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Abstract. We examine the behavior of the number of k-term arithmetic progressions in a random
subset of Z/nZ. We prove that if a set is chosen by including each element of Z/nZ independently
with constant probability p, then the resulting distribution of k-term arithmetic progressions in
that set, while obeying a central limit theorem, does not obey a local central limit theorem. The
methods involve decomposing the random variable into homogeneous degree d polynomials with
respect to the Walsh/Fourier basis. Proving a suitable multivariate central limit theorem for each
component of the expansion gives the desired result.

1. Introduction

Understanding the asymptotic behavior of sums of dependent random variables is a fundamental
question in probability theory and combinatorics. One particular random variable that has received
attention is the number of arithmetic progressions in a random subset of Z/nZ. For any subset
S ⊆ Z/nZ we define kAP(S) to count the number of k-term arithmetic progressions contained
entirely in the set S. The probability space is constructed by choosing a random set S by including
each element of Z/nZ independently at random with probability p ∈ (0, 1), where p is a fixed
constant not depending on n. The natural question therefore is to understand the distribution of
kAP(S) as n grows.

It is not hard to show that kAP(S) obeys a central limit theorem. That is, if we set µn =
E[kAP(S)] and σ2n = Var(kAP(S)), where S is chosen as before, then for any fixed a, b

P
[
a ≤ kAP(S)− µn

σn
≤ b
]

=
1√
2π

∫ b

a
exp

(
− t

2

2

)
dx+ on,p(1).

Given this Gaussian macroscopic behavior it is natural to guess that the distribution of kAP is
“smooth” and therefore nearby integers are approximately as likely as one another. In particular,
one may conjecture that a local limit theorem estimating pointwise probabilities of kAP(S) that
for any integer x

P[kAP(S) = x]
?
=

1

σn
√

2π
exp

(
−(x− µn)2

2σ2n

)
+ o

(
1

σn

)
.

However the purpose of this note is to prove that this local limit theorem is in fact false and the
distribution of kAP(S) oscillates wildly.

Theorem 1.1. Fix p ∈ (0, 1) and k ≥ 3. Then for all sufficiently large n relatively prime to (k−1)!
there is a point x such that∣∣∣∣∣P[kAP(S) = x]− 1

σn
√

2π
exp

(
−(x− µn)2

2σ2n

)∣∣∣∣∣ = Ω

(
1

σn

)
,

where µn and σn in the statement are the expectation and standard deviation of kAP(S) and S is
constructed by choosing each element of Z/nZ independently at random with probability p.

Remark. This failure of the local central limit likely extends to gcd(n, (k − 1)!) 6= 1, however the
proof details become more technical and therefore we restrict our attention to this case.

1

ar
X

iv
:1

90
7.

11
80

7v
2 

 [
m

at
h.

C
O

] 
 4

 A
pr

 2
02

0



2 BERKOWITZ, SAH, AND SAWHNEY

Figure 1. Histogram from sampling uniformly random subsets of Z/101Z where
1,000,000 random samples were taken. While the the Gaussian-like distribution of
3AP(S) is visible there are wild local fluctuations. The second picture on the right
narrows the histogram to only looking at 550 ≤ 3AP(S) ≤ 750 showing the local
fluctuations in greater detail.

The first author discovered this failure of the local central limit theorem by sampling uniformly
random subsets of Z/101Z and counting the number of length 3 arithmetic progressions. This
histogram of results may be found in Figure 1. Interestingly, it should be noted that subsequently
and independently a study of Cai, Chen, Heller, and Tsegaye [CCHT] also conjectured that such a
local limit theorem failed, but did not have a proof.

Related Work. Significant attention has been given to understanding the large deviation proba-
bility of kAP(S), particularly in the sparse set regime where p→ 0. For example, recently Warnke
[War17], Bhattacharya, Ganguly, Shao, and Zhao [BGSZ20], and Harel, Mousset, and Samotij [HMS]
found precise upper tail bounds for kAP(S) in the sparse regime, while Janson and Warnke [JW16]
proved lower tail bounds. Additionally, Barhoumi-Andréani, Koch, and Liu [BAKL+19] proved a
bivariate central limit theorem for (mAP(S),nAP(S)), understanding the joint distribution of the
number of length m and n arithmetic progressions in sparse random sets.

Significant attention has also been focused on understanding local limit theorems in the analogous
setting of G(n, p). In particular work of Gilmer and Kopparty [GK16] proves a local central theorem
for triangle counts, with Berkowitz giving improved bounds in the case of triangles [Berb] and then
proving the analogous theorem for cliques in [Bera]. Furthermore for general connected subgraph
counts in G(n, p) almost optimal anti-concentration results are known due to the work of Fox,
Kwan, and Sauermann [FKS]. Our work points to a certain degree of separation between a local
central limit theorem and anti-concentration for polynomial functions of Bernoulli random variables
as already suggested by Fox, Kwan, and Sauermann [FKS]. In particular, the random variable
kAP(S) experimentally appears to satisfy anti-concentration (at the optimal scale with each point
probability being at most O(1/n3/2)) but as we will prove it does not satisfy a local central limit
theorem.

Outline of Paper. In Section 2 we compute the expansion of the kAP in the p-biased Fourier
basis. We then use this expansion to give a high level overview of our arguments. Sections 3-7
contain the main technical work of analyzing the asymptotic behavior of kAP, and a more detailed
overview of the argument can be found at the end of Section 3. The proof of the nonexistence of a
local central limit theorem is in Section 8. Finally, we end with some outstanding questions left by
our work in Section 9.
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2. Expansion of k-AP function into p-biased Basis and Outline of the Argument

We first expand the counting function of the number of k-APs into a p-biased Fourier basis. In
order to do so define xi to be indicator if the element i is in the subset of Z/nZ which we are
examining. Then we use the change of variables

yi =
xi − p√
p(1− p)

and note that E[yi] = 0 and Var[yi] = 1. Now the k-AP counting function is

kAP(x) =
∑

a∈Z/nZ

∑
d∈[n/2]

k−1∏
i=0

xa+id

=
∑

a∈Z/nZ

∑
d∈[n/2]

k−1∏
i=0

(ya+id
√
p(1− p) + p)

=
∑

a∈Z/nZ

∑
d∈[n/2]

k∑
`=0

∑
S∈([k]` )

pk−|S|
∏
i∈S

(ya+id
√
p(1− p))

=
k∑
`=0

∑
a∈Z/nZ

∑
d∈[n/2]

∑
S∈([k]` )

pk−
|S|
2 (1− p)

|S|
2

∏
i∈S

ya+id.

Furthermore define

kAP`(y) =
∑

a∈Z/nZ

∑
d∈[n/2]

∑
S∈([k]` )

pk−
`
2 (1− p)

`
2

∏
i∈S

ya+id.

The key idea is to note that kAP` for ` = 1 versus all higher values of ` live on different scales. Our
main lemma will be to prove a quantitative convergence of these components to k appropriately
scaled multivariate Gaussian and then using this analysis we will subsequently prove the desired
failure of a local central limit theorem. For the sake of simplicity we also define

kAP
`
(y) =

1

σ`

∑
a∈Z/nZ

∑
d∈[n/2]

∑
S∈([k]` )

∏
i∈S

ya+id

where σ` is chosen so that Var[kAP
`
(z)] = 1, if z is a vector of independent standard normals. In

particular note σ` is independent of p. Note that these multivariate functions will be the central
object of study and proving a sufficient strong result regarding their joint distribution will give the
desired failure of a local central limit theorem. Finally define σ to be the variance of kAP(z).

