [30]
showed that a (suitably rescaled) random sample of k = Ω(δ−2s log4 d) rows of the Walsh-Hadamard
matrix satisfies, with high probability, the RIP of order s and level δ. Since the Walsh-Hadamard
matrix supports time O(d log d) matrix-vector multiplication via the Fast Walsh-Hadamard Trans-
form, this gives a fast, nearly-optimal (in terms of embedding dimension) RIP transform. The result
of Rudelson and Vershynin is optimal up to a factor of log3 d, which has since been improved (at
least if one is willing to allow a slightly worse dependence on δ) – see [19] for an account of these
developments.

There is a certain sense in which optimal RIP and optimal JL transforms are nearly equivalent.
Indeed, an ǫ-net argument shows (see [9] for details) that optimal JL embeddings are also optimal
RIP embeddings. In particular, this shows that the fast JL embedding in (1.3) gives a fast optimal
RIP transform for

s ≤ Oγ,δ(d
1/2−γ).

In later work of Ailon and Rauhut [4], a simpler fast optimal RIP transform was obtained for

s ≤ Õ(δd1/2). (1.6)

We also note that the optimal JL transform in (1.4) can be used to obtain an even simpler fast
optimal RIP transform up to

s ≤ Õ(δ2d1/2), (1.7)

although this connection does not seem to have been observed in [8].

In the other direction, a remarkable result of Krahmer and Ward [23] (see also Theorem 3.5
below) shows that for any k × d matrix A with RIP of order s and level δ/4, the random matrix
AD, where D is a random diagonal Rademacher matrix, satisfies (with high probability) the JL
property for a given collection of n points with error δ, provided that n ≤ 2s. This result will prove
to be crucial for us.
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1.3 The Kac walk and Orthogonal Repeated Averaging (ORA)

Introduced by Mark Kac [21] in 1956 as a toy model for a one-dimensional Boltzmann gas, the Kac
walk is the following discrete time Markov chain {Qt}t≥0 on the special orthogonal group SO(d).

Definition 1.2. Let Q0 = Id ∈ Rd×d. For all integers t ≥ 1, sample two distinct uniform random
coordinates it, jt ∈ [d] and a uniform random angle θt from [0, 2π). Then, let Qt = Rit,jt,θtQt−1,
where Ri,j,θ ∈ Rd×d is the rotation in the (i, j) plane given by:

Ri,j,θ(ek) = ek for all k /∈ {i, j};
Ri,j,θ(xiei + xjej) = (xi cos θ − xj sin θ)ei + (xi sin θ + xj cos θ)ej .

By the Kac walk of length T we mean the random variable QT .

The Kac walk has a rich history in probability and mathematical physics (see, e.g., the references
in [27, 28]). Its utility for dimensionality reduction was first suggested by Ailon and Chazelle [2],
who also noted that the Kac walk has the attractive property that given the update sequence
{Rit,jt,θt}t∈[T ], the image QT v of any vector v ∈ Rd can be computed with only a constant amount
of memory overhead. Ailon and Chazelle conjectured that the Kac walk performs at least as well
as fast JL transforms based on the fast Walsh-Hadamard transform. Specifically, they conjectured
that for a given set of n points in Rd and error parameter ǫ, projecting QT onto the first O(ǫ−2 log n)
coordinates gives a JL embedding of the point set with relative error ǫ, provided that

T = O(d log d+ poly(log n, ǫ−1)).

Recently, Choromanski, Rowland, Chen, and Weller [14] provided numerical support for this con-
jecture.

Despite this numerical evidence, the conjecture of Ailon and Chazelle may perhaps seem quite
surprising from the point of view of mixing times of Markov chains. The initial proof of the JL
lemma due to Johnson and Lindenstrauss [20] is based on taking the embedding matrix to be a
uniformly random sample from the O(ǫ−2 log n)-Stiefel manifold in d-dimensions (i.e. the uniform
distribution over the set of O(ǫ−2 log n)-orthonormal frames in Rd). On the other hand, dimensional
considerations show that the Kac walk does not mix on the k-Stiefel manifold in d-dimensions in
Ω(kd) steps (see [26, Theorem 6] for a formal proof); in our setting, this would give a lower bound of
Ω(ǫ−2d log n), which asymptotically matches multiplication by a O(ǫ−2 log n)× d random Gaussian
matrix. Indeed, Oliveira [26] conjectured that the Kac walk may be used to design JL transforms
running in time O(ǫ−2(log n)d log d) (this is slower than multiplication by a Gaussian matrix, but
only requires a constant memory overhead) based on this connection with mixing on the O(ǫ−2 log n)-
Stiefel manifold in d-dimensions.

Nevertheless, as our first main result (Theorem 1.4), we confirm the conjecture of Ailon and
Chazelle in a much stronger form by showing that the mixing of the Kac walk on the 1-Stiefel
manifold in d-dimensions (i.e. the unit sphere) is already enough for the purpose of dimensionality
reduction – while simple in hindsight, we believe that this provides a more intuitive and principled
explanation for the existence of JL transforms running in time O(d log d) than is obtained from
the analysis transforms based on Hadamard matrices. Specifically, we provide a fast and memory-
optimal JL transform based on the Kac walk running in time

T = O
(
d log d+min{d log n, ǫ−2 log2 n log2(log n) log3 d}

)
.
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In particular, the first term dominates the running time provided that

n ≤ exp(Õ(ǫd1/2)),

which matches the regime covered by (1.3) and (1.4) in terms of d (up to polylogarithmic factors),
and has improved dependence on the error parameter ǫ (in particular, the first term inside the min
is d log n, which improves on the previously best known rate of ǫ−1d log n obtained by sparse JL
transforms). As a corollary (Corollary 1.5), we also obtain a fast RIP transform, much simpler than
in [4], up to

s ≤ Õ(δd1/2),

which matches the restriction in (1.6) up to polylogarithmic factors in d and is better in terms of δ
dependence than (1.7).

For the purpose of computing matrix-vector products, an even faster and more elegant approach
is to fix the angle in the Kac walk for the entire process to be θ = π/4. This leads to the following
discrete time Markov chain {Qt}t≥0 on SO(d), which we call orthogonal repeated averaging (ORA)
due to its apparent similarity to various iterated averaging processes in the probability literature
(see, e.g., [13] and the references therein).

Definition 1.3. Let Q0 = Id ∈ Rd×d. For all integers t ≥ 1, sample two distinct uniform random
coordinates it, jt ∈ [d], and let Qt = Rit,jtQt−1, where Ri,j ∈ Rd×d is the rotation in the (i, j) plane
given by:

Ri,j,θ(ek) = ek for all k /∈ {i, j};

Ri,j,θ(xiei + xjej) =

(
xi + xj√

2

)
ei +

(
xi − xj√

2

)
ej .

By the ORA of length T we mean the random variable QT .

The application of ORA to dimensionality reduction was suggested by Avron, Maymounkov,
and Toledo [6], who conjectured (based on experimental evidence) that the ORA performs as well
as the Kac walk for dimensionality reduction. From the point of view of mixing times, this is even
more delicate since, for instance, the total variation distance between the uniform distribution on
the sphere and the ORA distribution for any finite number of steps is always 1. In our final main
result (Theorem 1.6), we almost confirm this conjecture by designing an optimal JL transform based
on ORA running in time

T = O
(
d log d log log d+ log dmin{d log n, ǫ−2 log2 n log2(log n) log3 d}

)
.

As in Corollary 1.5, this also gives an RIP-optimal transform.

Remark. We conjecture that the additional log log d factor (which is anyway essentially constant for
practical purposes) can be removed, and expect the ORA based transform to be more efficient than
the Kac walk based transformed in practice.

We now proceed to a formal statement of our main results.

4



1.4 Main Results

As mentioned above, our first result is a fast JL transform based on the Kac walk which essentially
matches the fastest known JL transforms based on subsampled Hadamard matrices in all regimes,
and improves all known transforms in some regimes.

Theorem 1.4. There is an absolute constant C1.4 > 0 for which the following holds. Let d, n, T, ǫ >
0 satisfy n ≥ d ≥ C1.4, ǫ ∈ (0, C−1

1.4), and ǫ−2 log n ≤ d. Then, Algorithm 1 runs in time

T ≤ C1.4
(
d log d+min

{
d log n, ǫ−2(log n)2(log log n)2(log d)3

})
,

and outputs a linear map Ψ : Rd → Rk, where k = k(n, ǫ) ≤ C1.4ǫ
−2 log n, such that for any fixed

set X ⊆ Rd of size |X| = n, the inequalities

(1− ǫ)‖x‖2 ≤ ‖Ψx‖2 ≤ (1 + ǫ)‖x‖2

hold simultaneously for all x ∈ X with probability at least 2/3.
Furthermore, for any x ∈ Rd, Ψx can be computed in time O(T ) with only O(1) additional

memory.

