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A REVERSE SIDORENKO INEQUALITY

ASHWIN SAH, MEHTAAB SAWHNEY, DAVID STONER, AND YUFEI ZHAO

ABSTRACT. Let H be a graph allowing loops as well as vertex- and edge-weights. We prove that, for
every triangle-free graph G without isolated vertices, the weighted number of graph homomorphisms
hom(G, H) satisfies the inequality

hom(G,H) <[] hom(Ka,a,, H)"/ @™,
uwv€EE(G)

where d,, denotes the degree of vertex u in G. In particular, one has
hom(G, H)/1Z( < hom(Ka,q, H)Y/*

for every d-regular triangle-free G. The triangle-free hypothesis on G is best possible. More generally,
we prove a graphical Brascamp-Lieb type inequality, where every edge of G is assigned some
two-variable function. These inequalities imply tight upper bounds on the partition function of
various statistical models such as the Ising and Potts models, which includes independent sets and
graph colorings.

For graph colorings, corresponding to H = K (also valid if some of the vertices of K, are looped),
we show that the triangle-free hypothesis on G may be dropped. A corollary is that among d-regular
graphs, G = Kg4,q maximizes the quantity cq(G)l/‘V(G)‘ for every ¢ and d, where ¢,(G) counts proper
g-colorings of G.

Finally, we show that if the edge-weight matrix of H is positive semidefinite, then

hom(G, H) <[] hom(Ka, 1, H)"@*Y.
veV(GQ)
This implies that among d-regular graphs, G = K441 maximizes hom(G, H)l/‘V(GH. For 2-spin
Ising models, our results give a complete characterization of extremal graphs: complete bipartite
graphs maximize the partition function of 2-spin antiferromagnetic models and cliques maximize the
partition function of ferromagnetic models.
These results settle a number of conjectures by Galvin—Tetali, Galvin, and Cohen—Csikvari—
Perkins—Tetali, and provide an alternate proof to a conjecture by Kahn.

1. INTRODUCTION

1.1. Independent sets, colorings, and graph homomorphisms. Consider the following ex-
tremal questions. Given a graph G, let i(G) denote the number of its independent sets, ¢,(G) the
number of its proper g-colorings®, and hom(G, H) the number of its graph homomorphisms to H
(we allow H to have loops, and later, weights on its vertices and edges).2

Question 1.1. Fix d. Among d-regular graphs, which G' maximizes i(G)YIV(&)I?
Question 1.2. Fix d and ¢. Among d-regular graphs, which G' maximizes ¢, (G)VIV(G)l?

Question 1.3. Fix d and H. Among d-regular graphs, which G maximizes hom(G, H)1/|V(G)‘?

Date: September 2018 (initial); March 2019 (revised).
YZ was supported by NSF Awards DMS-1362326 and DMS-1764176, and the MIT Solomon Buchsbaum Fund.
1A proper q-coloring of G is an assignment of each vertex of G to [¢] := {1,...,¢} so that no two adjacent vertices
are assigned the same color (in particular, the colors are labeled).
2A graph homomorphism from G to H is a map of vertices ¢: V(G) — V(H) such that ¢(u)¢p(v) is an edge of H
whenever uv is an edge of G.
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The third question encompasses the first two, as i(G) = hom(G, ) and c,(G) = hom(G, K,).

The exponential normalization is a natural choice. Indeed, replacing G by a disjoint union of copies
of itself does not change the quantity hom(G, H)"IV(©) as hom(G1UGs, H) = hom(G1, H) hom(Go,
where LI denotes a disjoint union.

Question 1.1 was initially raised by Granville in 1988 in connection with the Cameron—Erddés
conjecture on the number of sum-free sets. Alon [1] and Kahn [27] conjectured that G = K4 is
the exact maximizer. Alon [1] proved an asymptotic version as d — oo, Kahn [27] proved the exact
version under the additional hypothesis that G is bipartite, and Zhao [38] later removed this bipartite
assumption. The results of Kahn [27] and Zhao [38] together answer Question 1.1: the maximizer is
K44 (unique up to taking disjoint unions of copies of itself).

Galvin and Tetali [22] initiated the study of Questions 1.2 and 1.3 and extended Kahn’s entropy
method [27] to prove that, under the additional hypothesis that G is bipartite, G = K4 is also the
maximizer for hom(G, H)YIV(&I, See Lubetzky and Zhao [32, Section 6] for a different proof using
Holder/Brascamp—Lieb type inequalities. Can the bipartite hypothesis on G also be dropped in this
case? Not for all H: e.g., for H = @V, G = K441 is the maximizer instead of K 4. Extending the
technique for independent sets, Zhao [39] showed that the bipartite hypothesis can be dropped for

certain classes of H, but the techniques failed for H = K, corresponding to colorings (Question 1.2).

It remained a tantalizing conjecture to remove the bipartite hypothesis for colorings.
Recently, Davies, Jenssen, Perkins, and Roberts developed a novel technique called the “occupancy

method” [15], which gave a new proof of the maximization problem for independent sets (Question 1.1).

Their method reduces the problem to a (potentially large) linear program. Applying their method,
they gave a computer-assisted proof of the coloring conjecture (answering Question 1.2) for d = 3 [16],
later extended to d = 4 by Davies [14]. The occupancy method was later extended to other
applications concerning independent sets [17, 33|, as well as geometric applications concerning sphere
packings [26] and spherical codes [25]. Despite its successes, the occupancy method has a number of
drawbacks. Its progress on Question 1.2 requires extremely rapidly growing computational resources
for larger values of d, and furthermore, the method appears to be ill-suited for irregular graphs.

Here, we answer Question 1.2 and show that G' = K 4 is always the maximizer, thereby resolving
the coloring conjecture.

Theorem 1.4. Let G be a d-reqular graph and q a positive integer. Then
cq(g)l/\V(G)l < cq([(d’d)l/@d)_

We also prove a more general result for not necessarily regular graphs. It is analogous to our
recent result [34] for independent sets, which resolved Kahn’s conjecture [27]. Here is a way to phrase
the question. Instead of ranging over d-regular graphs, what if we range over all graphs with a fixed
degree—degree distribution, i.e., the distribution of the integer-pair {d,,,d,} over an uniform random
edge uwv € E(G), where d, is the degree of u € V(G)? Kahn conjectured that, for independent sets,
the maximizing G, conditioned on a fixed degree-degree distribution, remains a disjoint union of
complete bipartite graphs of possibly different sizes. We recently proved Kahn’s conjecture, resulting
in the following theorem.

Theorem 1.5 ([34]). Let G be a graph without isolated vertices. Let d, be the degree of vertex v in
G. Then
) < H i(Kq, q,)" (@),
weE(G)

Galvin [20] conjectured (falsely) that Theorem 1.5 could be extended to hom(-, H) for every H in
place of i(-). Here we prove the extension for H = K, extending our Theorem 1.4 on the number of
proper g-colorings to irregular graphs.

H),
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Theorem 1.6. Let G be a graph without isolated vertices, and q a positive integer. Let d, be the
degree of vertex v in G. Then

Q@) < [ co(Kaya)/ ).

Let us state a more general version of Theorem 1.6 that interpolates between independent sets and
proper colorings. Fix a finite set of colors {2 as well as a subset 2, C €, called the looped colors. A
semiproper coloring of G is an assignment of each vertex of G to 2 so that for every non-looped color
(i.e., a color in Q2 \ £2,), the set of vertices of G of that color is an independent set. In other words,
with ¢ = |Q] and ¢ = ||, semiproper colorings correspond to homomorphisms from G to K, go, where
K go is the complete graph on ¢ vertices with exactly ¢ vertices looped. Proper colorings correspond
to £ = 0. Independent sets correspond to (¢,q) = (1,2). The following theorem interpolates between
Theorems 1.5 and 1.6.

Theorem 1.7. Let G be a graph without isolated vertices, and £ < q nonnegative integers. Let d, be
the degree of vertex v in G. Then

hom(G, K°) <[] hom(G, ki)t (dude),
weE(G)

Let us now move on to general graph homomorphisms. Here, Question 1.3 remains wide open.
There has been a number of conjectures stated in the literature, though several of them have
been falsified by counterexamples and then later revised [6, 20, 21, 22, 35]. For example, it
was first conjectured (22| that the maximizer is always G = K4, and then later revised [21] to
G € {Ki+1,Kqq}, though this was later shown false too [35]. We do not even have a conjecture what
is the set of possible maximizers G. It is even unknown whether the set of potentially maximizing G
is finite for each d. See the recent survey [40| for more discussion on this problem.

It is natural to restrict G in hope of a cleaner result. Cohen, Csikvari, Perkins, and Tetali [6]
conjectured that among triangle-free graphs G, the maximizer is always G = Ky 4, extending the
theorem of Galvin and Tetali [22] for bipartite G. We prove this conjecture.