Note that all the different functions defined here are multilinear, since gcd(n, (k − 1)!) = 1.

Asymptotics of σ`. We note that σ` = Θk(n) is easily computed for ` 6= 1 and that σ1 = Θk(n
3
2 ).

This follows immediately from the fact that any two elements of Z/nZ lie in Ok(1) k-term arithmetic
progressions jointly.

Overview of the Main Arguments. Given the above expansion we are now in position to give
a general overview of the proof. The argument is centered on demonstrating that the functions
kAP1 and the remaining kAP` fluctuate independently and on differing scales and then use this
to deduce a failure of the local central limit theorem. The key claim is that {kAP`}`=1,3≤`≤k, suit-
ably normalized, approaches in distribution a set of independent Gaussian (along with quantitative
bounds). In particular we prove the following result.
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Theorem 2.1. For g ∈ C3(Rk−1), we have

|Eg(kAP
1
(y),kAP

3
(y), . . . ,kAP

k
(y))− Eg(Z)| .k

M2(g) +M3(g)

n1/2
,

where Z is a standard Gaussian random vector in Rk−1.

In the notation above M2(g) and M3(g) are the maximal operator norms of the second and
third order derivative tensors of g; more informally these quantities simply measure the fluctuations
in g. In order to prove the desired CLT result we first use a version of the Gaussian Invariance
Principle which allows one to replace scaled Bernoulli’s with Gaussians; this reduction appears
in Section 3. This reduction, while not strictly necessary, simplifies the argument. Then we use
the theory of exchangeable pairs to deduce the necessary central limit theorem, which constitutes
Section 4. Roughly, the exchangeable pairs argument proceeds by using analyzing a single draw of
Gaussian y’s for vector (kAP

1
(y),kAP

3
(y), . . . ,kAP

k
(y)) and analyzes what occurs if precisely

one of the y at random is resampled. The method of exchangeable pairs allows one to deduce a
quantitative central limit theorem from this perturbative analysis; however, a significant amount of
effort is expended in verifying the necessary moment estimates. In particular, one consequence of
the above analysis is that ∑

a∈Z/nZ
∑

d∈[n/2] zaza+dza+2d√(
n
2

) d−→ N (0, 1)

if zi are independent standard normals, since this corresponds to kAP
3 for k = 3. Specializing the

analysis to this case may be useful for some readers. Note here that if zi were not centered then
the standard deviation jumps from Θ(n) to Θ(n3/2), and the corresponding central limit theorem
is a easy consequence of the method of dependency graphs as demonstrated in [CCHT].

We next convert these results into a bound on Kolmogorov distance and then deduce the failure of
a local central limit theorem using a sampling argument in Sections 7 and 8. Ultimately the failure
of the local central theorem is derived essentially from the fact that kAP1 takes on values which
are separated by Θk,p(n) from one another and the smearing which occurs due to the remaining
components also lives on the scale of Θk,p(n). Thus it is not able to flatten this effect out. These
two sections give one way of implementing this intuition.

3. Reduction to Gaussian Estimate

We first use an invariance principle for multilinear polynomials. In order to do so we need
to define the influence of a variable for a Boolean function and whether a random variable is
hypercontractive. This step is not strictly speaking necessary, but does not weaken our bounds and
allows us to establish the rest of the argument in a slightly cleaner form.

Definition 3.1. The influence of a variable xi in a boolean function F (x1, . . . , xn) =
∑

S⊆[n] aS
∏
i∈S xi

is
Inft[F ] =

∑
t∈S⊆[n]

a2S .

Definition 3.2. A random variable X is (p, q, ρ)-hypercontractive (1 ≤ p ≤ q ≤ ∞ and 0 ≤ ρ < 1)
if for all constants a, b ∈ R we have

||a+ ρbX||q ≤ ||a+ bX||p.

Finally we need that the p-biased bit is hypercontractive with the appropriate constants. This
follows from the following result in [O’D14].
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Theorem 3.3. If X is a mean zero, symmetric, discrete random variable with

λ = min
x∈Range(X)

P[X = x].

Then X is (2, 3, ρ)-hypercontractive for ρ = 1√
q−1 · λ

1
2
− 1
q .

We are now ready to define a version of the multifunction invariance principle; this version appears
in [O’D14].

Theorem 3.4. Let F (1), . . . , F (d) be formal n-variate multilinear polynomials each of degree at
most k ∈ N. Let x1, . . . , xn and y1, . . . , yn be independent R-valued random variables such that
E[xt] = E[yt] = 0 and E[x2t ] = E[y2t ] = 1. Assume each random variable xt and yt is (2, 3, ρ)-
hypercontractive. Then for any C3 function ψ : Rd → R satisfying ||∂βψ||∞ ≤ C for all |β| = 3,∣∣∣∣E[ψ(F (x))− ψ(F (y))]

∣∣∣∣ ≤ Cd2

3ρ3k

n∑
t=1

d∑
j=1

Inft[F
(j)]3/2

For our application this will amount to the following theorem on the distribution of kAP(y)
against test functions.

Theorem 3.5. Let yi be defined as before and y′i be standard normal random variables. Then for
any C3 function ψ : Rk−1 → R satisfying ||∂βψ||∞ ≤ C for all |β| = 3,∣∣∣∣E[ψ(kAP

1
(y′),kAP

3
(y′), . . . ,kAP

k
(y′))− ψ(kAP

1
(y),kAP

3
(y), . . . ,kAP

k
(y))]

∣∣∣∣ ≤ Ck,p

n1/2

where the constant Ck,p is linearly proportional to C.

Here we used that Inft[F (j)] = Ok,p(1/n), which easily follows from the asymptotics of σ` along
with the symmetry among the variables.

4. Exchangeable Pairs

We now consider the joint distribution of {kAP
`
(yi)}1,3≤`≤k where the yi are now independent

standard normals. We prove a quantitative result regarding its convergence to a multivariate normal
using an application of exchangeable pairs. In order to state the version of exchange pairs, we will
need we will first define a set of notations. Define for a real matrix

〈A,B〉 = Tr(ATB)

and
‖A‖HS =

√
Tr(ATA) =

√
〈A,A〉.

Furthermore define
‖A‖op = sup

|v|=1,|w|=1
|〈Av,w〉|

for matrices and similar for k-order forms

‖A‖op = sup
|vi|=1

|A(v1, v2, . . . , vk)|.

Given this define the kth derivative (tensor) operators for f ∈ Ck(Rn) as

〈Dkf(x), (u1, . . . , uk)〉 =
∑

i1,i2,...,ik∈[n]

∂kf

∂xi1 . . . ∂xik
(u1)i1 . . . (uk)ik

for vectors u1, . . . , uk ∈ Rn. Finally define

Mr(g) = sup
x∈Rn

‖Drg(x)‖op.
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The last notion we need is that of exchangeable random variables.

Definition 4.1. X ′ and X are exchangeable random variables if (X ′, X) and (X,X ′) have the same
distribution.

The key probability theoretic statement we will use is a multivariate version of exchangeable
random variables for proving convergence to a Gaussian which in this form is due to Meckes [Mec09].