Remark. The probability of failure can be improved to 1− η with easy and standard modifications
of the proof. For the sake of simplicity, we do not keep track of the dependence on η. Also, the
restriction ǫ−2 log n ≤ d is of no significance since when d ≤ ǫ−2 log n, one may simply take ψ to be
the identity map.

As a direct corollary, we obtain a much simpler construction than in [4] of a fast RIP-optimal
transformation for s matching the restriction in (1.6).

Corollary 1.5. Fix η > 0. Given δ ∈ (0, C−1
1.5), d, and s ≤ Õ(δd1/2), let k = C1.5ǫ

−2s log d.
Define Ψ as in Algorithm 1, where n = ds(1 + 2/δ)s/s!. Then with probability at least 2/3, Ψ is
RIP of order s and level C1.5δ and has image dimension at most k. Furthermore, application of Ψ
on a given point takes O(d log d) time.

Remark. Unlike approaches based on the Fast Walsh-Hadamard Transform (e.g. [2, 4, 8]), Algorithm 1
requires neither any preconditioning by random signed diagonal matrices, nor any postconditioning
by random permutation matrices.

Finally, we obtain similar results, even after replacing the Kac walk by the simpler ORA.

Theorem 1.6. There is an absolute constant C1.6 > 0 for which the following holds. Let d, n, T, ǫ >
0 satisfy n ≥ d ≥ C1.6, ǫ ∈ (0, C−1

1.6), and ǫ−2 log n ≤ d. Then, Algorithm 2 runs in time

T ≤ C1.6
(
d log d log log d+min

{
d log d log n, ǫ−2(log n)2(log log n)2(log d)4

})
,

and outputs a linear map Ψ : Rd → Rk, where k = k(n, ǫ) ≤ C1.6ǫ
−2 log n, such that for any fixed

set X ⊆ Rd of size |X| = n, the inequalities

(1− ǫ)‖x‖2 ≤ ‖Ψx‖2 ≤ (1 + ǫ)‖x‖2

hold simultaneously for all x ∈ X with probability at least 2/3.
Furthermore, for any x ∈ Rd, Ψx can be computed in time O(T ) with only O(1) additional

memory.
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1.5 Techniques

Our algorithms are very simple, and are best viewed as running in two phases: in the first phase,
we achieve an embedding into a nearly optimal dimension, and in the second phase, we correct
this nearly optimal dimension to the optimal dimension. Despite the simplicity of the algorithms,
the analysis is involved, and makes use of a multitude of techniques from probability and high-
dimensional geometry.

The analysis of the first phase – which is simply either the Kac walk on Rd (with no precondi-
tioning), or the ORA on Rd preceded by a single preconditioning step – boils down to two things.
First, we need the near-optimal JL property of randomly subsampled rows of ‘bounded’ orthogonal
matrices, which is proved via chaining methods (see Theorem 3.4 and Theorem 3.5). Second, we
need to show that O(d log d) steps of the Kac walk or ORA lead to sufficiently bounded orthogonal
systems. For the Kac walk, this follows by making use of a contractive coupling, introduced in work
of Pillai and Smith [27] studying the total variation mixing time of the Kac walk on the sphere.
Unfortunately, for the ORA, this coupling breaks down (as noted earlier, after any finite number
of steps, the ORA distribution has total variation distance 1 from the uniform distribution on the
sphere, which explains some of the difficulty in devising coupling-based arguments); we get around
this by a completely different argument based on combining the FKG correlation inequality with
a delicate recursive computation of various (weighted) moments of the ORA distribution. Further-
more, we demonstrate various symmetry properties of the Kac walk, which enable us to forego the
preconditioning by random signed diagonal matrices and/or postconditioning by random permuta-
tion matrices present in previous works in this area [2, 3, 8, 4] – this involves bringing in tools from
nonabelian Fourier analysis, in particular adapting work of Diaconis and Shahshahani [16] on the
transposition walk on the symmetric group Sd.

The second phase of our algorithm is either a Kac walk on Rd′ or ORA on Rd′ , run for O(d′ log n)
steps, where d′ is the intermediate nearly-optimal dimension from the first step. For the Kac walk,
the contractive coupling suffices for the analysis, whereas for the ORA, we need an analysis based
on combining our moment computations with a theorem of Latała on the moments of sums of
independent random variables.

We note that a two stage algorithm achieving similar objectives also appears in a recent work of
Bamberger and Krahmer [8], although the two stages used in their work are very different from each
other; they use randomly subsampled Hadamard matrices in the first stage, and random Gaussian
matrices in the second stage, which leads to an error term of ǫ−2d log n. Apart from achieving a
better error term of d log n, and being much more memory efficient, we additionally show how both
of these two seemingly disparate stages can be accomplished by the same process (either Kac walk
or ORA).

Finally, we remark that our analysis of ORA may be of independent interest (for instance, in
probability and quantum computing, see [13]).

1.6 Organization

The rest of this paper is organized as follows. In Section 3, we present and analyse our Kac-walk
based algorithm (one of the proofs, present in [27], is included in Appendix A for completeness) and
in Section 4, we present and analyse our ORA-based algorithm. Section 2 contains some auxiliary
results related to removing various preconditioning and postconditioning operations; the proof of
one of these results is contained in Appendix B. Finally, Section 5 contains some open problems
and directions for future research.
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2 Preliminaries

2.1 Projection and sampling operators

Let ProjX be the projection operator from Rm onto the first X basis vectors; sometimes, X will be
a random variable, in which case this is to be understood as first generating X, and then projecting
onto the first X basis vectors. Let Projm,q be a (random) projection from Rm to a random subset of
basis vectors, where each is kept with probability q. Finally, let SampleK be a (random) projection
to a uniformly random subset of size K of the standard basis vectors. Given a random vector
ξ ∈ {±1}m, let Dξ denote the corresponding diagonal matrix. Note that all of these projections can
trivially be computed in O(m) time with O(1) additional space.

2.2 Symmetric Kac walks

We now isolate the notion of symmetric random walks, which do not require any preconditioning
by random diagonal Rademacher matrices or postconditioning by random permutation matrices.
We begin by noting that both the standard Kac walk as well as ORA are instances of the following
more general process.

Definition 2.1. For a distribution q on angles [0, 2π), we define the q-Kac walk on SO(d) as
follows. Let Q0 = Id ∈ Rd×d. For all integers t ≥ 1 sample two distinct uniform random coordinates
it, jt ∈ [d] and a random angle θt from q, and let Qt = Rit,jt,θtQt−1, where Ri,j,θ ∈ Rd×d is the
rotation in the (i, j) plane given by:

Ri,j,θ(ek) = ek for k /∈ {i, j}
Ri,j,θ(xiei + xjej) = (xi cos θ − xj sin θ)ei + (xi sin θ + xj cos θ)ej .

By the q-Kac walk of length T we mean the random variable QT .

Note that the standard Kac walk corresponds to q being the uniform distribution on [0, 2π),
and ORA corresponds to q being the delta distribution concentrated at π/4. We will refer to the
standard Kac walk as simply the Kac walk.

Definition 2.2. A q-Kac walk is said to be symmetric if the distribution q is invariant under the
maps θ 7→ −θ and θ 7→ θ + π/2.

Clearly, the Kac walk is symmetric. ORA is not symmetric; however, taking q to be the uniform
measure on {π/4, 3π/4, 5π/4, 7π/4} leads to a symmetric walk, which we call symmetric ORA (S-
ORA for short).

The following two lemmas about symmetric q-Kac walks enable us to dispense with various
preconditioning/postconditioning operations appearing in the literature. (e.g., in [2, 4, 8, 3]).

Lemma 2.3. Consider a uniform vector ξ ∈ {±1}d, conditioned on having product 1. Then, for
any symmetric q-Kac walk,

TV(QT , QTDξ) ≤
d exp

(
− T

d−1

)

1− d exp
(
− T

d−1

) ,

where TV denotes the total variation distance.

7



Proof. For every pair of distinct indices i, j ∈ [d], let Di,j be the random diagonal matrix with all 1s,
except in the positions i, j, where the entries are either both 1 or both −1 with equal probability.
For every time t ∈ [T ], let Dt be a random diagonal matrix distributed as Dit,jt, all sampled
independently from everything except (it, jt).