Theorem 1.8. Let G be a triangle-free d-regular graph and H a graph allowing loops. Then
hom(G, H)Y V(O < hom(K, 4, H)Y D).

We extend the result to irregular graphs and prove a corrected version of Galvin’s conjecture [20].
Theorem 1.9. Let G be a triangle-free graph without isolated vertices, and H a graph allowing
loops. Then

hom(G, H) < [[ hom(Ka,a,, H) ().
weFE(G)
Remark. Theorem 1.9 remains true even if H has vertex- and edge-weights, so that hom(G, H)
is interpreted as the partition function for a certain “H-model” on G (e.g., the hard-core model
generalizing independent sets, and the Potts model generalizing colorings). In fact, it follows by

standard observations in graph limit theory [4, 31| (namely, approximating a graphon by a sequence of
W-random graphs) that the weighted and unweighted version of Theorem 1.9 are actually equivalent.

Furthermore, the triangle-free hypothesis is best possible in Theorems 1.8 and 1.9.

Proposition 1.10. For every graph G with a triangle, there exists some graph H so that the
inequality in Theorem 1.9 is false.

The analogous minimization problem is also interesting and mysterious, though here we only
mention a few known cases (see [12]). For both independent sets (H = ) [13] and colorings
(H = K;) |2, Lemma A.1] (also see |40, Theorem 8.3|), the minimizer is K441, whereas for the
Widom-Rowlinson model (H = @& ¢), the “minimizer” is the infinite d-regular tree [12].



4 SAH, SAWHNEY, STONER, AND ZHAO

1.2. Graphons, norms, and reverse Sidorenko. In the theory of graph limits [31], a graphon is
a symmetric measurable function W: Q x Q — [0,1] (symmetric means W (z,y) = W(y, x)), where
Q) is some probability space. Define the G-density in W by

t(G, W) = /V G H W(qu,l'v)di(G),
ave )uveE(G)

where dzy (q) := HveV(G) dz, is the product probability measure on QV(©).

Every graph H can be turned into a graphon Wy: V(H) x V(H) — {0, 1} by using the uniform
probability measure on V(H) and letting Wy (z,y) = 1 if 2y € E(H), and Wg(z,y) = 0 if
xy ¢ E(H). Then t(G, H) := t(G,Wy) = hom(G, H)/|V (H)|V(@! is the homomorphism density of
G to H. The graphon notation naturally allows us to consider edge and vertex weights on H.

Theorems 1.8 and 1.9 are equivalent to the following graphon formulation:

tG,W) < H t(Kdu,dw W)l/(dudv)7
weFE(G)

and in particular, for an n-vertex d-regular graph,
HG, W) < t(Kqa, W)™ D,

Let us write
W lg = |t(G, W) FEL,

Despite the suggestive notation, [-||; is not always a norm. These quantities were first considered
by Hatami [24] in connections to Sidorenko’s conjecture. See the recent work of Conlon and Lee [11]
addressing the question of which graphs G induce norms.

Our results above can now be written as

tGEW) < T IWlks s
weE(G)

and, in particular, for d-regular graphs G,

In contrast, Sidorenko’s conjecture says that for all bipartite graphs G, t(G, W) > t(Ko, VV)'E(G)‘7
or equivalently [|[W/||¢ > ||W| k,. Sidorenko’s conjecture [18, 36] has been proved for several families
of graphs [3, 8, 9, 10, 24, 28, 29, 36, 37|, though it remains open in general. The first open case of
the conjecture is G = K55 \ Cho (also known as the “Mobius strip” graph, for it is the incidence
graph for a simplicial complex model of the M&bius strip viewed as gluing together five triangles).
Whereas Sidorenko’s conjecture proposes that || - ||k, is a lower bound to | - ||¢, whereas our result
proves an upper bound ||-|| . ~for triangle-free d-regular graphs G. It is for this reason that we give
the name reverse Sidorenko énequality.

1.3. Graphical Brascamp—Lieb inequalities. We prove a generalization of Theorem 1.9, allowing
possibly different two-variable functions on every edge of G. This generalization corresponds to
graph homomorphisms with list colorings, where every vertex of G is assigned an “allowable” subset
of vertices of H, and we only consider homomorphisms assigning each vertex of G to one of its
allowable vertices of H. This generality is actually needed as a strong induction hypothesis for our
proof.
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From now on, H will be a weighted graph, which we define to be a symmetric measurable function
H: Q xQ — R>p, where 2 is a measure space. We set?

hom(G, H) ::/ H H (2, 70) dTy(q)-
QV(&)
weE(G)

Here dzy (q) = HveV(G) dx, and each dz, is the measure on €2, which is encoding vertex weights
on H. Then Theorems 1.8 and 1.9 hold for weighted graphs H as well (see remark following
Theorem 1.9).

In Section 1.2, in discussing graphons, it was important in the statement of Sidorenko’s conjecture
that  is a probability space, or else an extra normalizing factor is needed. In contrast, the inequalities
that we prove in this paper are all scale-free in the sense that the measure of €2 does not have to be
normalized.

The reader is welcome to think of H as an edge-weighted graph (allowing loops) on a finite set of
vertices €2 (the “colors”) equipped with the counting measure. By a standard graph limit argument,
this case is equivalent to the general result.

For a two-variable function f: €2; x Q9 — R, define

1/(ab)
1F 1k = ‘/ TT fCwis) des - dwgdys - - dy,
Qe x QY 1<i<a
1<5<b

)

This quantity (again, not always a norm) can be viewed as a bipartite analog of the graph “norm’
earlier, though here we do not require f to be symmetric.
The following theorem generalizes Theorem 1.9 upon taking the same f,, = H for all edges uv.

Theorem 1.11. Let G = (V, E) be a triangle-free graph. Let ), be a probability space for each
vertex v € V. For each edge uwv € E, let fy,: Qy X Qy = R>g be a measurable function, labeled so
that fuy(Ty, xy) = fou(Ty, zy). We have

|1 fatewaydo < TT Ul

V uveE weE

where Qv := [[,eq Qo and dxy =[], oy dxy, and dy, is the degree of u in G.

veG

Remark. We have equality if (1) G is a disjoint union of complete bipartite graphs, or (2) if there
are functions g,: €, — R>¢ such that f,,(z,y) = gu(x)gs(y) for every uwv € E.
By Proposition 1.10, the triangle-free hypothesis cannot be weakened.

For semiproper list colorings, Theorem 1.11 holds without the triangle-free hypothesis, generalizing
Theorem 1.7. See Section 4 for the statement and proof.

Theorem 1.11 can be viewed as a graphical analog of the Brascamp—Lieb inequalities [5, 30],
which have the form [ fi(Bix)--- fi(Brx)dx < || filler -« - || fi||Lee, where the B;’s are linear maps.
The Brascamp—-Lieb inequalities generalize classical inequalities such as Holder’s inequality and the
Loomis—Whitney inequality, and have far reaching applications. Our inequality bounds a certain
graphical integral in terms of graphical norm-like quantities that are in general weaker than LP
norms. It may be possible that these graphical Brascamp—Lieb inequalities have a rich theory yet to
be uncovered, e.g., extensions to more general setups such as hypergraphs and simplicial complexes,
allowing greater flexibility in the combinatorial form of the integral on the left-hand side of the
inequality.

3Such quantities are more commonly denoted Zx(G) for the partition function of a spin model with weights and
interactions given by H. Here we prefer to extend hom(G, H) notation so as to be consistent with the case for simple
graphs.
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1.4. Positive semidefinite models are clique-maximizing. We have stated various results
affirming that G = K, 4 maximizes hom(G,]—I)l/W(G)| under various circumstances, e.g., among
triangle-free G, or if H is a (partially looped) complete graph corresponding (semi)proper colorings.
However, as remarked following Theorem 1.7, K 4 is not always the correct answer to Question 1.3,
and the situation remains very much open in general.

Given a weighted graph H: Q x Q@ — R>q, we say that H is biclique-mazimizing if it satisfies, for
all graphs G without isolated vertices,

hom(G,H) <[] hom(Ka,aq,, H)" (@), (1.1)
weE(G)

where, as usual, d,, denotes the degree of v in G. We say that H is clique-mazimizing if it satisfies,
for all graphs G,

hom(G, H) <[] hom(Kq, 41, H)Y/ (@D, (1.2)
veV(Q)

Theorem 1.7 says that the partially looped complete graphs K 50 are biclique-maximizing. On the
other hand, it is not hard to check that a disjoint union of loops is clique-maximizing. It is known
that there are graphs H that are neither biclique-maximizing nor clique-maximizing, even among
d-regular graphs G (it is unknown which G achieves the maximum for such H) [35].