Theorem 4.2 ([Mec09]). Let (X,X ′) be an exchangeable pair of random vectors in Rd. Suppose
that there is an invertible matrix Λ, and a random matrix E′ such that

• E
[
X ′ −X

∣∣X] = −ΛX

• E
[
(X ′ −X)(X ′ −X)T

∣∣X] = 2Λ + E
[
E′
∣∣X] .

Then for g ∈ C3(Rd),

∣∣Eg(X)− Eg(Z)
∣∣ ≤ ‖Λ−1‖op [√d

4
M2(g)E‖E′‖HS +

1

9
M3(g)E|X ′ −X|3

]
(1)

where Z is a standard Gaussian random vector in Rd.

Note this is a simplification of the statement which appears in [Mec09] which is sufficient for our
purposes. We now apply this to our setting where we set y = (y1, . . . , yn) and y′ = (y1, . . . , y

′
I , . . . , yn)

where I is a uniformly random coordinate in [n] and yi, y′I are independent standard normals. It
obvious by definition that

W = {kAP
`
(y)}`=1,3≤`≤k,W

′ = {kAP
`
(y′)}`=1,3≤`≤k

are exchangeable random variables. We stress that the ` = 2 term is missing. Furthermore, our
normalization of σ` has made it so that each coordinate of W has variance 1. Also, E[W ] = 0 since
kAP

`
(y) is multi-linear as we have gcd(n, (k− 1)!) = 1. We first compute the matrix Λ in the case

of (W,W ′).

Proposition 4.3. Let W , W ′ be defined as above. Then

E[W ′ −W |W ] = −diag
(
i

n

)
i=1,3≤i≤k

W.

Proof. Note that the `th coordinate of E[W ′ −W |y] is

1

n

n∑
m=1

E[kAP
`
(y1, . . . , y

′
m, ym+1, . . .)− kAP

`
(y)|y]

=
1

n

n∑
m=1

E[kAP
`
(y1, . . . , 0, ym+1, . . .)− kAP

`
(y)|y]

= − 1

n
E[

n∑
m=1

1

σ`

∑
a∈Z/nZ

∑
d∈[n/2]

∑
S∈([k]` )]

∏
i∈S,m∈a+dS

ya+id|y]

= − 1

n

(
E[`(kAP

`
(y))|y]

)
= − `

n

(
kAP

`
(y)

)
and the proposition follows upon taking a conditional expectation with respect to W . The first
equality follows because, conditional on the index I = m which was removed, y′m is independent
from everything else and has mean zero and kAP

` is multilinear. �
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Now to apply Theorem 4.2 we will simply take

E′ = E[(W ′ −W )(W ′ −W )T − 2Λ|y],

which clearly satisfies the necessary hypothesis. To apply Theorem 4.2 to W,W ′, we now see it
suffices to bound E[‖E′‖HS ] and E|W ′ −W |3. Noting that ‖Λ−1‖op = n, we will want bounds of
the form Ok(n

− 3
2 ) for each of these two quantities.

It is worth studying the diagonal terms more carefully. We have

E[(W ′` −W`)
2] = E[2W 2

` − 2W`W
′
`] = E[2W`E[W` −W ′`|W`]] =

2`

n
E[W 2

` ] =
2`

n

by exchangeability, conditional expectations, Proposition 4.3, and the normalization of W`. There-
fore

(E′)`,` = E[(W ′` −W`)
2|y]− E[(W ′` −W`)

2]

for 1 ≤ ` ≤ k and ` 6= 2.

Computing E′. We begin by simply computing E′ entry by entry. For this we define the further
refinement

kAP
`,t

(y) =
1

ytσ`

∑
a∈Z/nZ

∑
d∈[n/2]

∑
S∈([k]` )

∏
i∈S,t∈a+dS

ya+id.

Note that the above in theory is not defined when yt is 0, but really we are simply removing the term
yt from all products in the summation so this can be extended in the obvious way. Less formally
this is the sum kAP

` with all the terms containing the term yt with yt factored out. Using this
notation it follows easily that the nondiagonal entries are

(E′)i,j =
1

n

∑
s∈[n]

kAP
i,s

(y)kAP
j,s

(y)(y2s + 1)

and the diagonal entries are

(E′)i,i = −2i

n
+

1

n

∑
s∈[n]

(y2s + 1)kAP
i,s

(y)2.

Here we used that each random variable yi has mean zero and variance one, and same for its
replacement y′I . In fact, the normalization of σ` implies that E[(E′)i,i] = 0, although this is not
obvious by direct computation. We can see this from cross-comparison with the earlier expression
for (E′)`,`.

We now proceed further into the computational abyss and consider

Tr(E′E′T ) =
∑
i,j

(E′)2i,j .

We will need a bound on

E
[√

Tr(E′E′T )

]
≤
√
E[Tr(E′E′T )]

which has decay properties of the form Ok(n
−3/2). Thus it suffices to prove a bound of the form

Ok(n
−3) for

E[
∑
i,j

(E′)2i,j ].

Note that it suffices to prove such a bound for each individual summands as there are k2 such
summands and the result will follow.
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5. Bounding E′

5.1. Non-diagonal terms. We will first consider the case where i 6= j. Without loss of generality
let i < j. Thus, since i ≥ 1 and j 6= 2, we have j ≥ 3.

We first define an even further refinement of our polynomials,

kAP
`,t,S

(y) =
1

ytσ`

∑
a∈Z/nZ

∑
d∈[n/2]

∏
i∈S,t∈a+dS

ya+id.

Note that
(E′)i,j =

1

n

∑
S∈([k]i ),T∈([k]j )

∑
v∈[n]

kAP
i,v,S

(y)kAP
j,v,T

(y)(y2v + 1)

and thus it suffices to prove that for all S ∈
(
[k]
i

)
and T ∈

(
[k]
j

)
we have

E
[(

1

n

∑
v∈[n]

kAP
i,v,S

(y)kAP
j,v,T

(y)(y2v + 1))

)2]
= Ok(n

−3)

by Cauchy-Schwarz. Using Cauchy-Schwarz again, it suffices to instead prove that

E
[( ∑

v∈[n]

kAP
i,v,S

(y)kAP
j,v,T

(y)

)2

+

( ∑
v∈[n]

kAP
i,v,S

(y)kAP
j,v,T

(y)y2v

)2]
= Ok(n

−1).

The key idea is that when expanded as a polynomial in the y’s, the inside of the expectation will
have most terms contain an odd power of some yi, which leads to a zero contribution as yi is a
standard normal. Every nonzero term contributes an amount bounded by Ok(1) · (σiσj)−2 as the
exponents are bounded. Note that the parities of the exponents are unchanged between the first
and second terms, so we use the second out of convenience.

A term of the second, when expanded out, amounts to choosing v1, v2 ∈ [n] and then a11, a12, a21, a22 ∈
Z/nZ and d11, d12, d21, d22 ∈ [n/2] such that vc ∈ ac1 + dc1S and vc ∈ ac2 + dc2T for c ∈ {1, 2}. Let
Act for k, t ∈ {1, 2} be the sets thus formed (there are no self-intersections since gcd(n, (k−1)!) = 1).
Let the multiset A equal the union, with repetition, of all Act. Note |Ac1| = i and |Ac2| = j, so that
|A| = 2(i+ j).