First, note that Rit,jt,θt and Rit,jt,θtDt have the same distribution since our distribution q on
angles is invariant under θ ↔ θ + π. Second, note that the distributions of

Di′,j′Ri,j,θ and Ri,j,θDi′,j′

are the same (these being independent random matrices), using the symmetry θ ↔ −θ and

Di′,j′Ri,j,θD
−1
i′,j′ = Ri,j,−θ

in the case when |{i, j} ∩ {i′, j′}| = 1.
By applying the first operation to RiT ,jT ,θT , and then applying the second operation repeatedly

to switch the diagonal matrix DT to the end, we see that QT has the same distribution as QTDT .
Then we do the same with RiT−1,jT−1,θT−1

, and so on, and thus we have the same distribution as
QTDT−1DT , and so on, until

QTD1 · · ·DT .

Now, let E be the event that the graph on vertex set [d] spanned by the edges (it, jt) for t ∈ [T ]
is connected. Condition on any instantiation of all the pairs (it, jt) such that E holds. We easily see
that D1 · · ·DT and Dξ have the same distribution in this case, and furthermore that QTD1 · · ·DT

and QTDξ also have the same distribution in this case (since after conditioning on our instantiation,
QT is independent from Dt for t ∈ [T ] as well as Dξ).

Therefore, conditional on E , we have that QTD1 · · ·DT and QTDξ have the same distribution,
so that

TV(QT , QTDξ) = TV(QTD1 · · ·DT , QTDξ) ≤ P[Ec].

Finally, we have

P[Ec] ≤
d exp

(
− T

d−1

)

1− d exp
(
− T

d−1

) ;

this follows from well known results about the O((log d)/d) threshold for random graphs to be
connected [10, Chapter 7].

Remark. The true cutoff for connectedness occurs at T = d log d/2 and not T = d log d. However,
deriving an exact expression suitable for non-asymptotic analysis is nontrivial, and is anyway not a
crucial point in our final analysis.

In fact, as the next lemma shows, symmetric q-Kac walks enjoy a more non-trivial invari-
ance property. Namely, after O(d log d) steps, the distribution is essentially invariant under left-
multiplication by signed permutation matrices in SO(d). This allows us to simplify our transforms
further by simply projecting onto an initial segment of coordinates, thus enabling a more straight-
forward memory-optimal, in-place implementation.

Lemma 2.4. Fix d ≥ 10. Let Σ be a uniformly chosen signed permutation matrix in SO(d) and Dξ

be as in Lemma 2.3. Then, for any symmetric q-Kac walk,

TV(QT ,ΣQTDξ) ≤
2d exp

(
− T

d−1

)

1− d exp
(
− T

d−1

) + C2.4

(
d1/2e−T/(6d) + (d!)1/2

(√
5− 1

2

)T/2)
,

where C2.4 > 0 is an absolute constant.

The proof of this result is presented in Appendix B, and relies on character estimates of Diaconis
and Shahshahani [16] used to prove a sharp cutoff for the transposition walk on Sd.

8



3 Fast JL-Optimal and RIP-Optimal Transforms Using the Kac

Walk: Proof of Theorem 1.4 and Corollary 1.5

The proof of Theorem 1.4 and Corollary 1.5 uses Algorithm 1.

Algorithm 1: Fast JL via the Uniform Kac walk

#Run the uniform Kac walk for O(d log d) steps
Take T1 = 12d log d and K1 = min(d,C1ǫ

−2 log n(log log n)2(log d)3). Sample QT1 from the
uniform Kac walk and let

Ψ1 :=

√
d

K1
· ProjBinom(d,K1/d) ◦ QT1 .

Take T2 ≥ 12K1 log n and K2 ≥ C1ǫ
−2 log n. Sample Q′

T2
from the uniform Kac walk and let

Ψ2 :=

√
K1

K2
· ProjBinom(K1,K2/K1) ◦ Q′

T2
.

Return
Ψ = Ψ2 ◦Ψ1.

3.1 Coupling and contraction estimates for the Kac walk on Sd−1

In this subsection, we describe a coupling of two copies of the Kac walk Xt, Yt so that the distance
between them goes to zero exponentially quickly – this is one of the two key steps in our analysis
of Algorithm 1. To begin, note that the Kac walk may be viewed as a discrete-time Markov chain
{Xt}t≥0 on Sd−1 defined as follows: at every step t, choose two coordinates 1 ≤ it < jt ≤ d and an
angle θt ∈ [0, 2π) uniformly at random, and set

Xt+1[it] = cos(θt)Xt[it]− sin(θt)Xt[jt]

Xt+1[jt] = sin(θt)Xt[it] + cos(θt)Xt[jt]

Xt+1[k] = Xt[k] k /∈ {it, jt}. (3.1)

Let F : [d] × [d] × [0, 2π) × Sd−1 → Sd−1 be the map associated with this representation, so that
Xt+1 = F (it, jt, θt,Xt).

Definition 3.1 (Proportional coupling, see Definition 3.1 in [27]). Define a coupling of two copies
{Xt}t≥0, {Yt}t≥0 of Kac’s walk as follows. Fix X0, Y0 ∈ Sd−1. Let (i0, j0, θ0) be the update variables
used by X1 in (3.1). Choose ϕ ∈ [0, 2π) uniformly at random among all angles that satisfy

X1[i0] =
√
X0[i0]2 +X0[j0]2 cosϕ,

Xi[j0] =
√
X0[i0]2 +X0[j0]2 sinϕ.

As noted in [27], if X0[i0] = X0[j0] = 0, then all angles ϕ satisfy this equation; otherwise, there is
a unique such ϕ, and the value of ϕ− θ0 mod 2π does not depend on θ0.

Then, choose θ′0 ∈ [0, 2π) uniformly among the angles that satisfy

F (i0, j0, θ
′
0, Y0)][i0] =

√
Y0[i0]2 + Y0[j0]2 cosϕ,
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F (i0, j0, θ
′
0, Y0)[j0] =

√
Y0[i0]2 + Y0[j0]2 sinϕ,

and set Y1 = F (i0, j0, θ
′
0, Y0). Note that this coupling forces Y1 to be as close as possible to X1 in the

Euclidean distance (for instance, in two dimensions, we always have X1 = Y1 under this coupling,
and in more than two dimensions, it still forces the points (0, 0), (X1 [i0],X1[j0]), (Y1[i0], Y1[j0]) to
be collinear).

Now, continue this process starting from (X1, Y1) instead of (X0, Y0).

The following key lemma shows that, under the coupling described above, the distance (inter-
preted suitably) between two copies of Kac’s walk decreases exponentially fast.

Lemma 3.2 (See Lemma 3.3 in [27]). Fix X0, Y0 ∈ Sd−1. For t ≥ 0, couple (Xt+1, Yt+1) conditional
on (Xt, Yt) according to the coupling in Definition 3.1. Then, for any t ≥ 0, Kac’s walk on Sd−1

satisfies

E

[ d∑

i=1

(Xt[i]
2 − Yt[i]

2)2
]
≤ 2

(
1− 1

2d

)t

≤ 2e−t/(2d).

For the reader’s convenience, we include the complete (short) proof of this lemma in Appendix A.
Given this contractive coupling, we now derive estimates regarding the boundedness of the coordi-
nates of the Kac walk.

Lemma 3.3. Fix X0 ∈ Sd−1. Then, for any ǫ ∈ (1/d, 1/2), any K ≥ 2, any k ∈ [d], and any t ≥ 0,
the (uniform) Kac walk satisfies the following, denoting Xt = QtX0.

1. P

[∑k
i=1Xt[i]

2 6∈ k
d [1− ǫ, 1 + ǫ]

]
≤ 8d4 exp(−t/(2d)) + 2 exp(−ǫ2k/64);

2. P

[
maxi,j∈[d] |Qt[i, j]| ≥ K

√
log d
d

]
≤ 2d3 exp(−t/(2d)) + 2d5/2 exp(−K2(log d)/2).

Proof. Let Y0 be a uniformly sampled from the sphere Sd−1 and couple our Kac walk Xt (via the
proportional coupling Definition 3.1) to a Kac walk Yt starting from Y0. Then, we have

E

[∣∣∣∣
k∑

i=1

(Xt[i]
2 − Yt[i]

2)

∣∣∣∣
2]

≤ kE

[ d∑

i=1

(Xt[i]
2 − Yt[i]

2)2
]
≤ 2k

(
1− 1

2d

)t

≤ 2ke−t/(2d)

by Lemma 3.2 and Cauchy–Schwarz. Therefore, Markov’s inequality implies that

P

[∣∣∣∣
k∑

i=1

(Xt[i]
2 − Yt[i]

2)

∣∣∣∣ ≥ ǫk/(2d)

]
≤ 8d2k−1ǫ−2e−t/(2d) ≤ 8d4e−t/(2d). (3.2)

Given this, it suffices to show that
∑k

i=1 Yt[i]
2 is well-concentrated, which follows since Yt is uni-

formly distributed on Sd−1; we include a short computation demonstrating this well-known fact for
completeness.