In [6, 7, 35|, it was shown that the Widom-Rowlinson model (H = @) satisfies (1.2) for
d-regular graphs G (this was the first and essentially only such non-trivial case that was known).
However, it turns out that H = @ QS is actually not clique-maximizing among irregular graphs (a
counterexample is G = K 4, as 113 > 742631/ ®). This H is the only interesting example that we
are aware of where there is a different maximization behavior among regular and irregular G.

Open problem 1.12. Determine all biclique-maximizing graphs H and all clique-maximizing
graphs H, in each case, for d-regular G as well as for all G.

We say that a weighted graph (also called a model) H: Q x Q — Rxg is positive semidefinite
or ferromagnetic if the corresponding function is positive semidefinite (equivalently, the matrix
(H(zi,24))i,jepm) is positive semidefinite for every x1, ..., z, € Q). We say that H is antiferromagnetic
if all eigenvalues (counting multiplicities) other than the top one are nonpositive. These definitions
were taken from [19].

For example, a disjoint union of loops is ferromagnetic, whereas K 50 is antiferromagnetic. For 2-
spin models, i.e., = {0, 1} allowing vertex weights, H is ferromagnetic if H(0,0)H (1,1) > H(0,1)?,
and antiferromagnetic if H(0,0)H (1,1) < H(0,1)2.

We prove the following result. See Theorem 5.1 for a list coloring type generalization.

Theorem 1.13. Every ferromagnetic (i.e., positive semidefinite) model is clique-maximizing.

We conjecture that the converse holds as well.

Every 2-spin models is either ferromagnetic or antiferromagnetic depending on the sign of the
determinant of its 2 x 2 edge-weight matrix, though this is false for k-spin models for k > 2. As a
corollary, we completely characterize all 2-spin models, generalizing independent sets. See Section 3.4
for the antiferromagnetic part of the proof, which follows from the bipartite swapping trick |38, 39|
and Theorem 1.11.

Corollary 1.14. A 2-spin model is biclique-mazimizing if it is antiferromagnetic and clique-
mazimizing if it is ferromagnetic.

We close with a conjecture generalizing Theorem 1.7.

Conjecture 1.15. Fvery antiferromagnetic model is biclique-mazimizing.
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Remark. Tt was shown [39] that a certain family of H satisfies hom(G, H)? < hom(G x Ky, H) for
all graphs G (extended to a larger class of H in [35]) . Since G x K> is bipartite, it follows by
Theorem 1.11 that every such H satisfies Conjecture 1.15 (see Section 3.4). An example of such H

. . . (111 S o . .
is given by the adjacency matrix (% (1) 8)’ which is biclique-maximizing but not antiferromagnetic.
So the converse of Conjecture 1.15 fails. It remains wide open to classify all biclique-maximizing H.

Theorem 1.7 establishes Conjecture 1.15 for K, go. Though, even the following extension remains
just out of reach of our current methods: H: Q x Q — [0,1] where H(x,y) = 1 if © # y. This
is a generalization of the antiferromagnetic Potts model. The usual Potts model has additionally
H(xz,z) = p for all z € Q for some 8 € [0, 1], and for these H, the conjecture has been verified for
3-regular [16] and 4-regular [14] graphs G via the occupancy method with computer assistance.

1.5. Relation to previous work. This work builds on our earlier work [34] proving Kahn’s
conjecture on independent sets, Theorem 1.5, but requires several significantly new ideas. Our proof
of Theorem 1.11 in Section 3 actually gives a new and more streamlined proof of Theorem 1.5. The
new proof is significantly shorter, and it replaces a number of fairly technical inequality verifications
in [34] (often involving checking repeated derivatives) by more conceptual inequalities primarily
relying on Hoélder’s inequality and log-convexity considerations. In [34], as in the earlier [23], we
relied on the recurrence i(G) = i(G — v) + (G — v — N(v)) for the number independent sets, but
such a relation is unavailable for colorings. Assigning a color to a vertex restricts the colors available
to the neighborhoods, so it is natural to study the problem in the greater generality of list colorings
and state a stronger induction hypothesis. By considering the effect of fixing a color on a vertex
and carefully bounding contributions from far away vertices, we reduce the problem to more “local”
inequalities. Section 2 of the paper discusses the general reduction to local inequalities in greater
detail.

Organization. In Section 2 we give a toy calculation illustrating some proof ideas. In Section 3, we
prove Theorem 1.11, the graphical Brascamp-Lieb inequality, and hence Theorems 1.8 and 1.9. In
Section 4, we prove Theorem 1.7 concerning semiproper colorings, and hence Theorems 1.4 and 1.6.
In Section 5, we prove Theorem 1.13 showing that ferromagnetic (i.e., positive semidefinite) models
are clique-maximizing.

2. A TOY CALCULATION

In this section we sketch a toy calculation demonstrating the induction step on G = Cg and
H = Ks, i.e., 3-list-coloring a 6-cycle. This is the dessert before the dinner, as the actual proof
involves more difficult steps not shown here.

The inequality that we would like to prove is illustrated by the following diagram. This is a special
case of Theorem 1.11 for list coloring, i.e, f(z,y) = 15, in Theorem 1.11 or H = K, in the graph
homomorphism setup. See Theorem 4.1 for a statement of the list coloring inequality. This is an
example of the strong induction hypothesis for upper bounding the number of list colorings, and we
will apply induction on the number of vertices of G.

ST

[oe \% (oo >}—{< oe] \ oo\%
[0 - ee] [6 o}+{ee |[ee [— eeo][ eeof1{eee]
[e o] XX
o] ees] < (2.1)
F‘% 1 XX 1
e ren [e o}——{oooHooo>}—{<o o|[e e]1{eee]

[eoe] [e0e—fo o] [o o]
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Let us explain the meaning of the above diagram. On the left-hand side, the figure should be
interpreted as the number of valid listing colorings of the 6-cycle where each vertex of the 6-cycle is
assigned one of its listed colors, such that no adjacent vertices receive the same color. On the right
hand side, we have a product of six quantities, each being the number of list colorings of a 4-cycle
(with different color lists for each 4-cycle) raised to the power 1/4.

To prove (2.1), we begin by selecting the color of the left-most vertex of the 6-cycle, which gives
the following:

Ll

To upper bound the two terms on the right-hand side of (2.2), we apply the induction hypothesis to
the yield the following inequalities:

oo - [ee]s
n m [N J ..':—‘..O
[¢] [ese] < (2:3)

o e

First localization. Here is the inequality that we are now left to prove:

T

1
2

v =3 s : =) o, o p{ee \[=3
e N\ T . b CONR W ol e pe Ty o) \\\ \/ﬁ |

+ < b
1 1 1 1 [ o] 1 i
o - D . o grHSesl el o e
'Y /\_[\ ) /\_[\ [eee] [e0e}—fo o] /\ \\

(2.5)
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Note that all the factors associated to edges that are more than 2 edges away from the deleted
vertex in G = Cg are identical on both sides of the inequality, and thus they can be discarded (hence
they are grayed and crossed out above).

We are left with showing the following inequality. Note that we have reduced the original inequality
to a more local one involving only the edges of G = Cg that are within two steps of the the deleted
vertex (i.e., the edges of G incident to a neighbor of the left-most vertex)

et =

1
]
D=
1
]
NI
[
[ J

(o]
°

N

1
°

¥

IN

(0 ol +{ooo|[eoe|—o o]
N\ >
([000] [e0e|—0 o]

(2.6)

Second localization. Now let us apply the Cauchy—Schwarz inequality in the form of v/a1b; +

Vasby < /a1 + azv/b1 + be to the left-hand side above. The remaining inequality to show follows

by taking the product of the following two inequalities (corresponding to the top and bottom halves
of the above inequality after Cauchy—Schwarz):

, < E g
o

: o : o
+ o ~< (2.8)
(o0 | S KX S ‘!"'H' o]

I

IN

[0 eo]i]e

Note that each inequality now involves only a two-edge path in G = Cg starting from the deleted
vertex. Thus we have further localized the inequality that we wish to prove.

Let us explain how to prove (2 7) as the proof of (2.8) is analogous (in this specific example (2.8)
is actually an equality). As in (2.2), the left-hand side of (2.7) can be rewritten as:

O n s £ D s

Now we are left with proving the following inequality. Note that it has the same form as the strong
induction hypothesis (e.g., (2.1)). While it may be tempting to quote the induction hypothesis, it is
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instead more faithful to view this as a version of the local inequality which we need to prove.