Claim 5.1. Given an initial choice of three of the (act, dct), there are Ok(1) ways to choose the
remaining pair so as to be compliant with the condition that every element in A appears with even
parity.

Proof. After canceling we can see what parities the remaining set must have at each value of Z/nZ,
which precisely determines it. (Recall that each is a set rather than a multiset because gcd(n, (k −
1)!) = 1.) Then there are Ok(1) ways to choose the (act, dct) given what the set must be. �

First consider the case where A11, A12 do not intersect at a place other than v1. This means
they together hit i+ j − 2 distinct values once, and v1 twice. We see this immediately implies that
A21 and A22, after removing v2 from each, must hit precisely these i+ j − 2 distinct values. Since
j ≥ 3, this means that the value of v2 is determined up to Ok(1) choices by looking at the possible
ways A22 hits these i + j − 2 values in j − 1 ≥ 2 places. Therefore we see there are Ok(1) choices
of a21, d21, a22, d22 after selecting v1, d11, d12, which means we have O(n)3 · Ok(1) total choices (as
there are Ok(1) choices of a11, a12 given that information).

The analysis is similar if A21, A22 do not intersect other than at v2. So now we consider the
case where A11, A12 intersect at a place other than v1 and same for A21, A22. After choosing v1, v2
with O(n2) choices, we claim there are Ok(1) ways to finish choosing. First note that A11, A12

have Ok(n) possibilities together, and after that there are Ok(1) choices for whichever of A21, A22

intersects A11 ∪A12 (which must happen as these sets A11, A12 cannot cancel each other out, being



NUMBER OF ARITHMETIC PROGRESSIONS IN DENSE RANDOM SUBSETS OF Z/nZ 9

of differing size). And by Claim 5.1 there are Ok(1) ways to choose the last one. This gives Ok(n3)
once more.

In total, we have Ok(n3) terms that are not zero in the expectation. This yields a total contri-
bution of Ok(n3) · (σiσj)−2 = Ok(n

−1), as desired.

5.2. Diagonal terms. Now we consider the diagonal terms (E`,`)
′. From Section 4, we have

E[(E′)2`,`] = E[(E[(W ′` −W`)
2|y]− E[(W ′` −W`)

2])2] = Var(E[(W ′` −W`)
2|y]),

where the variance in the final line is over the randomness of the standard normals y. Now

E[(W ′` −W`)
2|y] = EI,y′ [(y′I − yI)2kAP

`,I
(y)2] =

1

n

n∑
i=1

(1 + y2i )kAP
`,i

(y)2.

If ` = 1, kAP
`,i

(y) is a constant of size Θk(n
− 1

2 ). We end up with a bound of quality Ok(n−3)
trivially. Now let ` ≥ 3, recalling ` 6= 2. We have

E[(E′)2`,`] =
1

n2σ4`

∑
1≤i,j≤n

Cov
[
(1 + y2i )(σ`kAP

`,i
(y))2, (1 + y2j )(σ`kAP

`,j
(y))2

]
.

We first deal with the i = j terms. They are bounded by E[(1 + y2i )
2(σ`kAP

`,i
(y))4]. Note that

this value is independent of i, so we let i = 0 (which is the same as i = n). We adopt a similar
method as before. It suffices to show that there are Ok(n2) terms of this i = 0 value that, when
expanded, yield a nonzero expectation value. This is since there are n such terms and as σ` = Θk(n),
which would lead to an overall contribution of the desired size Ok(n−3) to E[(E′)2``].

We use the kAP
`,i,S refinement from before. By Hölder’s inequality, it suffices to bound each

E[(1 + y20)2(σ`kAP
`,0,S

(y))4]. We also can choose an exponent of y0 from the initial term, but it
does not affect parities of exponents and is of constant order so we ignore this and assume we have
the y40 term for simplicity.

Each term within this sum is chosen via d1, . . . , d4 ∈ [n/2] and offsets (e.g. which term equals
the y0 term that is being divided in kAP

`,0,S), each of which contributes terms of the form ydjSj ,
where Sj is one of Ok(1) many shifts of S that contains 0. Now for any valid tuple (d1, . . . , d6),
make a graph on vertex set {1, . . . , 6}, with i, j connected if diSi and djSj intersect other than at
0.

Given such a graph, we claim that there are Ok(n) ways to choose the ds associated to a connected
component of this graph in a manner compatible with the graph. Indeed, we find that, for example,
if d1, d2, d3 are connected, then choosing d1 will fix the value say of cd2 for some c ∈ [k], which
yields Ok(1) possible values of d2, and then Ok(1) possible values of d3 similarly.

Furthermore, in a graph associated to a valid tuple (d1, . . . , d6), i.e., one with even powers of the
ys, we must have no disconnected vertices. Indeed, since the vertex is disconnected, the associated
value of di must give rise to a multiset diS (mod n) which must cancel out all of its contributions
to the ys. This is impossible as gcd(n, (k − 1)!) = 1.

Finally, we have at most 4
2 = 2 connected components of non-isolated vertices, each of which

have Ok(n) ways to choose the ds. This yields an upper bound of Ok(n2), as desired.
Now we consider i 6= j. Again, by translation invariance we see the value only depends on j − i.

Therefore it suffices to show for i 6= 0 that

Cov
[
(1 + y20)(σ`kAP

`,0
(y))2, (1 + y2i )(σ`kAP

`,i
(y))2

]
= Ok(n)

since there are around n2 total terms. We will show that

Cov
[
(σ`y0kAP

`,0
(y))2, (σ`yikAP

`,i
(y))2

]
= Ok(n).
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Again, the other four cases that need to be verified will be essentially identical, since we are just
removing even exponent terms. Consider

E[(σ`y0kAP
`,0

(y))2(σ`yikAP
`,i

(y))2] =
∑

S,T∈([k]` )
2

∑
a,b∈(Z/nZ)2

∑
d,e∈[n/2]2
0∈aj+djSj
i∈bj+ejTj

E

 2∏
j=1

∏
sj∈Sj

yaj+djsj
∏
tj∈Tj

ybj+ejTj

 .

We claim that the amount of nonzero terms other than those with a1 + d1S1 = a2 + d2S2 = A
and b1 + e1T1 = b2 + e2T2 = B and A ∩ B = ∅ is Ok(n). Indeed, this is a similar argument as in
the non-diagonal term case. The analogue of Claim 5.1 immediately follows, and similar arguments
to earlier deal with the case that a1 + d1S1, a2 + d2S2 intersect only at 0. Indeed, if so, then they
must hit 2`− 2 distinct values once and 0 twice. Then b1 + e1T1, b2 + e2T2, after removing j from
each, must precisely hit those 2`− 2 values, each hitting `− 1 of them. As ` ≥ 3, we see that this
pins down what b1, e1, b2, e2 are up to Ok(1) possibilities, as linear combinations of the di (say after
fixing which positions of ai+diSi equal 0). Furthermore, we can compute j as a linear combination
of the di. Since j 6= 0, it must be a nonzero linear combination. This pins down (d1, d2) to Ok(n)
possible values. Thus we have Ok(n) · Ok(1) = Ok(n) total possibilities. Furthermore, we have a
similar analysis for the case where b1 + e1T1, b2 + e2T2 intersect only at j.