Let c be a constant to be specified later. Let Z and Z ′ be independent uniform random vectors
on Sd−1. Then,

P

[∣∣∣∣
k∑

i=1

Z[i]2 − k

d

∣∣∣∣ ≥
ǫk

2d

]
≤ e

−cǫk
2d E

[
ec(

∑k
i=1 Z[i]2− k

d
) + e−c(

∑k
i=1 Z[i]2− k

d
)
]

≤ e
−cǫk
2d E

[
ec(

∑k
i=1 Z[i]2−Z′[i]2) + e−c(

∑k
i=1 Z[i]2−Z′[i]2)

]
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= 2e
−cǫk
2d E

[
ec(

∑k
i=1 Z[i]2−Z′[i]2)

]
,

where in the second line we have used Jensen’s inequality and in the third line we have used
symmetry. Let r =

∑d
i=1G[i]

2 where G[i] ∼ N (0, 1/d) and let r′ be an independent copy of r.
Using orthogonal invariance of the Gaussian we have that r · Z (i.e. we pointwise multiply each
coordinate of Z by r) is distributed as a Gaussian vector (G[1], . . . , G[d]) with each coordinate
distributed as N (0, 1/d). Using these properties along with E[r] = E[r′] = 1, we see that

2e−
cǫk
2d E

[
ec(

∑k
i=1 Z[i]2−Z′[i]2)

]
≤ 2e−

cǫk
2d E

[
ec(

∑k
i=1 G[i]2−G′[i]2)

]

= 2e−
cǫk
2d E

[
ecG

2]k
E
[
e−cG2]k

= 2e−
cǫk
2d (1− 4c2/d2)−k/2,

where we have use Jensen’s inequality to replace Z[i]2 by (r · Z)[i]2 and Z ′[i]2 by (r′ · Z ′)[i]2, then
independence between coordinates, and then explicit computation (assuming c < d/2). Now let
c = Aǫd, so that ultimately

P

[∣∣∣∣
k∑

i=1

Z[i]2 − k

d

∣∣∣∣ ≥
ǫk

2d

]
≤ 2e−Aǫ2k/2(1− 4A2ǫ2)−k/2 ≤ 2e−Aǫ2k/2+4A2ǫ2k.

Finally, letting A = 1/16 and union-bounding with (3.2) proves conclusion 1. of the lemma.
For the second conclusion, it suffices to prove that

P

[
max

i
|Xt[i]| ≥ K

√
log d

d

]
≤ 2d2 exp(−t/(2d)) + 2d3/2 exp(−K2(log d)/2),

since then, union bounding over X0 = e1, . . . , ed immediately gives the desired result.
For this, we that Markov’s inequality combined with Lemma 3.2 gives

P

[
max

i
|Xt[i]

2 − Yt[i]
2| ≥ log d

d

]
≤ 2d2e−t/(2d). (3.3)

Since Yt is uniformly distributed on the sphere, we have good control over maxi |Yt[i]|2. In particular,
recall a standard bound on the volume of spherical caps (see e.g., [7, Lemma 2.2]): for a uniformly
random unit vector Yt ∈ Rd and a basis vector ei ∈ Rd, we have

P[Yt[i] ≥ ǫ] = P[|Yt − ei|2 ≤ 2− 2ǫ] ≤ e−dǫ2/2. (3.4)

Similarly, one obtains the same bound for P[Yt[i] ≤ −ǫ]. Using these two bounds with ǫ =√
(K2 − 1)(log d)/d and taking the union bound over 1 ≤ i ≤ d, we see that

P

[
max

i
Yt[i]

2 ≥ (K2 − 1)
log d

d

]
≤ 2de−(K2−1)(log d)/2 = 2d3/2e−K2(log d)/2,

which combined with (3.3) gives the desired result.
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3.2 JL-optimality

The other key tool in proving Theorem 1.4 is a (by now) classic result [12, 30, 29] that demonstrates
the restricted isometry property of orthogonal matrices with ‘bounded’ coordinates. We cite the
version due to Dirksen [17], which provides the best known bounds if one requires the dependence
on δ to be optimal i.e. δ−2.

Theorem 3.4 ([17, Theorem 4.1]). Let U be an N×N orthogonal matrix with supi,j∈[N ]

√
N |Ui,j | ≤

K. Recall δs is defined as
δs(A) = sup

‖x‖=1
s-sparse

|‖Ax‖22 − 1|.

Then, P[δs(UI) ≥ δ] ≤ η, where UI =
√
N/m · ProjN,q ◦U and q = m/N , as long as

m ≥ C3.4sK
2δ−2 max((log s)2(logm)(logN), log(η−1)).

Finally, we need the following slight modification of the previously mentioned result of Krahmer
and Ward [23] which, along with Lemma 2.3, will allow us to deduce a Johnson-Lindenstrauss
property based on the restricted isometry property of the uniform Kac walk.

Theorem 3.5 (Modified [23, Theorem 3.1]). Fix η > 0 and ǫ ∈ (0, 1), and consider a finite set
E ⊆ Rd of cardinality |E| = n. Set k ≥ C3.5 log(4n/η), and suppose that Φ ∈ Rm×d satisfies the
Restricted Isometry Property of order k and level δ ≤ ǫ/4. Let ξ ∈ Rd be a uniform vector in {±1}d,
conditioned on having product 1, and let Dξ denote the d×d diagonal matrix whose diagonal entries
are given by ξ. Then, with probability at least 1− η,

(1− ǫ)‖x‖22 ≤ ‖ΦDξx‖22 ≤ (1 + ǫ)‖x‖22

uniformly for all x ∈ E.

Proof sketch. The proof is identical to the one given in [23] once we note that the proof in [23] only
requires that the vector ξ is distributed as an independent Rademacher vector when restricted to
certain proper subsets of [d], which this altered random variable clearly satisfies.

We now have all the tools needed to prove Theorem 1.4.

Proof of Theorem 1.4. Let q = K1/d. Applying Theorem 3.4 and using the second part of Lemma 3.3
at time t = T1 = 12d log d, we see that

Ψ′
1 =

1√
q
Projd,q ◦QT1 ,

with probability 1−O(1/d), satisfies P[δs(Ψ
′
1) ≥ ǫ/4] ≤ 1/d as long as

K1 & s(log d)ǫ−2(log s)2(logK1)(log d).

Note in the case K1 = d, the operator Ψ′
1 is actually orthogonal.

Now by Theorem 3.5, we have that if δs(Ψ
′
1) ≤ ǫ/4 and s ≥ 40 log(4n/η), then Ψ′

1 ◦Dξ acts as
a (1 ± ǫ)-isometry on our set of points X with probability at least 1 − η. Choosing η = 1/4 and
s = 40 log(16n), we see that this property holds with probability at least 3/4−O(1/d) as long as

K1 & ǫ−2(log n)(log d)2(log log n)2(logK1).
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Since K1 ≤ d, certainly
K1 & ǫ−2(log n)(log d)3(log log n)2

suffices. It is easily seen that as long as C1 is chosen large enough, this bound indeed holds for the
choice of K1 in Algorithm 1.

By Markov’s inequality, the probability that the actual number of dimensions in the image
of Projd,q is more than a constant times K1 is sufficiently small, so with probability at least
5/7, we have that Ψ′

1 ◦ Dξ is a (1 ± ǫ)-isometry on our points and projects down to at most
O(ǫ−2(log n)(log d)3(log log n)2) dimensions.

Next, we show that Ψ2 is a (1 ± ǫ)-isometry on the image of our point set, (Ψ′
1 ◦ Dξ)X. In

particular, applying the union bound using the first part of Lemma 3.3 over all n vectors in the
image immediately gives the desired result as long as C1 is large enough. Since Ψ′

1 ◦Dξ,Ψ2 are both
(1 ± ǫ)-isometries on the relevant sets of points, it follows (after rescaling ǫ) that the composition
satisfies the desired isometry property with probability at least, say, 7/10.

Finally, note that in Algorithm 1, we use Ψ1 instead of the more complicated Ψ′
1 ◦Dξ – that this

can be done follows easily from Lemma 2.4 (and after decreasing the probability of success slightly
from 7/10 to say, 2/3).

We now quickly compute the runtime and memory of Algorithm 1. In order to compute Ψix (for
i = 1, 2), we apply rotations Rit,jt,θt in sequence, and then sparsify. This clearly requires constant
memory as computations can be done in place, and since each Rit,jt,θt affects at most 2 coordinates
at once, the runtime is O(d log d+K1 log n).