(oo | . e e [ H e
[0 oI T ee] = >< >< (2.10)
(oo ] [ oFTJeo | [oo F{ oo

This inequality follows from the Cauchy-Schwarz inequality applied as follows:

Z f(aa bl)f(aa 62)9(()17 C)g(b2> C)

a,by,ba,c
:Z <Zf(a,b1 ab2> (Zg b1,¢)g(bz, ))
bl,bz a
1
2\ 2
< Z(Zfabl ab2> (Zgbl, g(ba, ))
b1,b2 a blbe c
1 1
2 2
= Y flar,b)f(a1,b2)f(az,b1)f(az,b) > g(bi,c1)g(ba, e1)g(br, e2)g(ba, c2)
a1,a2,b1,b2 b1,b2,c1,c2
Here the variables a, by, ... range over {red, green, blue} in the sums, f(a,b) is the indicator function

associated to coloring the first two edges on the left-hand side of (2.10), i.e

1 if a € {red,blue},b € {red, green}, and a # b,
fla,b) = .
0 otherwise,

and g(b, ¢) is analogously defined for latter two edges on the left-hand side of (2.10). This completes
the proof of (2.7).

Further complications. In the general setting, the first and second localization steps are analogous
to the toy calculation above. In particular, the induction proceeds by first selecting the color of
a maximum degree vertex w (in the above calculation, the left-most vertex), and then updating
the lists of colors in the neighborhood of w for each color selection. We then apply the inductive
hypothesis followed by the first localization as in (2.5), reducing the problem to just considering edges
in a radius 2 neighborhood of w. The second localization is in general an application of Hélder’s
inequality, which reduces the problem to inequalities on two-edge paths and triangles. The analysis
is somewhat easier in the triangle-free case, which is done in Section 3, as we only need to prove one
type of local inequality. When G contains triangles, which is done in Section 4 for colorings, the
presence of triangles require the analysis of additional local inequalities that are more difficult to
handle. The additional difficulty is expected since the local inequalities involving triangles cannot be
true for all targets/models H, so the proofs need to use more specific knowledge of the model.
Even in the triangle-free case, the local inequalities for two-edge paths are in general more involved
than shown above in (2.7) and (2.8). This is because the equality (2.9) turns out to be coincidental
to the graph G = Cj; in general, one side of these inequalities is a summation of terms with fractional
exponents. We handle this difficulty by defining an interpolation between the terms of the local
inequality, and proving log-convexity with respect to the underlying parameter of this interpolation.
In Section 4, we handle local inequalities for triangles in the case where H is the complete
graph, possibly with loops on some of its vertices. In this particular case, the result follows
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from additional log-convexity results along with an intricate analysis of correlation inequalities on
symmetric polynomials.

For the clique-maximization result Theorem 1.13, proved in Section 5, the spirit of the solution
is similar, although the execution differs. In this case, since the upper bound is a product over
vertices, the analogous localization steps result in statements for each vertex in the neighborhood of
w. Here again we have fractional exponents in general, which are handled with a series of several
interpolations, each of which is shown to be log-convex.

3. INEQUALITY ON TRIANGLE-FREE GRAPHS

The goal of this section is to prove Theorem 1.11.

3.1. Some preliminary inequalities. In the lemmas, we omit stating the obvious integrability
hypotheses.

Lemma 3.1. For nonnegative functions g(s,u) and h(s,v), and real ¢ > 1, one has

(/ </g(5’u)h(8,v) dud5>qdv>2/q
< (/g(s,u)g(S,u’) dudu’ds> </ </ h(s,v)h(s,u’)ds)qdvdvl>1/q.

Proof. Let 1/q+1/¢' = 1. We have

2
LHS = sup (/g(s,u)h(s,v)f(v) dudvds) [LP dual]

1], g <1

< s ( [ (fotown duf ds) ( /( /h<s,v>f<v>dv)2 ds) (Conchy-Schwaz]

- < / g(s,u)g(s,u')dudu'ds) sup / h(s, 0)h(s, ') f(0) F(t) dudy ds,

s
which is at most the RHS, by consider the L? dual once again, as || f & f||, o+ = Hf“%q/ <1l O
Remark. Define the mixed LP? matrix norm of A = (aj;) by

a/p\ /4

1Al = [ D2 (D lawl
j

i
Lemma 3.1 is equivalent to the following inequality. If ¢ > 1, A € R;”OX" and B € Rggk, (in fact, we
only need ATA, BTB, ATB to have nonnegative entries), then
2
JATBIZ, < |ATA|l, |B'BI,,,. (3.1)
Here is the above proof written out in the language of matrices and vectors:

IATB|Z, = [[ATBL,|[2 = sup (u,ATB1,,)* = sup (Au, Bl,)*
flull <1 flull <t
< sup (Au, Au)(B1,,,Bl,,)= sup (uuT, ATA)(1,,1T ,BTB) < ||ATAHLH |IB"Bll, , -
lJullr <1 llull <1 ’ ’
We do not know if the inequality can be extended to HATBH%p L SIATA|[L, BB,  for all reals
1 < p < ¢ (this is true for positive integer p by a tensor-power argument).
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Lemma 3.2. For nonnegative functions f(s,t), g(s,t,u), h(s,t,v), and real ¢ > 1,

</( f(s’t)g(s’t’u)h(37taU)duds>thdv>2
< (/ </ f(s,0)g(s,t,u)g(s, t,u) dudu’ds)q dt> (/ </ F(5,)h(s, b, 0) (s, t,0") ds)thdvdy’>

Proof. By replacing g(s,t,u) by f(s,t)"/2g(s,t,u) and h(s,t,v) by f(s,t)"/?h(s,t,v), we may assume
that f = 1. By the Cauchy—Schwarz inequality with respect to dt, the right-hand side is at least

</ </g(s,t,u)g(s,t,u/) dudu’ds)q/2 (/ </h(s,t,v)h(s,t,v’) ds>qdvdv’> v dt)

It suffices to show that, for every fixed ¢, one has

/ ( / 9(s,t, u)h(s, t,v) dud8>qdv
< (/g(s,t,u)g(S,t,u’) dudu’ds)q/2 (/ (/ h(s,t, v)h(s,1,0) d8>qdvdv’> 1/27

which is Lemma 3.1 applied to the functions g(s,u) = g(s,t,u) and h(s,v) = h(s,t,v). O

2

The following lemma is a “local” inequality that the proof of Theorem 1.11 will reduce to.

Lemma 3.3 (Local inequality). Let fiz: 1 X Q2 — R>g and foz: Q2 x Q3 — R>¢ be measurable
functions, and 1 < f < A, 2 < « be integers. For x € Qy, define f33: Qo x Q3 — R>g by

fé%(ya z) 1= f12($7y)1/(7_1)f23(y,2). Then
z nA
/ IR do < il Wl

Proof. Define, for nonnegative integers a, b, c,

A/B

Ma,b,c:/ /b H Fi2(z@, y9)) H Fas(y @, 20y gy gzle] dzld,
o \ Jagxog

3 i€la],j€[b] JE[b)kE]C]

where dzl = dzW ... dz(@ | dylt) = gy ... dy® and dzl9 = dzV ... d2(9). By expanding fa3, we
have

A(y—1
JUBIRG Y do = 211
Also
B8/A
|20}, = My and | fasl 2 = ML,

Thus the claimed inequality can be written as
Uy ap1-1/v
Ml:ﬁﬁ*l < MA/BOMO,B@/ ’

which would follow from (M; g ,—i)o<i<, being log-convex. Thus it suffices to prove that

2
Mo per1 < Matop,eMap,et2,
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FIGURE 1. Labels of vertices and edges in the proof of Theorem 1.11.

for all nonnegative integers a, b, c. This inequality follows from Lemma 3.2, after setting ¢ = A/ > 1,
with

Z(chl)) u = (Z(c+2))

u = s ,
o= (@), o = (ale),
f(s,t) = H Fra(z®, yD) H Fog(y@, 20y,
1€[al,j€[b] JE[b],k€[c]
g(s,t,u) = H Fra(zletD) 4@, s t,u') = H Fro(2(@?) ),
Jelb] JEb]
h(s,t,v) = H fas(yW), 2Dy, h(s,t,v") = H fas(yW), 2(eF2)). O
Jelb] JE[b]

3.2. Proof of Theorem 1.11. We apply induction on the number of vertices in G = (V, E). Let
A be the maximum degree of GG, and let w be a vertex of degree A in G. The idea of the following
calculation is to consider what happens when we condition on a certain color (i.e., element of ()
assigned to w.

Notation. For k € {0,1,2,...} U {oco}, let V} be the set of vertices at distance k from w. For
0 <i<j<i+1,let B be the edges with one endpoint in V; and the other in V;. Let
Vor = UiZk Vi, BE>p = Ukzgigj E;j, and E~j = Ey k41 UEZk-‘rl' Note that V' = V59 and E = E.
Let I; be the vertex in V; whose neighborhood is exactly {w}.
Although we treat edges as unordered pairs, when we write vu € E;;, we always mean v € V; and
u € V;. On the other hand, when we range over uv € Ej;, we do not count uv and vu separately.