Now we consider the case where a1 + d1S1, a2 + d2S2 intersect other than at 0, and similar for
bi + eiTi. Then there are Ok(n) choices for (a1, d1), and then Ok(1) choices for (a2, d2), and if we
are assuming a1 +d1S1 6= a2 +d2S2, the terms bi+ eiTi must hit one of these. There are thus Ok(1)
possibilities for the value of the set that does hit these values, and then Ok(1) possibilities for the
other set. Thus we have Ok(n) choices once more, under the hypothesis that a1 +d1S1 6= a2 +d2S2.
Similar analysis holds if instead we assume b1 + e1T1 6= b2 + e2T2. In the case where neither holds,
so that a1 + d1S1 = a2 + d2S2 = A and b1 + e1T1 = b2 + e2T2 = B, if we assume that A ∩ B 6= ∅
then again we have a bound of Ok(n),

The only remaining terms are those that have a1 + d1S1 = a2 + d2S2 = A and b1 + e1T1 =
b2 + e2T2 = B and A ∩B = ∅, as desired.

Now we consider

E[(σ`y0kAP
`,0

(y))2] = E[(σ`yikAP
`,i

(y))2] =
∑

S∈([k]` )
2

∑
a∈(Z/nZ)2

∑
d∈[n/2]2

0∈aj+djSj

E

 2∏
j=1

∏
sj∈Sj

yaj+djsj

 .
We claim that the only nonzero terms are those with a1 + d1S1 = a2 + d2S2. Indeed, they are
both sets as gcd(n, (k − 1)!) = 1, and if they are not equal then there is some element with an odd
exponent.

Now, putting it all together, we see that

Cov
[
(1 + y20)(σ`kAP

`,0
(y))2, (1 + y2i )(σ`kAP

`,i
(y))2

]
has a contribution of Ok(n) terms in its E[XY ] portion which we bound by Ok(n). Otherwise it
only has terms corresponding to a1 + d1S1 = a2 + d2S2 = A and b1 + e1T1 = b2 + e2T2 = B and
A ∩ B = ∅. Thus the expectations factor into a product of E[

∏
a∈A y

2
a] and E[

∏
b∈B y

2
b ]. This is

canceled by the terms described by

E[(σ`y0kAP
`,0

(y))2]E[(σ`yikAP
`,i

(y))2].

There is one catch: the terms in this latter product of expectations E[
∏
a∈A y

2
a]E[

∏
b∈B y

2
b ] which

have A ∩B 6= ∅ are not canceled in the E[XY ] term. However, we see that there are Ok(n) ·Ok(1)
of them, for after choosing whichever of Ok(n) values for A that we want, we have Ok(1) choices
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of B that both go through j and intersect A (unless A goes through j, but then it only has Ok(1)
choices and B has Ok(n) choices in this case).

So, overall, the covariance is indeed Ok(n), as desired.

6. Bounding moments

For the second part we need to prove that E[|W −W ′|3] is of size Ok(n−3/2) which is the same as

E[(
∑

`=1,3≤`≤k
|W (`) −W ′(`)|2)

3
2 ] = Ok(n

− 3
2 ).

Therefore it in fact suffices to prove that

E[|W (`) −W ′(`)|3] = Ok(n
− 3

2 ),

using Hölder’s inequality. For ` = 1 this is trivial, using σ1 = Θk(n
3/2). Now let ` > 1 and note

that

E[(|W (`) −W ′(`)|)3] = E[|kAP
`
(y)− kAP

`
(y′)|3]

= Et∈Z/nZE[|yt − y′t|3|kAP
`,t

(y)|3]

= E[|y0 − y′0|3|kAP
`,0

(y)|3]

≤ E[|y0 − y′0|6]
1
2E[|kAP

`,0
(y)|6]

1
2

=
√

120E[kAP
`,0

(y)6]
1
2 .

We now use the kAP
`,t,S

(y) refinement as in Section 5.1. Using Hölder’s inequality again, it suffices
to prove that

E[kAP
`,0,S

(y)6] = Ok(n
−3).

We adopt a similar method to Section 5. Since σ` = Θk(n), it amounts to showing there are Ok(n3)
terms of E[kAP

`,0,S
(y)6] which have a nonzero contribution, i.e., even exponents of the y’s.

Each term within this sum is chosen via d1, . . . , d6 ∈ [n/2], each of which contributes the terms
ydjS . Now for any valid tuple (d1, . . . , d6), make a graph on vertex set {1, . . . , 6}, with i, j connected
if diS and djS intersect.

Each term within this sum is chosen via d1, . . . , d6 ∈ [n/2] and offsets (e.g. which term equals
the y0 term that is being divided in kAP

`,0,S), each of which contributes terms of the form ydjTj ,
where Sj is a set which is one of Ok(1) many shifts of S that contain 0, and Tj = Sj −{0}. Now for
any valid tuple (d1, . . . , d6), make a graph on vertex set {1, . . . , 6}, with i, j connected if diTi and
djTj intersect.

Given such a graph, we claim that there are Ok(n) ways to choose the ds associated to a connected
component of this graph in a manner compatible with the graph. Indeed, we find that, for example,
if d1, d2, d3 are connected, then choosing d1 will fix the value say of cd2 for some c ∈ [k], which
yields Ok(1) possible values of d2, and then Ok(1) possible values of d3 similarly.

Furthermore, in a graph associated to a valid tuple (d1, . . . , d6), i.e., one with even powers of the
ys, we must have no disconnected vertices. Indeed, since the vertex is disconnected, the associated
value of di must give rise to a multiset diS (mod n) which must cancel out all of its contributions
to the y’s. This is impossible as gcd(n, (k − 1)!) = 1.

Finally, we have at most 6/2 = 3 connected components of non-isolated vertices, each of which
have Ok(n) ways to choose the d’s. This yields an upper bound of Ok(n3), as desired.
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Conclusion. Putting the various estimates together we have proved the following result, which is
a restatement of Theorem 2.1.

Theorem 6.1. For g ∈ C3(Rk−1), we have

|Eg(W )− Eg(Z)| .k
M2(g) +M3(g)

n1/2
,

where Z is a standard Gaussian random vector in Rk−1.

7. Conversion to Bound in Kolmogorov Distance

We now convert this test function bound into a bound on the cumulative distribution function.

Lemma 7.1. For any a, b we have that

P
[
kAP

1
(y) < a,

∑k
i=3 σip

k− i
2 (1− p)

i
2kAP

i
(y)√∑k

i=3 σ
2
i p

2k−i(1− p)i
< b

]
=

1

2π

∫ a

−∞

∫ b

−∞
e
−(x2+y2)

2 dx dy+Ok,p(n
−1/8).