3.3 RIP-optimality

The proof of Corollary 1.5 follows exactly as in [9, Lemma 5.1].

Proof sketch of Corollary 1.5. This is an application of Theorem 1.4, noting that the size of a δ-net
of all s-sparse unit vectors in Rd is at most

(
d
s

)
(1 + 2/δ)s.

4 Fast JL-Optimal and RIP-Optimal Transforms Using ORA: Proof

of Theorem 1.6

The proof of Theorem 1.6 uses Algorithm 2.
The analysis of Algorithm 2 follows the same high level outline as the analysis of Algorithm 1.

However, due to the unavailability of a tractable contractive coupling between the ORA and uniform
distribution on the sphere, the proof of the analogues of Lemma 3.3 is more intricate. We now
proceed to the details.

Definition 4.1. For a vector x ∈ Rd and for k ∈ N ∪ {0}, define

Sk(x) :=
1

(2k)!

d∑

i=1

x2ki .

In particular, S0(x) = d.

The next simple but crucial lemma studies the evolution of Sk(x) under one step of ORA.
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Algorithm 2: Fast JL via ORA

#Run orthogonal repeated averaging for O(d log d) steps
Take T1 = C4.4d log d log log d and K1 = min(d,C2ǫ

−2 log n(log log n)2(log d)3). Sample QT1

from ORA and D an independent diagonal random Rademacher matrix, and let

Ψ1 :=

√
d

K1
· Projd,K1/d ◦ QT1 ◦D.

Take T2 ≥ C4.3K1 log n log d and K2 ≥ C4.6ǫ
−2 log n. Sample Q′

T2
and let

Ψ2 :=

√
K1

K2
· SampleK1,K2

◦ Q′
T2

◦D′.

Return
Ψ = Ψ2 ◦Ψ1.

#If ORA is replaced by S-ORA, then D,D′ may be omitted and the first projection may be
replaced with ProjBinom(d,K1/d) and the second projection with ProjK2

.

Lemma 4.2. Let x be an Sn−1-valued random vector, and let R = Ri,j,θ be a random rotation
corresponding to a single step of ORA. Then,

ER,x[(Sk(Rx))] ≤
(
1− 2

d

)
Ex[Sk(x)] +

21−k

d(d− 1)

k∑

a=0

Ex[Sa(x)]Ex[Sk−a(x)].

Proof. By direct computation using the definition of R, we have

ER,x[Sk(Rx)] =

(
1− 2

d

)
Ex[Sk(x)]

+
1

(2k)!d(d − 1)

(∑

i 6=j

Ex

[(
xi + xj√

2

)2k]
+
∑

i 6=j

Ex

[(
xi − xj√

2

)2k])

=

(
1− 2

d

)
Ex[Sk(x)] +

1

d(d− 1)

∑

i 6=j

k∑

a=0

21−k

(2k)!

(
2k

2a

)
Ex[x

2a
i x

2k−2a
j ]

≤
(
1− 2

d

)
Ex[Sk(x)] +

1

d(d− 1)

∑

i 6=j

k∑

a=0

21−k

(2k)!

(
2k

2a

)
Ex[x

2a
i ]Ex[x

2k−2a
j ]

≤
(
1− 2

d

)
Ex[Sk(x)] +

21−k

d(d− 1)

k∑

a=0

Ex[Sa(x)]Ex[Sk−a(x)].

The first inequality follows from the fact that, conditioned on x−i,−j, (x
2a
i , x

2k−2a
j ) is distributed as

(y2a, (
√
r2 − y2)2k−2a), where r ≥ 0 is determined by x−i,−j , and y2 is some distribution (determined

by the original distribution on Sn−1 and x−i,−j) on the interval [0, r2]. Since the first coordinate
is a non-decreasing function of y2 and the second coordinate is a non-increasing function of y2, it
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follows from the FKG inequality that

E[y2a(r2 − y2)k−a] ≤ E[y2a]E[(r2 − y2)k−a].

From this lemma and a careful computation, one can deduce the following upper bound on the
p-th moments of the coordinates of x.

Proposition 4.3. There exists an absolute constant C4.3 for which the following holds. Let x be
an Sn−1 distributed random vector (in particular, x can be deterministic). Fix a dimension d ≥ 25,
a positive integer p ≤ d, and consider a time t ≥ C4.3pd log d. Then,

EQt,x[Sp(Qtx)] ≤
2p−2d1−p

p!
.

Remark. The proof below shows that taking C4.3 = 2.25 is sufficient.

Proof. We will prove this by strong induction on p ≥ 1. Also, for lightness of notation, we will omit
subscripts in the expectation.

For p = 1, note that S1(Qtx) = 1/2 deterministically, so that the assertion holds. Hence, let
p ≥ 2, and suppose we know the statement for 1, . . . , p − 1. Let eq,t = E[Sq(Qtx)].

Let t′ = C4.3(p − 1)d log d, and note that Qtx = Qt−t′(Qt′x) ∼ Qt−t′y, where y is an Sn−1-
valued random vector distributed as Qt′x. Hence, by the inductive hypothesis, we have that for all
t ≥ t′ and 0 ≤ q ≤ p− 1,

eq,t = E[Sq(Qt−t′y)] ≤
2q−2d1−q

q!
.

Therefore, by Lemma 4.2 and the above, we have for t ≥ t′ that

ep,t+1 = E[Sp(Qt+1−t′y)] (4.1)

≤
(
1− 2

d

)
E[Sp(Qt−t′y)] +

21−p

d(d− 1)

p∑

a=0

E[Sa(Qt−t′y)]E[Sp−a(Qt−t′y)]

≤
(
1− 2

d
+

22−p

d− 1

)
E[Sp(Qt−t′y)] +

(
21−p

d(d − 1)

p−1∑

a=1

2p−4d2−p

a!(p − a)!

)

≤
(
1− 2

d
+

22−p

d− 1

)
E[Sp(Qt−t′y)] +

(
2−3

d− 1

d1−p(2p − 2)

p!

)

=

(
1− 2

d
+

22−p

d− 1

)
ep,t +

(
2−3

d− 1

d1−p(2p − 2)

p!

)
. (4.2)

To leverage the above relation, we also need to upper bound ep,t′ = E[Sp(y)]. Indeed, by the
inductive hypothesis, and the fact that each coordinate of y is bounded in absolute value by 1, it
follows that

ep,t′ = E[Sp(y)] ≤
1

(2p)(2p − 1)
E[Sp−1(y)] ≤

2p · d2−p

p!(2p − 1)
. (4.3)

To summarize, (4.2) and (4.3) demonstrate that

ep,t+1 ≤
(
1− 2

d
+

22−p

d− 1

)
ep,t +

(
2−3

d− 1

d1−p(2p − 2)

p!

)
.

ep,t′ ≤
2p · d2−p

p!(2p− 1)
.
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Since p ≥ 2 and d ≥ 25, we have that

(
1− 2

d
+

22−p

d− 1

)
≤
(
1− 2

d
+

1

d− 1

)
≤
(
1− 23

24d

)
.

Therefore, by iterating the above relations, we have for t > t′ that

ep,t ≤
(
1− 23

24d

)t−t′

· 2pd2−p

p!(2p − 1)
+

+

(
2−3

d− 1

d1−p(2p − 2)

p!

) t−t′−1∑

j=0

(
1− 23

24d

)j

≤ e−23(t−t′)/24d · 2pd2−p

p!(2p − 1)
+

2p−3d1−p

p!
· 25
23
.

In particular, for t− t′ ≥ 48d log d/23, we see that

ep,t ≤
2p−2d1−p

p! · 18 +
2p−2d1−p

p!
· 25
46

≤ 2p−2d1−p

p!
,

which completes the inductive step.

We will also need the following estimate regarding the maximum coordinate of Qtx; this estimate
is better than simply applying Markov’s inequality to Proposition 4.3.

Proposition 4.4. Fix a vector x ∈ Sd−1. Let t ≥ C4.4d log d log log d. Then,

P

[
‖Qtx‖∞ ≥ 10

√
log d

d

]
≤ d−2.

Proof of Proposition 4.4. We may assume that d ≥ 102 as otherwise, the desired conclusion holds
trivially.