For any S C V, write Qg := [],cq Qv and dzg := [], g dzy.
For vu € Ey9 with v € V] and u € Vi, and z,, € (), define flv: Q, x Q, — R by

ffﬁ” (l'v» Jfu) = fwv(l‘wa va)l/(dv_l)fvu(l‘va l‘u)
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By distributing the Ey; factors to E1o, we have

/Q H fvu xvaxu) dxy

V oueE
/ </ Jwo(Tw, Tv) dl‘v) H (fwv (Tw, $v)1/(dvil)fvu(xv7 $u)) H fou(w, T0) di\Il
QV\Il vely vu€FE12 vu€E >0
< [T Wews e TT Wity T Mo, dou
Qu vely vu€F12 quEZQ

where in the last step we applied the induction hypothesis to G — v (the graph G with the vertex v
removed along with all its incident edges).
It remains to prove the bound

/ T 1) TT 0200k wn TT Woullies, o dw < TT ol o,
Quw vely vu€F12 vu€E>o vuEFE

First localization. Observing that the factor || fyull, , appears on both sides whenever vu € E>,
we see that it suffices to prove

/ Tl ol T 12k dro < T ol

w el vu€F12 vu€FEg1UE 9

By distributing the Ey; factors on the RHS to Ej2, we can rewrite the above inequality as

/ IT @) TT WUy gy o < TT Wl TT (Wl Pl ol a, ) -

Qu vel vu€ 12 vely vuEF12
(3.2)

From now on until the rest of the proof, by convention, we use the letter v to denote a vertex in V
and u for a vertex in V5.
Second localization. Applying Holder’s inequality with exponents given by the summands of

Yit Y s@op-t

vEIl vu€FE12

we upper bound the left-hand side of (3.2) by

[ T etewlh TT Wy o

vea Sl velp uve€F12

< H </Qw wav(mw,-)HlA dmw>A H </Qw I H[A(id d_l,l w)A(dvl).

vell vu€F12

Comparing with the right-hand side of (3.2), we have

A A
| Vs I do = 1nl, -

and, by Lemma 3.3, the local inequality, for every vu € Es,

dv—l dv—l
/H 19D oy < [ funll ol 20,

which proves (3.2). This concludes the proof of Theorem 1.11. O
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3.3. Necessity of the triangle-free hypothesis. Now we prove Proposition 1.10, showing that
triangle-free hypotheses on G in Theorem 1.9 (and hence also Theorem 1.11) cannot be removed.

Proof of Proposition 1.10. It suffices to show that if G has a triangle, then there exists a weighted
graph H such that

hom(G, H) > [[ hom(Kq,aq,, H)" (@), (3.3)

weE(Q)

It is enough to construct a weighted H since one can obtain a simple graph H from the weighted
graph by a standard limiting argument, e.g., by taking a sequence of graphs with increasing numbers
of vertices sampled using the weights (e.g., [4] [31, Ch. 10]). Let H. be a weighted graph on two
vertices each with vertex weight 1/2, and edge-weight “adjacency” matrix

14 2¢ 1
1 142¢)”’
i.e., a loop with weight 1 4+ 2¢ on each vertex, and an edge of unit weight between the two vertices.

For every graph G, one has, for small ¢,

hom(G, He) = Eqego,13vi (1 + 2¢){uveB(G)izu=z.}]
E(G E(G
=1HIE@)et <‘ (2 )‘>€2 + <(| (3 )|) + !T(G)\> e+ O(e")

= 1+ /PO L 1T(@)| & + O(eY),

where T'(G) is the set of triangles in G. Indeed, the coefficient of ¥ comes from examining each
k-edge subsets of F(G) and determining the probability that each connected component of this
k-edge subset receives the same color in . Thus,

TG
hom (G, H)YIE@ =1 4 ¢+ |’EEG;‘| e+ O(eh).

On the other hand, since K, is always triangle-free,
[] hom(Ka,.a,, H)Y @) = (1 + e+ O(h) @,
weE(G)
Comparing the two, we see that (3.3) holds for sufficiently small € > 0, as |T(G)| > 0. O
3.4. Antiferromagnetic 2-spin models are biclique-maximizing. Here we prove the part of

the claim in Corollary 1.14 that every 2-spin antiferromagnetic model is biclique-maximizing. Here
is the key lemma, which also appears in [12, Theorem 1.13|.

Lemma 3.4. Let G be a graph and H be a 2-spin antiferromagnetic model. Then
hom(G, H)? < hom(G x Ko, H). (3.4)

Here G x K3 is the graph with vertex set V(G) x {0,1} and and edge between (v,i) and (u, 1 — 1)
for every uv € E(G) and i € {0,1}. Since G x K is bipartite, Lemma 3.4 followed by Theorem 1.11
(or Theorem 1.9 for weighted H) gives

hom(G, H) < hom(G x Ko, H)'/? <[] hom(Kq,q,, H)"/ @),
weE(G)
as the degree-degree distribution does not change when G is lifted to G x Kj5. Thus the claim that
H is biclique-maximizing reduces to Lemma 3.4, which was first established [38] for H = ¢,
corresponding to independent sets, and later generalized [39] to a large family of H (it remains open
whether (3.4) holds for H = K;). The proof is by a combinatorial injection called the bipartite
swapping trick, which can be modified to establish Lemma 3.4, whose proof we include here for
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completeness. It can also be extended further as in [39] to a larger class of weighted H, though we
omit the details. See [12, Theorem 1.13] for another proof based on the same ideas.

Proof of Lemma 3.4. Let G = (V,E). Let Q = {0,1} be a two-point measure space and let
H: Q x Q — Rsq be antiferromagnetic, or equivalently, H(0,0)H(1,1) < H(0,1)?. Let

S_={(x,y,2) : 2w < H(@y, ) H(yu, y0) Yuv € E} C QY x QY x Rgo

and
Sy ={(x,y,2) : 2w < H(@w, yo)H (yu, z,) Yuv € E} C QY x Q x ]Rgo,

where & = (7y)yev (@) € QY y = (W)eey € Q¥ and z = (20)eck € Rgo. Note that hom(G, H)?
equals to the measure of S—, and hom(G x Ko, H) equals to the measure of Sx. Thus the lemma
reduces to constructing a measure-preserving injection ¢: S— — S.

For any (z,y,z) € OV x QY x RE |, say that an edge uv € E is unsafe with respect to (z,y, z) if
either 2y, > H(%y, o) H (Yu, Yo) OF 2y > H (2w, yo)H (Yu, ©,). Fixing (x,y,2z) € S, if uv is unsafe,
then H(xy, yo)H(Tu, Yo) < 2uv < H(Ty, Ty)H (Yu, yv) (the former due to being unsafe, and the latter
due to the definition of S—). Recall Q = {0,1}. Since H is 2-spin antiferromagnetic, the only way
to satisfy H(xy, yo)H (u, y») < H(Ty, Ty)H (yu, Yv) is that one of the endpoints of uv, say u, has
(Tu,yu) = (0,1), and the other endpoint v with (x,,%,) = (1,0). This shows that the unsafe edges
with respect to (x,y, z) form a bipartite subgraph of G.

Define ¢: S— — Sy as follows. Fix some arbitrary ordering of V. For any (x,y,2) € S—, let T
be the lexicographically-first subset of V' so that every unsafe edge with respect to (x,y, z) has
exactly one endpoint in T'. Such T exists since the unsafe edges form a bipartite subgraph. Define

¢(x7y7z) = (w/,y',z) by setting

() = { W) HveT,
(Ty,yp) fv&T.

In other words, the map ¢ swaps (x,,y,) for each v € T.

Let us check that the image of ¢ lies in Sx, we need to check that z,, < H(z,y,)H(y,,x))
for all wv € E. Only unsafe edges have a chance of violating the inequality. If wv is an unsafe
edge, then exactly one of (zy,y,) and (z,,y,) is swapped by ¢, and so H(x),y,)H(y,,z,) =
H(xy,xy)H (Yu, Yv) > Zup. Thus the image of ¢ lies in Si.

To see that ¢ is injective, note that given ¢(x,y, z), we can identify the unsafe edges, which
are unaffected by swapping, and then recover the lexicographically-first subset T' of vertices that
contains exactly one vertex from every unsafe edge, and then swap the pair (2}, y.) for every v € T
to recover (x,y). It is also easy to see that ¢ is a measure-preserving map, as we can partition S—
into regions indexed by the set T of swapped vertices. Thus ¢: S— — Sy is a measure-preserving
injection. ]

4. COLORINGS

4.1. Semiproper colorings. Let us state a generalization of Theorem 1.7 to semiproper list
colorings, where every vertex in G has a possibly different set of allowable colors. Recall that “colors”
are synonymous with vertices of H = K 50.