Proof. The key idea is to take φ` which is a smooth function which is 1 on (−∞, `], 0 on [`+ ε,∞),
has second derivative bounded by O(ε−2), and third derivative bounded by O(ε−3). Furthermore
let φ` be in [0, 1] over the entire domain. Given this define γa,b(x, y) = φa(x)φb(y). It follows from
σi = Θk(n) for all 3 ≤ i ≤ k that

Ψa,b(y1, y3, . . . , yk) = γa,b

(
y1,

∑k
i=3 σip

k− i
2 (1− p)

i
2 yi√∑k

i=3 σ
2
i p

2k−i(1− p)i

)

has M2(Ψa,b) = Θk,p(ε
−2), M3(Ψa,b) = Θk,p(ε

−3), and ‖∂βΨa,b‖ = Θk,p(ε
−3) for all |β| = 3. The

key point of course is that for standard Gaussians zi we have

E[Ψa,b(z1, z3, . . . , zk)] =
1

2π

∫ a

−∞

∫ b

−∞
e
−(x2+y2)

2 dx dy +Ok(ε)

and by Theorems 2.1 and 3.5 it follows that

E[Ψa,b(kAP
1
(y),kAP

3
(y), . . . ,kAP

k
(y))] = E[Ψa,b(z1, z3, . . . , zk)] +Ok,p

(
ε−2 + ε−3

n1/2

)
.

Choosing ε = n−1/8, we obtain the desired right side as an upper bound, noting that Ψa,b dominates
the desired indicator function. A lower bound is obtained in an analogous manner and the result
then follows. �

8. Proof of the Failure of Local Central Limit Theorem

In this section we prove that kAP does not obey a local central limit theorem. Specifically:

Theorem 1.1. Fix p ∈ (0, 1) and k ≥ 3. Then for all sufficiently large n relatively prime to (k−1)!
there is a point x such that∣∣∣∣∣P[kAP(z) = x]− 1

σn
√

2π
exp

(
−(x− µn)2

2σ2n

)∣∣∣∣∣ = Ω

(
1

σn

)
,

where µn and σn in the statement are the expectation and standard deviation of kAP(z) and z is
sampled i.i.d. with probability p.
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We first give a high level overview of the proof. The proof proceeds by building two sets Lα
and Lβ of equal size both close enough to the mean of kAP so that were there to be a local limit
theorem for kAP we would necessarily have

P[kAP ∈ Lα] ≈ P[kAP ∈ Lβ] ≈ |Lα|
σn
√

2π
.

However, as a result of Lemma 7.1 we will be able to compute P[kAP ∈ Lα] ∝ fδ(α), and P[kAP ∈
Lβ] ∝ fδ(β), where fδ is as defined in Lemma 8.1 below.

The rough idea in building Lα and Lβ is to note that kAP1 + kAP2 takes values very near
to a lattice GZ where G = Θ(n). Meanwhile kAP>2 has standard deviation Θ(n). Lα (and Lβ)
will roughly correspond to the event that kAP ≈ αG mod G (≈ βG mod G respectively), and
we can use our joint central limit theorem for kAP1 and kAP>2 to show that P[kAP ≈ αG
mod G] ∝ fδ(α) for some choice of δ. But since fδ(α) 6= fδ(β) we will conclude that P(Lα) 6= P(Lβ)
disproving any chance that kAP obeys a local central limit theorem.

Before beginning our proof, we define fδ and prove it is nonconstant.

Lemma 8.1. The function

fδ(x) =
∑
λ∈Z

e
−(x−λ)2

δ

is not the constant function for any value δ > 0. Furthermore for any C > 0 there is a constant
D > 0 so that if δ < C then for some pair α, β ∈ (0, 1) we have fδ(α)− fδ(β) ≥ D.

Proof. Let us calculate the Fourier transform of f = fδ as 1-periodic function. Note that

f̂(n) =

∫
[0,1]

e−2πinxf(x) dx =

∫
[0,1]

e−2πinx
∑
λ∈Z

e
−(x−λ)2

δ dx

=

∫
R
e−2πinxe

−x2
δ dx =

√
πδe−π

2n2δ,

and therefore the function is not constant. Furthermore, by Parseval we have that∫
[0,1]

(f(x)− f̂(0))2dx =

∞∑
n=1

f̂2(n) =

∞∑
n=1

πδe−2πn
2δ ≥ π

∫ ∞
δ

e−2π
x2

δ dx

and so the variance of f is bounded below whenever δ is bounded, proving the result. �

We now prove our main result, the failure of a local central limit theorem for constant p and k.

Theorem 1.1. Fix p ∈ (0, 1) and k ≥ 3. Then for all sufficiently large n relatively prime to (k−1)!
there is a point x such that∣∣∣∣∣P[kAP(z) = x]− 1

σn
√

2π
exp

(
−(x− µn)2

2σ2n

)∣∣∣∣∣ = Ω

(
1

σn

)
,

where µn and σn in the statement are the expectation and standard deviation of kAP(z) and z is
sampled i.i.d. with probability p.

Throughout this section we use xi to denote the 0,1 indicator of whether i is in our random
set, and yi to denote the normalized Bernoulli random variables yi := (xi − p)/

√
p(1− p). We

additionally use the shorthand ` =
∑n

i=1 yi and ˜̀ :=
∑n

i=1 xi and q := 1− p.
First we need exact formulae for kAP1 and kAP2 in terms of `, which are

kAP1 =

n∑
i=1

k(n− 1)

2
pk−

1
2 q

1
2 yi =

k(n− 1)

2
pk−

1
2 q

1
2 `



14 BERKOWITZ, SAH, AND SAWHNEY

kAP2 =

(
k

2

)
pk−1q

∑
|S|=2

yS =

(
k

2

)
pk−1q

2

(
`2 −

n∑
i=1

y2i

)
=

(
k

2

)
pk−1q

2

(
`2 − n− 1− 2p

√
pq

`

)
where yS =

∏
i∈S yi. And so we find that we can express kAP1 +kAP2 = C0 +C1`+C2`

2 := Q(`)
where

C0 : = −nk(k − 1)

4
pk−1q

C1 : =
k(n− 1)

2
pk−

1
2 q

1
2 − (1− 2p)k(k − 1)

4
pk−

3
2 q

1
2

C2 : =
k(k − 1)

4
pk−1q

So to understand kAP1 + kAP2 it is enough to understand `. We note that ` is valued on the
lattice −n

√
p/q + Z/√pq. The most commonly taken value for ` occurs when ˜̀ =

∑n
i=1 xi = [pn].

When this occurs we see that ` takes the value

a0 :=
˜̀− pn
√
pq

=
[pn]− pn
√
pq

and hence kAP1 + kAP2 takes the value

x0 := kAP1 + kAP2 = Q(a0) = C0 + C1a0 + C2a0
2

Now we can define X = kAP1(y)+kAP2(y)−x0 and Y = kAP≥3(y). So X+Y = kAP−µ−x0,
and the most likely value taken by X is 0.

Let . . . , A−2, A−1, A0 = 0, A1, . . . be the values taken by X when |`| .k,p n, listed in order.
In general we see that X takes the value At whenever ˜̀ = [pn] + t and so ` = a0 + t/

√
pq when

|`| .k,p n (as Q′(`) > 0 in such a range). Therefore we can compute for any t that

At = Q

(
a0 +

t
√
pq

)
−Q(a0) = C2

(
2ta0√
pq

+
t2

pq

)
+ C1

t
√
pq

To alleviate notation we define a constant G for the dominant increment G := C1/
√
pq. It will

commonly be helpful to have the bound

|At − tG| =
∣∣∣∣C2

(
2ta0√
pq

+
t2

pq

)∣∣∣∣ ≤ C2
t2 + 2t

pq
.