We will show the following: for any p ∈ [d], there exists a collection of events A1, . . . , Ap such
that the following holds:

1. A1 ⊆ . . . ⊆ Ap;

2. Ap depends only on the randomness used to generate the ORA for the first C4.4(d log d log(p−
1) + d(p − 1)) steps;

3. P[Aj ] ≤ j
d5

for 1 ≤ j ≤ p;

4. For any t ≥ C4.4(d log d log p+ dp),

E[Sp(Qtx)|Ac
p] ≤ 5p−1 · d

1−p

2p · p! . (4.4)

We prove this by strong induction on p ≥ 1. For p = 1, we simply set A1 = ∅ and note that
S1(Qtx) = 1/2 deterministically for all times t, so that the requirements for A1 are trivially satisfied.
Now suppose p ≥ 2, and we know the statement for 0, . . . , p− 1.
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Let Bp be the event that at time t′ = C4.4(d log d log(p − 1) + d(p − 1)), we have

Sp−1(Qt′x) ≥ d5 · 5p−2 d2−p

2p−1(p− 1)!
.

Clearly, Bp only depends on the randomness used to generate the first C4.4d log d log(p− 1) steps.
Moreover, by Markov’s inequality and the inductive hypothesis, we have that

P[Bp|Ac
p−1] ≤

1

d5

and therefore, if we set Ap = Bp ∪Ap−1 then Ap satisfies the first three conclusions of the inductive
hypothesis. To complete the inductive step, we only need to verify the last conclusion.

For this, we begin by noting that deterministically under Ac
p,

‖Qt′x‖∞ ≤ Lp := 2
√

2p− 2d
7−p

2(p−1) .

The key feature of this bound that we need is that Lp =
√
pd−1/2+Θ(1/p). Thus, by the induction

hypothesis,

E[Sp(Qt′x)|Ac
p] ≤

L2
p

(2p)(2p − 1)
E[Sp−1(Qt′x)|Ac

p]

≤
L2
p

(2p)(2p − 1)
E[Sp−1(Qt′x)|Ac

p−1] ·
(
1 +

1

d4

)

≤ 5p+2d
1−p+6/(p−1)

2pp!
. (4.5)

Let eq,t = E[Sq(Qtx)|Ac
p]. For t ≥ t′ the distribution of Qtx is the same as the distribution of Qt−t′y,

where y is an Sn−1-valued random vector distributed as Qt′x. Also, by the inductive hypothesis,
we have that for all t ≥ t′ and 1 ≤ q ≤ p− 1,

eq,t = E[Sq(Qt−t′y)|Ac
p] ≤ 5q−2 d

1−q

2qq!

(
1 +

1

d4

)
,

where, as before, the final factor comes from conditioning on Ac
p and not Ac

q. Therefore, by a trivial
modification of Lemma 4.2, we have for t ≥ t′ that

ep,t+1 = E[Sp(Qt+1−t′y)|Ac
p] ≤

(
1− 2

d

)
E[Sp(Qt−t′y)|Ac

p]

+
21−p

d(d− 1)

p∑

a=0

E[Sa(Qt−t′y)|Ac
p]E[Sp−a(Qt−t′y)|Ac

p]

≤
(
1− 2

d
+

22−p

d− 1

)
E[Sp(Qt−t′y)|Ac

p]

+ 5p−2

(
21−p

d(d− 1)

p−1∑

a=1

d2−p

2pa!(p − a)!

)(
1 +

1

d4

)2

=

(
1− 2

d
+

22−p

d− 1

)
E[Sp(Qt−t′y)|Ac

p]

+ 5p−2

(
21−p

d− 1

d1−p(2p − 2)

2pp!

)(
1 +

1

d4

)2
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=

(
1− 2

d
+

22−p

d− 1

)
ep,t + 5p−2

(
21−p

d− 1

d1−p(2p − 2)

2pp!

)(
1 +

1

d4

)2

.

(4.6)

To summarize, (4.5) and (4.6) demonstrate that

ep,t+1 ≤
(
1− 2

d
+

22−p

d− 1

)
ep,t + 5p−2

(
21−p

d− 1

d1−p(2p − 2)

2pp!

)(
1 +

1

d4

)2

,

ep,t′ ≤ 5p+2d
1−p+6/(p−1)

2pp!
.

Now, a very similar computation to the one in the proof of Proposition 4.3 shows that for

t− t′ ≥ O(1)

(
d log d

p
+ d

)
,

ep,t ≤ 5p−1 · d1−p

2p·p! , which completes the inductive step.

The proof of the conclusion of Proposition 4.4 now follows easily. Indeed, take p = 10 log d,
and note that P[Ap] ≤ 1

d4 and that for t′ ≥ C4.4d log d log log d Markov’s inequality applied to (4.4)
yields

P

[
Sp(Qt′x) ≤ d4 · 5p−1 d

1−p

2pp!

∣∣∣∣Ac
p

]
≤ 1

d4
.

Trivial estimation based on Sp(x) ≥ ‖x‖p∞/(2p)! gives the desired result.

Finally, we prove an estimate which will be required in the second phase of Algorithm 2. For
this, we will make use of the following result of Latała [25].

Lemma 4.5 ([25, Corollary 2]). For a random variable X, let ‖X‖s = (E|X|s)1/s. There exists
an absolute constant C4.5 for which the following holds. Let X1, . . . ,Xn be independent copies of a
symmetric random variable X. Then,

‖X1 + . . .+Xn‖p ≤ C4.5 sup

{
p

s

(
n

p

)1/s

‖X‖s : max(2, p/n) ≤ s ≤ p

}
.

Lemma 4.6. Let Qt denote ORA of length t, and let Xt = QtX0 with t ≥ C4.3d log d log n. Choose
a uniformly random set S of indices of size |S| = k. If k = C4.6ǫ

−2 log n, then

P

[∑

i∈S

Xt[i]
2 6∈ k

d
[1− ǫ, 1 + ǫ]

]
≤ n−3.

Proof. Choose k independent random indices i1, . . . , ik, potentially repeated. We first show that for
any p ≥ 1,

E

∣∣∣∣
∑

i∈S

Xt[i]
2 − k

d

∣∣∣∣
p

≤ E

∣∣∣∣
k∑

j=1

Xt[ij ]
2 − k

d

∣∣∣∣
p

. (4.7)

To see this, consider the joint distribution on [d]k ×
([d]
k

)
given by (i1, . . . , ik, T ), where i1, . . . , ik

are independent random indices, potentially repeated, and T is a set of size k, chosen uniformly at
random from among all subsets of [d] of size k containing {i1, . . . , ik}. Note in particular that by
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symmetry, the marginal distribution of T is uniform on
([d]
k

)
. Therefore, (4.7) will follow from the

law of total probability if we can show that

∣∣∣∣
∑

i∈S

Xt[i]
2 − k

d

∣∣∣∣
p

≤ E

[∣∣∣∣
k∑

j=1

Xt[ij ]
2 − k

d

∣∣∣∣
p∣∣∣∣T = S

]

for all |S| = k. But now, notice that the distribution on (i1, . . . , ik) conditioned on T = S is
some distribution on Sk which is symmetric under permutations of S. Thus, Jensen’s inequality
immediately implies (4.7).

For the remainder of the proof, we will focus on the model with k independent random indices.
Let Yt = Q′

tY0, where Y0 = X0 and Q′
t is an independent copy of Qt. We have

(
E

∣∣∣∣
k∑

j=1

Xt[ij ]
2 − k

d

∣∣∣∣
p)1/p

≤
(
E

∣∣∣∣
k∑

j=1

Xt[ij ]
2 − Yt[ij ]

2

∣∣∣∣
p)1/p

≤ C4.5 sup
2≤s≤p

p

s

(
k

p

)1/s

(E|Xt[i1]
2 − Yt[i1]

2|s)1/s

≤ 2C4.5 sup
2≤s≤p

p

s

(
k

p

)1/s

(E{Qt,i1}|Xt[i1]|2s)1/s

= 2C4.5 sup
2≤s≤p

p

s

(
k

p

)1/s(
EQt

1

d

d∑

i=1

|Xt[i]|2s
)1/s

,

where the first line uses Jensen’s inequality, the second line uses Lemma 4.5, and the third line uses
the triangle inequality.

By Proposition 4.3, if 1 ≤ s ≤ p is an integer, then

EQt

1

d

d∑

i=1

Xt[i]
2s ≤ 2s−2(2s)!d1−s

s!

as long as t ≥ C4.3pd log d. This (combined with Hölder’s inequality to interpolate non-integer
moments) shows that

(
E

∣∣∣∣
k∑

j=1

Xt[ij ]
2 − k

d

∣∣∣∣
p)1/p

≤
(
E

∣∣∣∣
k∑

j=1

Xt[ij ]
2 − Yt[ij ]

2

∣∣∣∣
p)1/p

≤ 2C4.5 sup
2≤s≤p

p

s

(
k

p

)1/s 10s

d
.

