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A COUNTEREXAMPLE TO THE BOLLOBÁS–RIORDAN CONJECTURES

ON SPARSE GRAPH LIMITS

ASHWIN SAH, MEHTAAB SAWHNEY, JONATHAN TIDOR, AND YUFEI ZHAO

Abstract. Bollobás and Riordan, in their paper “Metrics for sparse graphs,” proposed a number of
provocative conjectures extending central results of quasirandom graphs and graph limits to sparse
graphs. We refute these conjectures by exhibiting a sequence of graphs with convergent normalized
subgraph densities (and pseudorandom C4-counts), but with no limit expressible as a kernel.

Pseudorandom and quasirandom graphs, whose studies were initiated by Thomason [13, 14] and
Chung, Graham, and Wilson [5], play central roles in graph theory. A particularly nice consequence
is that that many notions of quasirandomness are in fact equivalent for dense graph sequences.
The theory of graph limits [11], developed by Lovász and collaborators, further generalizes these
concepts. Some of the central results in these developments are summarized below. Here we are
considering a sequence of graphs Gn. We write |G| and eG respectively for the number of vertices

and edges of G, and t(F,G) = hom(F,G)|G|−|F | for the homomorphism density of F in G.

(1) C4 counts control quasirandomness [5]. If t(K2, Gn) → p and t(C4, Gn) → p4 for some
constant p, then t(F,Gn) → p|F | for all graphs F , and furthermore Gn converges to p in the
cut norm (i.e., satisfies the discrepancy condition).

(2) Existence of graph limits [5]. If t(F,Gn) converges as n → ∞ for every F , then there exists
a graphon W : [0, 1]2 → [0, 1] such that t(F,Gn) → t(F,W ).

(3) Equivalence of convergence [2]. t(F,Gn) converges as n → ∞ for every F if and only if Gn

is a Cauchy sequence with respect to the cut metric.

Implications concerning subgraph densities often fail for naive generalizations to sparse graphs.
Here we call a sequence of graphs Gn sparse if eGn

/|Gn|
2 → 0 as n → ∞. We normalize all the

quantities considered according to the decaying edge-density.
There is much interest in extending the above ideas to sparse graphs. The first such systematic

studies was undertaken by Bollobás and Riordan [1]. They considered natural notions of convergence
and metrics for sparse graphs, and gave many interesting results, examples, as well as a long list of
provocative conjectures. A recurring theme in their paper, as well as in other works in this area, is
that one quickly runs into difficulties as soon as subgraph counts are involved. The lack of a general
purpose “counting lemma” in sparse graphs appears to be a fundamental difficulty. This issue
lies at the heart of the sparse regularity method of Conlon–Fox–Zhao [6, 7, 8], which developed
novel counting lemmas in sparse graphs and hypergraphs under additional pseudorandomnesses
hypotheses, which built on and simplified the Green–Tao theorem on arithmetic progressions in the
primes [9]. Some of the subsequent extensions of the Bollobás–Riordan sparse graph limit theory,
in particular the Lp theory of sparse graph limits [3, 4], largely avoids the issues of subgraph counts
in favor of other metrics.

Given real p > 0 and graphs F and G, we define the normalized F -density in G to be

tp(F,G) =
hom(F,G)

peF |G||F |
.
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Here we will primarily be concerned with N -vertex graphs with edge density p = N−o(1), so that
there is only a lower order difference between homomorphism counts and subgraph counts (after
accounting for automorphisms of H). The normalization in tp(F,G) is chosen so that for a sequence
of random graphs Gn = G(n, p), one has tp(F,Gn) → 1 for all F almost surely.

A kernel is a symmetric measurable function W : [0, 1]2 → [0,∞), where symmetric means that
W (x, y) = W (y, x). (The word graphon is often used in the literature for kernels with [0, 1]-values.)
We say that a kernel is bounded if there is some real C so that 0 ≤ W ≤ C holds pointwise. Given
a graph H, we define the H-density of a kernel W to be

t(H,W ) =

∫

[0,1]V (H)

∏

uv∈E(H)

W (xu, xv)
∏

v∈V (H)

dxv .

Bollobás and Riordan [1] proposed the following conjectures. Throughout, let Gn be a sequence

of graphs with edge-density pn = 2eGn
/|Gn|

2 satisfying pn = |Gn|
−o(1). For a graph F , write

cF = lim
n→∞

tpn(F,Gn).