To state the theorem, we will need to set up some notation. Throughout this entire section, we fix
a finite set of colors €, as well as a subset 2, C Q2 of looped colors. Recall that semiproper coloring
of GG is assignment of vertices of G to colors so that no two adjacent vertices of G share a same
non-looped color. The sets €2, C €2, and hence the meaning of semiproper colorings, are both fixed
throughout, and we omit mentioning them in the lemmas.
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For A, B C  and nonnegative integers a, b, define

A B
a b
to be the number of semiproper colorings of K, ;, where the a vertices in the first vertex part of
K, have their colors chosen from A, and the b vertices in the second vertex part of K, have their
A B . .
colors chosen from B. Observe that <a )= | H|ax BH%’G , Where H|4xp is the restriction of the
associated partially looped complete graph H (viewed as function Q x Q@ — {0,1}) to A x B.

Here is the main theorem of this section. It implies Theorem 1.7 after taking Q, = Q for all v € V.

Theorem 4.1. Let G = (V, E) be a graph without isolated vertices. Assign a subset of colors Q, C
to each v € V. Then the total number of semiproper colorings of G where each v € V is assigned

some color from €, is at most
Q, QO 1/(dudy)
LG w)

weE
Here are some notation and convention that will be maintained throughout this section:

e Ao B := A\ (B\ ), ie., remove from A all non-looped colors in B. This is a handy
operation when we consider what happens to the list of colors at the vertex after we assign
colors to its neighbors.

e In A\z, AUz, ASz, for x € Q, we treat = as a singleton set {z}.

e z and y refer to a vector of colors (colors are elements of ), and x; refers to the i-th
coordinate of x.

e After the initiation of @, we often treat x as a subset of Q. So || is the number of distinct
colors appearing in x, y Ux (where y € Q) is the union of the elements in @ along with v,
and A © x is the set of colors left in A after we remove all non-looped colors appearing in «.

4.2. Some correlation inequalities for symmetric polynomials. The main result of this section
is the following inequality of symmetric polynomials. We will need it later for our proof of Theorem 4.1.

Proposition 4.2. Let ai,...,a, > 0 be reals, and k a nonnegative integer. Let |x| denote the
number of distinct entries in x. Set

k
my = [ Hami.

aelnl® ;5
|z|=¢

Then my 2> -+ 2 Muyinfn k}-
For example, with n = 3 and k = 4, we have
m1 = g(ai + a3 +a3),

mo = %(4@?0@ +4adas +4asar + 4adas + dadag + dadas + 6atal 4 6a3al + 6asal),
1
3(

2 2 2
ms ajasas + ajasas + ajanas).

For S C [n] and |S| < k, define

k
fk,S = Z Hafci'

wesk i=1
|z[=|S]

Here || = |S]| in the index of the summation simply says that all elements of S appear in . In
other words, fi g is the sum of all monomials whose set of indices is exactly S. For example,

f5.4123) = 2003 apai3 + 200 A ers + 200410420&% + 3020303 + 300(%042(1% + 30a1a§a§.
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Observe that f;, g satisfies the recursion

frs = aal(fret,s + fro1,9\)- (4.1)

z€eS
We introduce the following averaging notation. For any polynomial P in the variables aq,...,,
write P := P/c where c is the normalizing constant chosen so that P = 1 whenever a; = ag = --- =1,
i.e., ¢ is the sum of all coefficients (if ¢ = 0, we set P = 0). For example, a1 + az = (a1 + az)/2.
For this notation to make sense, we view the a, ..., a, as formal unassigned variables. When we

say that an inequality is true, we mean that it is true for all nonnegative assignments of the a;’s.
This averaging notation has the convenience that we do not have to keep track of the unimportant
normalization factor.

The proof of Proposition 4.2 proceeds in several steps.

Lemma 4.3. Let S C [n] and 1 < [S| < k. Then

> awfi-1s < frs-

zeSs

Proof. We apply induction on |S| + k, noting it is an equality when [S| =1 or k = |S|+ 1. So
assume that |[S| > 1 and k > |S| + 1.

Note that (a; : x € S) and (azfy—1,9\» : © € S) are oppositely sorted (meaning, whenever
evaluated at nonnegative assignment of the a’s). Indeed, note that a, fy_1 g\, = @zayQ Wwhere Q,
is some polynomial with nonnegative coefficients in all the variables except a,, so that if a, < ay,
then swapping the two variables a,; and o, cannot increase (),. In particular, this sortedness implies,
via the arrangement inequality,

> wtyfiiise <D Y Cyfioisi (4.2)

x,yes zeSyeS\z

Applying the recursion (4.1), we have

fects = oafias+ > ufiose

zeS zeS
On the other hand, by the induction hypothesis with (k — 1,.5), we have

Z g fr—2,5 < fr-1,5-

T€S
Using that A = B+ C and B < A together imply C > A, we have
fio1.5 € tafras\a- (4.3)
z€S
Therefore, we have
Y ayfi1s < Y Aoy fisa s by (4.3)]
yeSs z,yeSs
< Z Z azayfkfl,S\:Jc [by (4‘2)]
z€S yeS\z
< Z g fre,5\a- [by induction with (k — 1,5\ z)]
z€eS

The lemma then follows by using the recursion (4.1) and that A < B implies A < A+ B. O
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Lemma 4.4. Let S C [n] and 2 < |S| < k. Then

frs < Z Jr,5\e

zeS

19

Proof. We apply induction on |S|. When |S| = 2, the lemma follows by noting that o/ioz +o/f fab <
of + ak for all 0 < i < k. Now assume that |S| > 2. By the recursion (4.1), we have

Z fk,S\y = Z Z aa:(fkfl,S\y + fkfl,S\{m,y})'

yes zeS yeS\z

Note that (a, : # € S) and (fy_1 5\, : € S) are oppositely sorted. Indeed, comparing fi_ s\s
with fr_q g\y, we see that fi_; g\, does not involve a, and swapping all its o, to a, would yield

fk—l,S\y . Thus

Zoéxfkq,S\x < Z Z r fr—1,9\y-

zes zeSyeS\z
Also, applying the induction hypotheses on S\ = for each = € S, we have

Zamfk;—LS\x < Z Z Az fr1,5\(z.y}-

z€S zeS yeS\z

Combining the above inequalities, we obtain

Y fi1sa <Y fusa

zesS zesS

By Lemma 4.3 combined with the recursion (4.1), along with A = B + C and B <

C > Z, gives us

m < Z lefkfl,S\:Jc'

€S

The lemma then follows from the above two inequalities.
Proof of Proposition 4.2. Observe that

mg= E frs.
SC[n]
|S|=¢

So Proposition 4.2 then follows from Lemma 4.4, as

my_1= [E = E -
1= B fer sqn]sz’s\
\T|=t—1 |S|=¢

Proposition 4.2 has the following corollary that we will need next.

A together imply

Corollary 4.5. Let D be a finite set. Let t > 1 be real. Let ay > 0 for each x € D. Let |x| denote
the number of distinct elements in . Let T7: N>o — R>o be some non-increasing function. Then

e el 8, || < &, |rte I o |

k
xeD i1
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4.3. Inequalities for semiproper colorings of complete bipartite graphs. Now we prove
some “local” inequalities that will be needed in the next section.

Lemma 4.6. Let A, B C Q. For any nonnegative integers kandr < s <t, we have

A B\ _/A B A B\
k s/ —\k r k t '
Proof. The lemma follows by Holder’s inequality, after expanding, for each i € {r, s, t},
A B i
<k Z.>=Z|B@og|. O
ze Ak

Lemma 4.7. Let D C C CQ and B C Q). For integers b,c,k > 1 and real t > 1, we have

t(c—1)

> (Bhe Yy et frupa ey

1-Ey
Proof. The inequality is equivalent to

t

k
‘x|:|t c—1|b-1
E - — E E Bo (z; U
mECk[ IC|] zep* Z-I;[lye(C\xi)b—l [| (i Uy) }
t(c—1)

t k
< E [< —"CD H E [|B@($1Uy)|c]c(bl>]7 (4.4)

[un

since

B xT; C T c— — c—
<Ci1 bi1>: Z |B S (z; Uy)| 1=(|C’|—1)b1 E bl[|B@(acin)\ 1},
ye(C\z;)b—1 ye(C\z;)o~

. . C
and similarly with < 1 b— 1>, and also

L)
xcCk ‘C’ ’C| ’

t

b—1

by linearity of expectations.