Now (4.7) gives (
E

∣∣∣∣
∑

i∈S

Xt[i]
2 − k

d

∣∣∣∣
p)1/p

≤ 2C4.5 sup
2≤s≤p

p

s

(
k

p

)1/s 10s

d
.

Now, for k = Cǫ−2 log n and p = log n, we see that the supremum is attained at s = 2, so that by
Markov’s inequality,

P

[∑

i∈S

Xt[i]
2 6∈ k

d
[1− ǫ, 1 + ǫ]

]
≤
((

d

kǫ

)
· 20C4.5p

(
k

p

)1/2 1

d

)p

.

Choosing C > 106C2
4.5, we find that this is less than 1/n3, as desired.
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We are now ready to prove Theorem 1.6.

Proof of Theorem 1.6. Let q = K1/d. Applying Theorem 3.4 and using Proposition 4.4 at time
t = T1 = C4.4d log d log log d, we see that

Ψ̃1 =
1√
q
Projd,q ◦QT1 ,

with probability 1−O(1/d), satisfies P[δs(Ψ̃1) ≥ ǫ/4] ≤ 1/d as long as

K1 & s(log d)ǫ−2(log s)2(logK1)(log d).

Note that in the case K1 = d, the operator Ψ̃1 is actually orthogonal.
Now by Theorem 3.5, we have that if s ≥ 40 log(4n/η), then Ψ1 acts as a (1 ± ǫ)-isometry on

our set of points X with probability at least 1 − η. Choosing η = 1/4 and s = 40 log(16n), we see
that this property holds with probability at least 3/4−O(1/d) as long as

K1 & ǫ−2(log n)(log d)2(log log n)2(logK1).

Since K1 ≤ d,
K1 & ǫ−2(log n)(log d)3(log log n)2

certainly suffices. This indeed holds based on the choice of K1 in Algorithm 2, as long as C2 is
chosen large enough. Note that if we use S-ORA instead of ORA, then by Lemma 2.3, this holds also
for Ψ̃1, so that indeed, the random diagonal Rademacher matrix D may be excluded. Furthermore,
due to the permutation symmetry in S-ORA established by Lemma 2.4, we can replace Projd,q in

the definition of Ψ̃1 by ProjBinom(d,q), similar to the argument in the proof of Theorem 1.4 (the
symmetrization to Ψ2 is similar and we will not further elaborate on this point).

By Markov’s inequality, the probability that the actual number of dimensions in the image of
Projd,q is more than a constant times K1 is sufficiently small, so with probability at least 5/7 we have
that Ψ1 is a (1±ǫ)-isometry on our points and projects down to at most O(ǫ−2(log n)(log d)3(log log n)2)
dimensions.

To finish, we claim that Ψ2 is a (1± ǫ)-isometry on the image of our point set, Ψ1X – as long as
C2 is large enough, this follows immediately by using Lemma 4.6 and taking the union bound over
all n vectors in the image. Since Ψ1,Ψ2 are both (1 ± ǫ)-isometries on the relevant sets of points,
we are immediately done (after rescaling ǫ): the desired isometry property holds with probability
at least, say, 2/3.

Finally, the analysis of the running time and memory of Algorithm 2 is essentially identical to
that of Algorithm 1.

5 Open Problems

The most immediate problem left open by our work is to remove the additional log log d term
from Theorem 1.6, and bring the ORA-based Algorithm 2 on par with Kac walk and Hadamard
matrix based transforms. Another intriguing question is whether algorithms based on the Kac walk
can be used to successfully design optimal JL transforms beyond (1.4)/ optimal RIP transforms
beyond (1.6), running in time O(d log d); indeed, the appearance of the error term O(d log n) in our
bounds (as opposed to O(ǫ−2d log n)) provides evidence that Kac walk based transforms outperform
Hadamard matrix based transforms in large-data/high-accuracy regimes. Finally, it would be very
interesting to compare how implementations of Kac walk or ORA-based transforms (optimized for
issues/features such as cache locality, parallelization, and memory efficiency) compare to transforms
based on Hadamard matrices; see [14] for some experimental results in this direction.
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A Proof of Lemma 3.2

Proof. Let At[i] = Xt[i]
2 and Bt[i] = Yt[i]

2 for all t ≥ 0 and i ∈ [d] and recall that Xt and Yt are
coupled as in Definition 3.1. We calculate,

E

[
d∑

k=1

(A1[k]−B1[k])
2

]
=

2

d(d − 1)

∑

1≤i<j≤d

E

[
d∑

k=1

(A1[k]−B1[k])
2|(i0, j0) = (i, j)

]
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=
2

d(d − 1)

(d− 1)(d− 2)

2

d∑

k=1

(A0[k]−B0[k])
2

+
2

d(d− 1)

∑

i<j

E

[(
(A0[i] +A0[j]) cos

2 ϕ− (B0[i] +B0[j]) cos
2 ϕ
)2]

+
2

d(d− 1)

∑

i<j

E

[(
(A0[i] +A0[j]) sin

2 ϕ− (B0[i] +B0[j]) sin
2 ϕ
)2]

=
d− 2

d

d∑

k=1

(A0[k]−B0[k])
2

+
4

d(d− 1)
E[cos4 ϕ]

∑

i<j

((A0[i] +A0[j])− (B0[i] +B0[j]))
2

=

(
1− 2

d

) d∑

k=1

(A0[k]−B0[k])
2 +

3

2d(d− 1)

∑

i<j

((A0[i] +A0[j])− (B0[i] +B0[j]))
2

=

(
1− 2

d

) d∑

k=1

(A0[k]−B0[k])
2 +

3

2d(d− 1)

∑

i<j

(
(A0[i]−B0[i])

2 + (A0[j]−B0[j])
2
)

+
3

d(d− 1)

∑

i<j

(A0[i]−B0[i])(A0[j]−B0[j])

=

(
1− 2

d

) d∑

k=1

(A0[k]−B0[k])
2 +

3

2d

d∑

k=1

(A0[k]−B0[k])
2

+
3

d(d− 1)

∑

i<j

(A0[i]−B0[i])(A0[j]−B0[j])

=

(
1− 1

2d

) d∑

k=1

(A0[k]−B0[k])
2 +

3

d(d− 1)

∑

i<j

(A0[i]−B0[i])(A0[j]− B0[j])

=

(
1− 1

2d

) d∑

k=1

(A0[k]−B0[k])
2

+
3

2d(d− 1)



(

d∑

k=1

(A0[k]−B0[k])

)2

−
d∑

k=1

(A0[k]−B0[k])
2




=

(
1− 1

2d
− 3

2d(d− 1)

) d∑

k=1

(A0[k]−B0[k])
2,

where the last equality uses
∑d

k=1A0[k] = 1 =
∑d

k=1B0[k]. Thus, we have

E

[
d∑

k=1

(A1[k]−B1[k])
2

]
≤
(
1− 1

2d

)
.

For t ≥ 0, let Ft denote the σ-algebra generated by the random variables X0, . . . ,Xt and
Y0, . . . , Yt. Repeatedly applying the previous inequality, we have for all t ≥ 0 that

E

[
d∑

k=1

(At[k]−Bt[k])
2

]
= E

[
E

[
d∑

k=1

(At[k]−Bt[k])
2 | Ft−1

]]

≤
(
1− 1

2d

)
E

[
d∑

k=1

(At−1[k]−Bt−1[k])
2

]
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≤
(
1− 1

2d

)t d∑

k=1

E
[
(A0[k]−B0[k])

2
]

≤ 2

(
1− 1

2d

)t

as desired.

B Proof of Lemma 2.4

Throughout this section, we will freely use various tools from nonabelian Fourier analysis; we refer
the reader to [16] for an introduction to such techniques. We will let ρ denote an irreducible

representation of Sd, i.e., ρ ∈ Ŝd and dρ denote its dimension. Since Sd is finite, all its finite
dimensional representations are unitarizable, and we will work with a choice of inner product such
that irreducible representations are also unitary. In particular, various appearances of † should be
understood as the operator-theoretic adjoint with respect to the appropriate inner product. A sum
over nontrivial irreducible representations will be denoted

∑′
ρ. The key estimate we need is the

following purely probabilistic claim regarding permutations.

Lemma B.1. Let σ = (σ1, . . . , σT ) be uniformly randomly chosen transpositions in Sd and suppose
d ≥ 10. Let ξi ∼ Ber(1/2) for 1 ≤ i ≤ T . Define

Pσ = σξ11 · · · σξTT .

Then

Eσ,ξ[TV(Pσ ,UnifSd
)] ≤ CB.1

(
d1/2e−T/(6d) + (d!)1/2

(√
5− 1

2

)T/2)

for an absolute constant CB.1 > 0.