Now we are in a position to define the events we look at. Fix α ∈ [0, 1], and i, B ∈ R. Then we
define the intervals Iα(i, B) and families of intervals Lα(B, s) by setting

Iα(i, B) := [G(i+ α)−B, G(i+ α) +B]

Lα(B, s) :=

s⋃
i=−s

Iα(i, B)

Note that if α = 0 then the intervals I0(i, B) are just intervals of length 2B centered around that
lattice points in C1Z/

√
pq. These intervals are disjoint so long as we ensure |B| < G/2. As α moves

between 0 and 1, the interval slides between neighboring lattice points in GZ. Lα(B, s) collects the
most central 2s+ 1 intervals in the collection.

Our goal becomes to show that for some pair B, s = o(n) there exist distinct values α, β ∈ (0, 1)
so that P[X + Y ∈ Lα(B, s)] and P[X + Y ∈ Lβ(B, s)] are far. This will contradict the existence of
a local limit theorem, thus finishing our proof of Section 8.

We first choose η so that P[|Y | ≥ ηC1/
√
pq] ≤ n−100. By hypercontractivity concentration bounds

(see e.g. [O’D14, Theorem 10.24]) we see that we may take η = Θp,k((log n)k/2).
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We may use Lemma 7.1 and some work to compute P[X + Y ∈ Lα(B, s)]. We state our result
and postpone the calculation to Appendix A.

Lemma 8.2. Assume that 0 < B < n1−1/36 and η < s < n1/2−1/24. Let σY denote the standard
deviation of Y (and as such σY = Θ(n)). Then

P [X + Y ∈ Lα(B, s)] =
2sB
√

2

σY
√
πnpq

fδ(α) +O
(
ηn−1/8

)
for some uniformly bounded δ = δ(n, k, p).

Remark. In fact, as n→∞ this function tends towards a limit; we do not bother replacing δ(n, k, p)
with its limit δ(k, p) as this will be inconsequential to our arguments.

Additionally, were kAP to obey a local limit theorem, then we could compute P[X+Y ∈ Lα(B, s)]
in a different way.

Lemma 8.3. Assume that Z is a random variable with mean µZ and standard deviation σZ which
for all m ∈ N satisfies

P[Z = m] =
1√

2πσZ
exp

(
(m− µZ)2

2σ2Z

)
+ o(σ−1Z )

Then for any set S ⊂ Z ∩ [µ− T, µ+ T ] with T ≤ σZ we have

P(Z ∈ S) =
|S|√
2πσZ

+ o

(
|S|
σZ

)
+O

(
|S|T
σ2Z

)
.

Proof. This follows from simply noting that |1− exp((m− µ)2/2σ2Z)| . (m− µ)/σZ in this range,
and summing over

∑
m∈S P(Z = m). �

We now have all of the tools to prove Theorem 1.1.

Proof of Theorem 1.1. Choose δ = δ(k, p), which is constant. We know from Lemma 8.1 that there
are α 6= β ∈ (0, 1) so that fδ(α)− fδ(β) = Ω(1). If we set B = bn1−1/36c and s = bn1/2−1/24c then
by Lemma 8.2 we have

P [X + Y ∈ Lα(B, s)] =
2sB
√

2

σY
√
πnpq

fδ(α) +O
(
ηn−1/8

)
and likewise for Lβ(B, s). Crucially, note that the main term has size n−5/72 and so dominates the
error term. Applying the same reasoning to Lβ(B, s) and taking differences yields

P [X + Y ∈ Lα(B, s)]− P [X + Y ∈ Lβ(B, s)] =
2sB
√

2

σY
√
πnpq

[fδ(α)− fδ(β)] +O
(
ηn−1/8

)
= Ω(n−5/72)

However if we assume that kAP obeys a local central limit theorem, then so doesX+Y . Note that
Lα(B, s) consists of elements of size at most Gs+B = O(n3/2−1/24), and |Lα(B, s)| = Θ(n3/2−5/72).
So by Lemma 8.3 we see that

P[X + Y ∈ Lα(B, s)]− P[X + Y ∈ Lβ(B, s)] = o
(
n−5/72

)
+O

(
n−1/9

)
This is a direct contradiction. �
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9. Conclusion

We conclude by pointing out various open questions regarding the failure of the local central limit
theorem. First, note that there is a gap between the theorems we proved and a total explanation
of the behavior exhibited in Figure 1. An ideal theorem would prove more precisely that the
distribution of kAP(S) tends to the convolution of two discrete Gaussians seemingly exhibited in
the figure. Such a precise theorem would prove that kAP(S), conditional on the size of S, satisfies
a local central limit theorem. Failing this precise local limit theorem, at least one could hope to
understand how wildly the distribution oscillates in the following precise sense:

Question 9.1. Fix ε = 1/100. Let S be a subset of Z/nZ where each element is chosen indepen-
dently with probability 1/2 and set µn = E[3AP(S)]. What is the largest constant C such that for
infinitely many n there exist integers xn, yn such that |x− µn|, |y − µn| ≤ n

3
2
−ε which satisfy

P[3AP(S) = xn]

P[3AP(S) = yn]
≥ C?

We argue in the subsection below that C ≈ 4.745 works, however our method does suggest that
in fact that C cannot be taken arbitrarily large. To be more precise, the largest constant C coming
from our method is sup(f(x))

inf(f(x)) where f(x) =
∑

λ∈Z e
−9(x−λ)2 . This is in fact the optimal constant if

one can prove a sufficiently strong local limit theorem in the style of our above results. Furthermore,
proving that C cannot be taken to be unbounded, along with the central limit theorem in the paper,
would immediately show anti-concentration for the random variable 3AP(S) at the correct level.

9.1. Computing C. Here we compute the value of C coming out of Theorem 1.1 by computing
the resulting value of λ in the case k = 3, p = 1

2 . It is easy to show that

8 · 3AP(y) =
n(n− 1)

2
+

3

2
(n− 1)

∑
a∈Z/nZ

ya + 3
∑

0≤a<b<n
yayb +

∑
a∈Z/nZ

∑
d∈[n/2]

yaya+dya+2d,

hence kAP1(y) has steps of size 3n (since ya ∈ {−1, 1}) while kAP3(y) has mean zero and variance
n(n−1)

2 . Hence the associated normal has standard deviation of size n√
2
. If we normalize kAP1(y) to

have steps of size 1, then kAP3(y) will be normalized to have standard deviation
√
2
6 hence density

proportional to e−9x2 . Therefore we find value δ = 1
9 , and the claimed ratio as above. It can further

be shown that the minimum is attained at 1
2 + Z and the maximum at Z, hence we can prove a

ratio of

C =

∑
x∈Z e

−9x2∑
x∈Z e

−9(x− 1
2
)2
≈ 4.745.
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Appendix A. Proof of Lemma 8.2

We use all the same terminology and notation as in Section 8, including C0, C1, C2. First we need
a lemma relating the probability that X + Y ∈ Lα(B, s) to a bound on the the joint distribution of
X and Y .

Lemma A.1. Assume that s > η and B − C2
s2+s
pq ≥ 0. Then

P [X + Y ∈ Lα(B, s)] ≥ P
[
|X| ≤ As−η, Y ∈ Lα

(
η,B − C2

s2 + s

pq

)]
Proof. We show that, in fact, the event on the left hand side contains the event on the right. Let
X = At where |t| ≤ s − η and assume that Y = G(i + α) + b where |i| ≤ η and b ≤ B − C2

s2+s
pq .