Applying Corollary 4.5 with a; = Eyecv-1 []B e (z; U y)|c_1} , we obtain

(-e1)

E

xeDF weDk

H E [IBS@uy)] ]

yEC’b 1
<1—,C|) H E [Be@uyl ] (4.5)

< E

" xeDk Jyech—1

The inequality (4.4) then follows after repeatedly applying the inequality E[X?] > E[X]P for real
p > 1, along with, for each 1 < <k,

E - [Be@uy)T < E [IBe@uyr.
y'e(Ch\zy)0 ! yech=!

which holds since z; Uy’ D x; Uy for each (y,y) coupled as follows: sample y uniformly from C®~!
and obtain ¢’ by replacing every coordinate of y equal to z; by an independent uniformly random
element of C'\ ;. O
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Lemma 4.8. Let A, B,C C Q. For integers 1 < b,c < a, we have

= ay <=l
s (Boz Cos\F= /A C e §(Box O\ Fe-2
c—1 b—1 - c a c b—1 .
ze4 €A

C

Proof. Raising both sides to exponent ¢ and using <f a

> =Y peac |C ©x|”, the inequality can

be rewritten as

c—1
c Bowz; Coux H;ﬁ . b+c2 Bo 2\ bte—2
ZH<C—1 b—1> S(Zw@w') (ZH< c b—1>> '
xeAci=1 xrEAC xreAci=1
Applying Holder’s inequality to the right-hand side, we see that it suffices to prove
c B@-’Ez C@sz b+c2 a(b—1) B@I‘Z C %
I (GO RRES WL I (N A
xreACi=1 xrEeA® =1
Let D := (ANC)\ Q. It suffices to show that that the above inequality holds with a partial

summation where we hold fixed the coordinates of « lying outside D and let the other coordinates
range over D. In other words, letting K C [¢], fixing x; € A\ D for each ¢ ¢ K, and writing
xx = (Ti)ick, it suffices to show that

a(c—1

)
c _a(e=1)
Box, Coux P2 a(b—1) Box; C (bte=2)c
2 H<C—1 b—1> < 2 |C@m|b+”H< c b—1> - (46)

mKeAKi:1 T cAK i=1

For each i ¢ K, either x; € Qo or z; ¢ C, so C ©x; = C. Hence |C x| = |C ©xk|. Also, by
Lemma 4.6, for each i ¢ K,

c—1 b—-1/ \Nec—1 b-1

c—1 1 c—1
< Box; c ¢ /BOu; C E_ Boux; C T|C|b_71
= c b—1 0 b—1/ = c b—1 o

Applying these reductions to (4.6), it remains to show that

a a(c—1) a(b—1)
B\wz C\x, bte—2 B\x, C (b+e=2)e ‘C\wK’m
> H<c—1 b—1> < 2 H< c b—1> G

rx€AK IEK zrcAK \ieK |C| " e®+e=2)
which follows from Lemma 4.7 with ¢ = b—(‘:)c ) > bg—c % > 1. ]

The following lemma is the “local” inequality that the proof of Theorem 4.1 will reduce to.

Lemma 4.9 (Local inequality for semiproper colorings). Let A, B,C C Q. Let 1 < b,c,< a be
integers. Then

B Ox C Ox b+c 2 A B b(bfk_clf2) A C C(b:_6172) B C’ (b+c)<2)bc)
> < .
c—1 b-1 b a c a c b

T€EA
Proof. By Lemma 3.3 with A =a, 8 =c¢, and v =b — 1, we have

a 1 a(b—1)
Z Box C \¢ < A B\® /B (C\ ¢v
c b—1 —\b «a c b
T€A

The lemma follows by bounding the right-hand side of the inequality in Lemma 4.8 using the above
inequality. O
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4.4. Proof of Theorem 4.1. Now we are ready to prove Theorem 4.1. We proceed similarly to
Section 3.2, with an important new twist, namely that the neighborhood of a vertex is no longer an
independent set, which explains the needs for the more involved inequalities for semiproper colorings
seen earlier.

We use the same notation V; and E;; as in Section 3.2. Note that, unlike earlier, F1; may no
longer be empty. Define

f{f (xvawu) = fwv($w7xv)l/(dv_l)fvu(xvyxu)a vu € Ea U Eyo,

and
zﬁiﬂxw (.TU, xu) = fwv(xwyxv)l/(dvil)fwv<xwa xu)l/(duil)fUU(xvvxu)v vu € Eny.
We have
/ H fvu xmxu) da:V
Qv vu€E
/ </ fwv L, Ly dxv) H rﬁ,,zw xvaxu H rw l‘vyxu H fvu(fvvxu) de\Il
QV\Il vely vueF11 vu€F12 vu€E>o
/ H | fooo(@w, )4 H I xu“waKdu—l,dufl H \fo ”Kd dyt H Hf”“HKdu,dv dxy,
Sy vely vu€FE11 vu€FE12 UUEEZQ

where in the last step we applied the induction hypothesis to G — v. It remains to prove the bound

/ | 2RI A P | (T2 P | T

Qu vely vuEF11 vu€F12 UUGEZ2

< H ”f’UUHKdu,dv'

vuelR

First localization. Observing that the factor || fyull, , appears on both sides whenever vu € E>o,
we see that it suffices to prove

[0 1 DT | QT PO | O P

Qw vely vueF11 vu€FE12
< H ||fUU”Kdu,du'

vu€FEg1UE11UE 12

By distributing the Ey; factors on the RHS to Eq11 U Eq9, we can rewrite the above inequality as

AR IZCRS T | QTSP | (T P

Quw vely vuEF11 vu€FE12

1/(dy—1) 1/(dy—1)
<TI0 fweliera TT (Mol P el K4 PN el )

vely vu€F11

IT (1l Pl el e, ) - (A7)

vu€FE12

Second localization. Applying Holder’s inequality with exponents given by the summands of

Z Z(d—1+A(d—1> ZAd—l =h

vely vueF11
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we upper bound the left-hand side of (4.7) by

/ T W unCows )l TT 052, 0y TT 1620, o, dow

veEG Qy vely vu€F11 vu€ 12

A x A(ivjrld)(du;l) 7A<dd:fﬁ”f;f,l)
Tw,,Tw v u—
<TL([ Wtowli an)” TT ([ Mo de)
1)611 Qw ’UUGE‘ll Qw
11 (/ | fEe A g >A<d5-1>
0 Kay,dy Tw )

vu€FE12

and then compare with the right-hand side of (4.7), noting that

A
| Wl I dow = funl, o

w

and, by Lemma 3.3, for every vu € FEj,

(dv—1 (dp—1
/Q 12139 oy, < funl, oMol 5470,

and, by Lemma 4.9 for every vu € Eqq,

A(dy—1)(dy—1) A(dy—1) A(dy—1) A(dy—1)(du—1)
N P N T e VO el F O P
This completes the proof of Theorem 4.1. O

5. CLIQUE MAXIMIZERS FOR POSITIVE SEMIDEFINITE MODELS

In this section we prove Theorem 1.13 that for every positive semidefinite (i.e., ferromagnetic)
H: Q xQ — R>p, one has

hom(G, H) <[] hom(Kq, 1, H)/®HD.
veV(QG)

We introduce some notation that allows us to alter the vertex weights of H separately for each
vertex of G. It can be thought of as a weighted version of list coloring, where each vertex of G has a
different vector of weights on the set of “colors” (the vertices of H). Given graph G = (V, E) and
weighted graph H: Q x  — R>q, and vector A = (\,)yev whose coordinates \,: @ — R>( are
measurable functions, write

homy (G, H) / H H(zy,x,) H)\ Xy)dxy.

uwwel veV

For a single A\: Q@ — R, we write hom) (G, H) to mean homy (G, H) with A\, = X for all v € G.
Observe that when H = K, and every )\, is the indicator function on a subset of V(H), the above
quantity is precisely the usual list coloring.

The following theorem generalizes Theorem 1.13 by taking A\, =1 for all v € V.

Theorem 5.1. Let G = (V, E) be a graph and H: Q x Q — Rx>q a positive semidefinite weighted
graph. Let XA = (A\y)pev where Ay: Q — R>q is a measurable function. Then

homy (G, H) < H homy, (Kg,+1, H)Y/ @+,
veV
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Note that the positive semidefiniteness hypothesis is optimal, since for G = K5 the above inequality
is just the Cauchy-Schwarz inequality for the bilinear form in R® given by H.

Our proof of Theorem 5.1 proceeds by induction on the maximum degree of G. We begin with a
lemma that is essentially an application of the Cauchy—Schwarz inequality. Let G® be the graph
obtained from G by adding a new vertex adjacent to all other vertices. Let G*® be the graph obtained
from G by adding two new vertices adjacent to all vertices of G but not to each other.