Remark. The given proof can be modified (with more careful character estimates similar to [16]) to
show the quantity studied tends to 0 once T passes 2d log d (with a Θ(d) rate). It is an interesting
question as to whether this is the sharp cutoff.

Proof. Let U : Sd → C be 1/d! everywhere. For any permutation τ , let fτ : Sd → C be 1/2 at the
identity and τ , and 0 elsewhere. We note that Û(ρ) = 0 for nontrivial representations ρ. We also
note that

P[Pσ = τ ] = fσ1 ∗ · · · ∗ fσT
(τ)

by the definition of convolution. The Fourier coefficient of this function at ρ is

Aσ(ρ) := f̂σ1(ρ) · · · f̂σT
(ρ).

By the proof of the upper bound lemma of Diaconis and Shahshahani [16], we have

Eσ[TV(Pσ ,UnifSd
)] = Eσ

[ ∑

τ∈Sd

∣∣∣∣P[Pσ = τ ]− 1

d!

∣∣∣∣
]

≤
[
Eσ

[
d!
∑

τ∈Sd

(
P[Pσ = τ ]− 1

d!

)2]]1/2
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=

[
Eσ

[∑′

ρ

dρ Tr(Aσ(ρ)Aσ(ρ)
†)

]]1/2
,

where the first line is by definition, the second line uses Cauchy–Schwarz, and the third line uses
Plancherel’s formula. In the third line, we also used that U has zero Fourier coefficient at nontrivial
representations, and that the term at the trivial representation cancels out.

Next, we claim that

Eσi

[
f̂σi

(ρ)f̂σi
(ρ)†

]
= cρIdρ

for a constant cρ ∈ R. In fact, we can compute this constant explicitly. Let χρ be the trace of ρ
evaluated at any transposition, and let rρ = χρ/dρ. It is worth noting that |rρ| ≤ 1 since unitary
matrices have trace at most dρ. We find, since ρ(σi) is unitary, that

Eσi

[
f̂σi

(ρ)f̂σi
(ρ)†

]
= Eσi

[(
Idρ + ρ(σi)

2

)(
Idρ + ρ(σi)

2

)†]
=

1

2
Idρ +

1

2
Eσi

[ρ(σi)] =

(
1 + rρ

2

)
Idρ .

In the last step we noted that Eσi
[ρ(σi)] is a multiple of the identity by Schur’s lemma (or, it is the

Fourier transform of a function constant on conjugacy classes) and has trace χρ by definition (note
that χρ is real since ρ(σi) is an involution). Thus

cρ =
1 + rρ

2
.

Now, note that

Eσ

[
Tr(Aσ(ρ)Aσ(ρ)

†)

]
= Eσ

[
Tr

(
f̂σ1(ρ) · · · f̂σT

(ρ)f̂σT
(ρ)† · · · f̂σ1(ρ)

†

)]

= cρEσ1,...,σT−1

[
Tr

(
f̂σ1(ρ) · · · f̂σT−1

(ρ)f̂σT−1
(ρ)† · · · f̂σ1(ρ)

†

)]

= · · ·

= dρc
T
ρ = dρ

(
1 + rρ

2

)T

.

Therefore

Eσ[TV(Pσ ,UnifSd
] ≤

[∑′

ρ

d2ρ

(
1 + rρ

2

)T]1/2
,

and it remains to bound the right side.
The key technical result in [16, p. 27] is that

[∑′

ρ

d2ρ

(
1

d
+
d− 1

d
rρ

)2k]1/2
≤ Cde−2k/d

where C is an absolute constant independent of d. Now if rρ ∈ [
√
5− 2, 1] we have

0 <

(
1 + rρ

2

)3

≤ rρ ≤
1

d
+
d− 1

d
rρ,

while if rρ ∈ [−1,
√
5− 2] we have ∣∣∣∣

1 + rρ
2

∣∣∣∣ ≤
√
5− 1

2
.
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Thus, using this, we see that if 6|T we have

∑′

ρ

d2ρ

(
1 + rρ

2

)T

≤
∑′

ρ

d2ρ

(
1

d
+
d− 1

d
rρ

)T/3

+
∑′

ρ

d2ρ

(√
5− 1

2

)T

≤ Cde−T/(3d) + d!

(√
5− 1

2

)T

.

Since the TV is decreasing as T increases, the result follows immediately by rounding T to the
nearest multiple of 6.

Now we are ready to prove Lemma 2.4.

Proof of Lemma 2.4. By two applications of Lemma 2.3, we see that

TV(QT ,DξQTDξ′) ≤
2d exp

(
− T

d−1

)

1− d exp
(
− T

d−1

) (B.1)

if ξ, ξ′ are independent random vectors which are uniform over {±1}d, conditioned on having product
1.

Now, let QT = RiT ,jT ,θT · · ·Ri1,j1,θ1 as usual. For every pair of distinct indices i, j ∈ [d], let Di,j

be the random rotation in the (i, j) plane by a uniform multiple of π/2. For every time t ∈ [T ], let
Dt be a random matrix distributed as Dit,jt, sampled independently from everything except (it, jt).
First, note that Rit,jt,θt and Rit,jt,θtDt have the same distribution since our distribution q on angles
is invariant under θ ↔ θ + kπ/2 for all k ∈ Z. Second, note that the distributions

Di′,j′Ri,j,θ and Ri,j,θDi′,j′

are the same. The reason is more subtle than in the proof of Lemma 2.3. The point is that
Di′,j′ merely permutes and signs the basis vectors e1, . . . , ed (via at worst a transposition). Thus
conjugation of Ri,j,θ by Di′,j′ gives another rotation in a coordinate plane (σ(i), σ(j)) (where σ
is either the identity or the swap (i′j′)), with its angle potentially changed via negation, addition
by π, or both. Either way, we see Di′,j′Ri,j,θD

−1
i′,j′ (conditional on the value Di′,j′) has the same

distribution as Ri,j,θ, hence the claim.
Now we extract the matrices Dt similar to in the proof of Lemma 2.3. However, we must

be slightly careful: note that Dt is dependent on (it, jt), and the swapping operation above can
potentially change a pair (it, jt) as we move past (which was not true before). Therefore, we will
perform swaps in a way such that once Dt has been extracted to the end, the rotation Rit,jt,θt is
not touched again. In fact, we were careful to do this already in the proof of Lemma 2.3, although
this care was not needed there.

Specifically, we apply the first operation to RiT ,jT ,θT , and then apply the second operation
repeatedly to switch the diagonal matrix DT to the end. Then we do the same for RiT−1,jT−1,θT−1

,
and so on. We thus see that QT has the same distribution as

QTD1 · · ·DT .

Let σt = (itjt) for 1 ≤ t ≤ T . Note that D1 · · ·DT is independent of QT conditional on σ =
(σ1, . . . , σT ), and is a signed permutation matrix with determinant 1. Therefore it can be written
uniquely as D1 · · ·DT = PD, where P is an unsigned permutation matrix and D is a diagonal sign
matrix, with det(PD) = 1. Note that (P,D) is independent of QT conditional on σ.
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Furthermore, we see that we can change (P,D) into a joint distribution on signed permutation
matrices (with determinant 1) and diagonal matrices (with determinant 1) which has a uniform
marginal on P while sacrificing at most a TV of

TV(Pσ,UnifSd
),

where Pσ is defined as in Lemma B.1. This is since (conditional on σ) D1 · · ·DT induces a permu-
tation on the coordinates e1, . . . , ed with the same distribution as Pσ.

Let Σ be a uniform signed permutation matrix with determinant 1. We deduce that there is a dis-
tribution of diagonal matrices D (with determinant 1), potentially dependent on (i1, j1), . . . , (iT , jT )
and Σ, such that

TV(QTD1 · · ·DT , QTΣD) ≤ Eσ TV(Pσ ,UnifSd
).

Therefore, for Dξ,Dξ′ independent from everything as defined at the beginning, we have

TV(DξQTDξ′ ,DξQTΣDDξ′) ≤ Eσ TV(Pσ,UnifSd
).

Regardless of the value of D, we see that the independent sign matrix Dξ′ rerandomizes it so that
DξQTΣDDξ′ and DξQTΣ have the same distribution. Using this, along with (B.1), we deduce that

TV(QT ,DξQTΣ) ≤
2d exp

(
− T

d−1

)

1− d exp
(
− T

d−1

) + Eσ TV(Pσ ,UnifSd
),

and now Lemma B.1 finishes. Technically, we also note that QT is invariant under taking transposes,
so that we can also deduce a bound on TV(QT ,ΣQTDξ).
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