Then we note that

|X + Y −G(t+ i+ α)| =
∣∣∣∣(tG+ C2

(
2ta0√
pq

+
t2

pq

)
+G(i+ α) + b

)
−G(t+ i+ α)

∣∣∣∣
≤ C2

s(s+ 1)

pq
+ b ≤ B

As (t+ i) ≤ s it follows that if the event on the right hand side occurs, then X +Y ∈ Lα(B, s). �

Lemma A.2. Assume that |B| < G/2 and C2
(s+η+2)(s+η+3)

pq < G/2. Then

P [X + Y ∈ Lα(B, s)] ≤ P
[
|X| ≤ As+η+1, Y ∈ Lα(η,B + C2

(s+ η)(s+ η + 1)

pq
)

]
+O

(
n−100

)
Proof. First we note that

P(X + Y ∈ Lα(B,S)) ≤ P(X + Y ∈ Lα(B,S) and |Y | ≤ ηG) +O(n−100).

So we will throughout condition on the event that |Y | ≤ ηG. In that event, we show that the event
on the left hand side implies that the event on the right hand side occurs. First, we can simply
upper bound |X| by

|X| ≤ |X + Y |+ |Y | ≤ |(s+ α)G+B|+ ηG.

But we know that

As+η+2 ≥ (s+ η + 2)G− C2
(s+ η + 2)(s+ η + 3)

pq
> (s+ η)G+ αG+B.

And so we have that X = At where |t| ≤ s+ η + 1.
For Y we note that X + Y ∈ Lα(B, s) implies that X + Y = (r + α)G + b where |r| ≤ s and

|b| ≤ B. By the argument above we know that X = At for t ≤ s+ η + 1. And so we can bound

|Y − (r − t+ α)G| = |X + Y −X − (r − t+ α)G| = |(r + α)G+ b−At − (r − t+ α)G|

≤ B +

∣∣∣∣C2
(s+ η + 1)(s+ η + 2)

pq

∣∣∣∣ .



18 BERKOWITZ, SAH, AND SAWHNEY

The last thing we need to do to show that Y ∈ Lα(η,B+C2
(s+η)(s+η+1)

pq ) is to show that |r− t| ≤ η,
but were it otherwise the above equation implies that |Y | > (η + 1)G − G, contradicting our
assumption that |Y | ≤ ηG. Therefore it must follow that Y ∈ Lα(η,B + C2

(s+η)(s+η+1)
pq ). �

The main upshot here is that for well chosen values of B and s, the probability bounds furnished
by the above lemmas will be indistinguishable up to a margin of error. The last ingredient we need
is an estimate for the probability the events |X| ≤ As and Y ∈ Lα(B, s).

Lemma A.3. For any interval of the form (T −B, T +B) we have∫ T+B

T−B
e−t

2/2dt = 2Be−T
2/2 +O(B3)

Proof. This is just the midpoint rule combined with the observation that | d2
dt2
e−t

2/2| ≤ 1. �

Lemma A.4. Assume that B < n1−1/36, s < n1/2−1/24, and η ≥ log(n). Let fδ be as defined in
Lemma 8.1. Then

P [|X| ≤ As, Y ∈ Lα(η,B)] =
2sB
√

2

σY
√
πnpq

fδ(α) +O
(
ηn−1/8

)
,

where δ = pqσ2Y /C
2
1 .

Proof. First, we note that |X| ≤ As is equivalent to saying that kAP
1 ∈ [a0/

√
n− s√

npq , a0/
√
n+

s√
npq ]. First we note that by Lemma 7.1 for each interval Iα(i, B) we have

P(|X| ≤ As, Y ∈ Iα(i, B)) =

(
1√
2π

∫ a0/
√
n+ s√

npq

a0/
√
n− s√

npq

e−t
2/2dt

)(
1√
2π

∫
Iα(i,B)/σY

e−t
2/2dt

)
+O(n−1/8)

By Lemma A.3 we can estimate both of these integrals. The first is

1√
2π

∫ a0/
√
n+ s√

npq

a0/
√
n− s√

npq

e−t
2/2dt =

(
2s
√
npq

)
1√
2π
e−a

2
0/2σ

2
1 +O

(
s3

(npq)3/2

)
=

s
√

2
√
πnpq

+O

(
s3

n3/2
+

1

n3

)
and the second estimate is

1√
2π

∫
Iα(i,B)σY

e−t
2/2dt =

1√
2π

∫ C1(i+α)√
pqσY

+B/σY

C1(i+α)√
pqσY

−B/σY
e−t

2/2dt =
2B

σY
e
−C

2
1(i+α)2

pqσ2
Y +O(B3/n3).

So, defining δ := pqσ2Y /C
2
1 = Θ(1) and combining all of these estimates, we find that

P[|X| ≤ As, Y ∈ Iα(i, B)] =

(
s
√

2
√
πnpq

+O

(
s3

n3/2
+

1

n3

))(
2B

σY
e−

(i+α)2

δ +O(B3/n3)

)
+O(n−1/8)

=
2sB
√

2

σY
√
πnpq

e−
(i+α)2

δ +O

(
s3/n3/2 +

B3s

n3.5
+ n−1/8

)
=

2sB
√

2

σY
√
πnpq

e−
(i+α)2

δ +O
(
n−1/8

)
.

Thus taking a union yields

P [|X| ≤ As, Y ∈ Lα(η,B)] =

η∑
i=−η

2sB
√

2

σY
√
πnpq

e−
(i+α)2

δ +O
(
ηn−1/8

)
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=

∞∑
i=−∞

2sB
√

2

σY
√
πnpq

e−
(i+α)2

δ +O
(
ηn−1/8 + e−η

2/δ
)

=
2sB
√

2

σY
√
πnpq

fδ(α) +O
(
ηn−1/8

)
. �

Lemma 8.2. Assume that |B| < n1−1/36, s < n1/2−1/24 and η < s. Let σY denote the standard
deviation of Y (and as such σY = Θ(n)). Then

P [X + Y ∈ Lα(B, s)] =
2sB
√

2

σY
√
πnpq

fδ(α) +O
(
ηn−1/8

)
.

Proof. First we use Lemmas A.2 and A.4 to upper bound

P [X + Y ∈ Lα(B, s)] ≤ P
[
|X| ≤ As+η+1, Y ∈ Lα(η,B + C2

(s+ η)(s+ η + 1)

pq
)

]
+O

(
n−100

)
=
s
(
B + C2

(s+η)(s+η+1)
pq

)
2
√

2

σY
√
πnpq

fδ(α) +O
(
ηn−1/8

)
=

2sB
√

2

σY
√
πnpq

fδ(α) +O
(
ηn−1/8 + s3/n1.5

)
.

Next we use Lemma A.1 to lower bound

P [X + Y ∈ Lα(B, s)] ≥ P
[
|X| ≤ As−η, Y ∈ Lα(η,B − C2

s2 + s

pq
)

]

=
(s− η)

(
B − C2

s2+s
pq

)
2
√

2

σY
√
πnpq

fδ(α) +O
(
ηn−1/8

)
=

2sB
√

2

σY
√
πnpq

fδ(α) +O
(
ηn−1/8 + s3/n1.5 + ηB/n1.5

)
.

By our hypotheses on B, s, and η the ηn−1/8 term dominates in both inequalities. �
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