Lemma 5.2. Let G = (V, E) be a graph and H: QxQ — R>q a weighted graph. Let X = (Ay)ypev(Gee);
= (iv)vev(q), and v = (Vv)vev((;.) be vectors of measurable functions Q — Rxq such that for
every v € V(G), one has \yju, = v2. Furthermore, assume that the entries of X and v associated to
the new vertices (i.e., the vertices not in V') are all identical. Then
homy (G**, H) hom,, (G, H) > hom, (G*, H)?
Proof. For xy = (x,)pcy € QV, we write
HG (zy) H H(xy,xy),
uwwel
and

= [[ (@), w@v) = []mle). and wvi@y) =[] vla).

veV veV veV
Recall that the entries of A and v associated to the new vertices are all identical, which we call
Ve: ! = R>g. We have

2
homa(G**. 1) = [ ( [T H@n s >dy> HE (@) A(@y) doy

veV

homu(G,H)—/ HE(xy)p(xy) dey, and
14

hom,,(G‘,H):/ (/ 1 2o, y) vely )dy> HE (xy)v(zy) day.

veV
The lemma then follows from the Cauchy—Schwarz inequality applied with respect to day , noting
that A(zy)p(zy) = v(zy)?. O
Set
ha(A) :=hom)(K,, H).
In particular, ho(A) = 1.
Lemma 5.3. Suppose that Theorem 5.1 holds for all G with maximum degree less than A. Let
2 <t < A be positive integers. Let \,pu,v: Q — Rso be measurable functions satisfying A\ = v>
pointwise. Then
ht+1()\)1/(t+1)ht71 (M)l/(t_l) > ht(l/)Q/t.
Proof. Define X' = (X})yev(xse,) by setting A, = A for each vertex v in the original K;—1 of Kp*;
and A, = v for the two other vertices v (each of degree ¢t — 1). By Lemma 5.2,

homy (K$*y, H) hom,,(K;_1, H) > hom, (K;_;, H)?.

Since the maximum degree of K?*; is ¢t < A, using the hypothesis of the Lemma to apply Theorem 5.1
to K?*,, we have

e»\to

homy/ (K321, H) < hey1(A) 11 = he(v)7,
so that the previous inequality implies that

t—1
Bt (N by () T (1) > he(v)2.
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The lemma follows after rearranging. O
Remark. The hypothesis ¢ < A in Lemma 5.3 is important for applying the induction hypothesis.
Lemma 5.4. Let H: Q0 — R>q be positive semidefinite. Let a be positive integer and p,v: 0 — R>g.
For each 0 <1i < a, let
F; =homy(K,, H), where A= (pt,...,p,V,...,V).
—— ——
i times a—1 times

Then Fy, ..., F, is log-convex (FsFs o > Fs2+1 for each 0 < s < a—2), and consequently, nglFa >
Proof. We have

a
/ H H(zi, xj) H,u )dx; H v(z;)dx;.
Q% 1<i<j<a i=s+1
We can write

Fy = /2 H(wg11, 2s42)V(Ts11)V(Ts42)9(Ts 11, Tst2) dTsy1dT44 2,
Q

Foiq = /2 H(zgi1, To12) (541 )V(T542)9(Xs41, Tst2) dTsi1dT 12,
Q

F5+2 = /2 H(ZE5+1, x8+2)ﬂ(l‘s+l)ﬂ($s+2)g(xs—‘rlu $s+2) dﬂfs—&-ldﬂjs—i—%
Q

for some nonnegative function g(zs,xs41) (same for all three). Since H is positive semidefinite,
the bilinear form (A1, A2) fQQ (541, Ts12) A (Ts41)A2(Ts42)g(Ts, Ts41) drsdrsyy satisfies the
Cauchy-Schwarz inequality (v, v) (u, p) > (v, )%, ie., FyFypo > F? .. O

Lemma 5.5. Let b < a < A be positive integers. Suppose that Theorem 5.1 holds for all graphs G
with mazimum degree less than A. Let H: Q — Rx>q be positive semidefinite. Let \, j1: 8 — Rx>g.
Define n: @ — R>q by

n(x) == hy(pH (z, )"/
(here uH (x,-) is the pointwise product of two functions & — R>g). For each 0 < s < a+1, set

s(s—1)

M; = hS()‘naJrliS)hb—l-l(N) bl

Then

(a) Mpiq > MbM1 provided that b < A;
(b) MMy > M2 | for allb < s < a—1 provided that b < A;
(¢) Myyy > ML

Proof. (a) Rewriting the desired inequality, we wish to prove

b(b—1)
Rt (A0 g1 ()7 > (A0 g (1) 7071 iy (A®).
Let X = A2, The desired inequality can be rewritten as
B (V)1 (1) 27 > By(Np)ha (Np?). (5.1)
Note that
hl()‘,nb) = /Q A/(‘T)hb(:uH(x’ )) dx = hom(X,u,u,...,p) (Kb-i-l’ H) (52)
Applying Lemma 5.4, we have
1 b
Bt (N) P By 1 ()55 > by (N'n). (5.3)
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Thus (5.1) reduces to (after eliminating hb+1(ﬂ)%)
Bt (N) T Iy (Vi) = By (N'n). (5.4)

Let N, := hbﬂ,s()\’ns)ﬁ. Lemma 5.3 implies that Ny is log-convex, i.e., NsNgi9 > Ngiq for all
0 < s < b—1 (the hypothesis of Lemma 5.3 is satisfied since b < A), and consequently, Né’_le > N?,
which proves (5.4).

(b) The desired inequality MsMg o > M2 "1 1s equivalent, upon expanding and simplying, to

2 —S8
(A" ) g2 (A1 g () BT > R (A %) (5.5)
In this proof, we write, for any & = (1, ...,z € Q,
¢ ¢ ¢
H(z;y) = [[H(@iy), H@)= [[ Hwiz;), vi@)=]]v), and do=]]dx.
i=1 1<i<j<t i=1 i=1

For any 0 < ¢ < s and v, by expanding hs(r) = hom, (K, H) via fixing ¢ vertices of K, we have

hs(v) = /Qe hs—¢(vH (x;-))H (x)v(x)de.

Thus, taking £ = s — b+ 1, and by the Cauchy—-Schwarz inequality applied with respect to,

hs(v1)hsi2(v2) > Vo1 (viH (s ) ) iy (o H (5 -)) (v102) () H () dax.

stbﬁ»l
Comparing with
hsi1(\V/vive) = / - ho(VriveH (s )/ (nve) () H (z)de,
Qs
applied with 11 = Ap?T1=% and vy = Ap® =% we see that to show (5.5), it suffices to prove that, for
N =wH(x;-),
2
o1 (X' ) Bt (N Y han () 55 > hy(N')?,
which follows from multiplying together the following three inequalities (our earlier proofs establish
their validity for all \'):

Byt (N0 hyy (X)o7 > hy(N) ™5, [by Lemma 5.3]
it (X)) 4 () 557 > g (NP, by (5.3)]
2(b—1)
hips1 (X)) 505D by (NigP) s > hy(N'n)t. [by (5.4)]

(c) We apply induction on a —b. When a = b, we have
Myiy = hpi(Mhpa(p)® and - My = ha(An").

We have hyy1(A)hyr1()® > hi(An®)?*! by Lemma 5.4 (noting (5.3)), and thus My, > M?, as
claimed.

Now assume b < a. By the induction hypothesis, we have M, > M{. From (a) and (b) above
(note that b < A now), we have M, 1/M, > My/My—1 > -+ > Myy1/M, > M, and thus

Myi1 > MM, > M as claimed. O
Now we are ready to prove Theorem 5.1, which, as a reminder, says that for G = (V, E),

A= (Ay: Q= R>p)yev, and semidefinite H: Q x  — R>, one has
homx (G, H) < [ hay+1(0o)/ @, (5.6)

veV
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Proof of Theorem 5.1. We apply induction first on A, an upper bound on the maximum degree of
G, and then on the number of vertices of G. The base case, for each A, is when G has no vertices,
in which case the statement is trivial. The only non-trivial case is if G contains a vertex w of degree
exactly A. As earlier, let V;, i € {0,1,...} U{oo}, denote the set of vertices at distance exactly 4
from w.

First choosing the color on w, we obtain

homy (G, H) = / Aw () homyew (G — w, H) dzy,
Q

where p® = (y)pev (G-w) is defined by p, = Xy H (24, ") for v € V1, and p, = Ay for all v € V.

Now, by applying the induction hypothesis on G — w to upper bound the integrand, we have,

homy (G, H) < / Ao(@w) [T ha Vol (@, DY ] Ryt Qo) @ day.
Q veV; vEVs,

Comparing with the right-hand side of (5.6), we see that it remains to prove that

/ A (T) H hdv()‘vH($wa'))l/dv dy < hdw+1()‘w)1/(dw+l) H hduH()\v)l/(dUH)-
L veVy veVy

Applying Holder’s inequality to the left-hand side (noting that |Vi| = d,,), we have

1/d du/d Vil
/wa(xw) TT Pt O H (s )Y diy < [ (/Q M), (o H (2, )%/ “dxw>

veV] veEV]

- H ha(Awnie) /e,
veEV]

where 1,(z) = hq, (A H (z,-))"/%. Thus it suffices to prove that, for each v € V4,
P A ™) < By 1 (M) Y Bt D pg g (A Be/ (dotD),

But this is exactly Lemma 5.5(c) with a = dy, b = dy, A = Ay, & = Ay, n = 1. Here we are applying
the induction hypothesis as d, < d,, < A, and Theorem 5.1 is assumed to hold for all graphs with
maximum degree less than A. O
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