• [1, Conjecture 3.4] If cF exists and is finite for all graphs F , then there is some kernel W
such that t(F,W ) = cF for all graphs F .

• [1, Conjecture 3.3] If cF exists for all graphs F and supF c
1/eF
F < ∞, then there is a bounded

kernel W such that t(F,W ) = cF for all graphs F .
• [1, Conjecture 3.21] If cF exists and is finite for all graphs F and cC4 = 1, then cK3 = 1.
• [1, Conjecture 3.9] If cF exists and is finite for all graphs F and cC4 = 1, then cF = 1 for all

graphs F .

There are additional conjectures in [1] that we do not state here precisely since they require
additional definitions. In particular, Conjecture 3.22 concerns graphs of sparser densities and would
imply Conjecture 3.21. Conjecture 5.5 would imply Conjecture 3.3. Conjectures 5.6 and 5.7 propose
equivalences between convergence of subgraph densities and convergence in cut metric, and they
would imply Conjecture 5.5.

We provide a counterexample that refutes all conjectures in [1]. This counterexample illustrates
a fundamental difficulty with counting in sparse graphs, and suggest additional hypotheses, such
as those in [6, 8], may indeed be necessary. It remains interesting to propose and explore further
weakenings of the Bollobás–Riordan conjectures.

Theorem 1. There exists a sequence of graphs Gn with |Gn| → ∞ and edge density pn = |Gn|
−o(1)

such that for every graph F , writing △F for the number of triangles in F ,

tpn(F,Gn) → e−△F as n → ∞.

Furthermore, there is no kernel W satisfying t(F,W ) = e−△F for all graphs F .

Proof. Let G = Gn = K⊗n2

n , the n2-th tensor power of Kn. Its edge density is p = pn = (1−n−1)n
2
=

(1+o(1))e−n. Note that hom(F,Kn) counts proper n-colorings of F . It is a standard result in graph
theory (easily proved using inclusion-exclusion) that

hom(F,Kn) = n|F | − eFn
|F |−1 +

((

eF
2

)

−△F

)

n|F |−2 +OF (n
|F |−3).
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Since hom(F,K⊗n2

n ) = hom(F,Kn)
n2

,

tp(F,G) = p−eF |G|−|F | hom(F,Kn)
n2

= (1− n−1)−eFn2

(

1− eFn
−1 +

(

eF
2

)

n−2 −△Fn
−2 +OF (n

−3)

)n2

=
(

1−△Fn
−2 +OF (n

−3)
)n2

→ e−△F as n → ∞.

It follows from [1, Lemma 3.5] that there does not exist a kernel W satisfying t(F,W ) = e−△F for
all F . We include the short argument here for the convenience of the reader. Since t(K2,W ) = 1 and
t(K3,W ) = e−1, the kernel W averages to 1 but is not constant. So there exist subsets A,B ⊆ [0, 1]
of positive measure such that W averages to some c > 1 on A×B. We find that, for every positive
integer m,

1 = t(Km,m,W ) ≥ t(Km,m,W1A×B) ≥ µ(A)mµ(B)mcm
2
,

where the second inequality follows from two applications of Hölder’s inequality (i.e., Sidorenko’s
conjecture [12] for Km,m). Taking m sufficiently large gives a contradiction. �

Remark. The above sequence in fact converges to the constant kernel in normalized cut norm. This
is a result of the following lemma applied with Wn being the associated graphon of Gn divided
by pn. As a consequence (see [1, Lemma 4.2]), the graph sequence satisfies the bounded density
assumption [1, Assumption 4.1] (also known under the names “no dense spots” [10] and “L∞ upper
regular” [3, 4]).

One can obtain a sequence of graphs with similar properties and |Gn| = n by slowly blowing-up
the above construction (see [1, Remark 3.14]).

Recall the cut norm of U : [0, 1]2 → R is defined by ‖U‖
�
= supA,B⊂[0,1]

∣

∣

∣

∫

A×B U
∣

∣

∣
.

Lemma 2. If a sequence Wn of kernels satisfies t(F,Wn) → 1 whenever F is a subgraph of C4,

then ‖Wn − 1‖
�
→ 0.

Proof. Applying Cauchy–Schwarz twice (e.g., [11, Lemma 8.12]) and expanding,

‖Wn − 1‖4
�
≤ t(C4,Wn − 1)

= t(C4,Wn)− 4t(P3,Wn) + 4t(K2,1,Wn) + 2t(K2,Wn)
2 − 4t(K2,Wn) + 1

→ 0. �
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