
Kimera: an Open-Source Library for Real-Time
Metric-Semantic Localization and Mapping

Antoni Rosinol, Marcus Abate, Yun Chang, Luca Carlone

Fig. 1: Kimera is an open-source C++ library for real-time metric-semantic SLAM. It provides (a) visual-inertial state estimates at IMU
rate and a globally consistent and outlier-robust trajectory estimate, computes (b) a low-latency local mesh of the scene that can be used
for fast obstacle avoidance, and builds (c) a global semantically annotated 3D mesh, which accurately reflects (d) the ground truth model.

Abstract— We provide an open-source C++ library for real-
time metric-semantic visual-inertial Simultaneous Localization
And Mapping (SLAM). The library goes beyond existing visual
and visual-inertial SLAM libraries (e.g., ORB-SLAM, VINS-
Mono, OKVIS, ROVIO) by enabling mesh reconstruction and
semantic labeling in 3D. Kimera is designed with modularity
in mind and has four key components: a visual-inertial odom-
etry (VIO) module for fast and accurate state estimation, a
robust pose graph optimizer for global trajectory estimation, a
lightweight 3D mesher module for fast mesh reconstruction, and
a dense 3D metric-semantic reconstruction module. The mod-
ules can be run in isolation or in combination, hence Kimera
can easily fall back to a state-of-the-art VIO or a full SLAM
system. Kimera runs in real-time on a CPU and produces a
3D metric-semantic mesh from semantically labeled images,
which can be obtained by modern deep learning methods. We
hope that the flexibility, computational efficiency, robustness,
and accuracy afforded by Kimera will build a solid basis for
future metric-semantic SLAM and perception research, and
will allow researchers across multiple areas (e.g., VIO, SLAM,
3D reconstruction, segmentation) to benchmark and prototype
their own efforts without having to start from scratch.

SUPPLEMENTARY MATERIAL

https://github.com/MIT-SPARK/Kimera

A. Rosinol, M. Abate, Y. Chang, L. Carlone are with the Laboratory for In-
formation & Decision Systems (LIDS), Massachusetts Institute of Technol-
ogy, Cambridge, MA, USA, {arosinol,mabate,yunchang,lcarlone}@mit.edu

This work was partially funded by ARL DCIST CRA W911NF-17-2-
0181, MIT Lincoln Laboratory

I. INTRODUCTION

Metric-semantic understanding is the capability to simul-
taneously estimate the 3D geometry of a scene and attach a
semantic label to objects and structures (e.g., tables, walls).
Geometric information is critical for robots to navigate safely
and to manipulate objects, while semantic information pro-
vides the ideal level of abstraction for a robot to understand
and execute human instructions (e.g., “bring me a cup of
coffee”, “exit from the red door”) and to provide humans
with models of the environment that are easy to understand.

Despite the unprecedented progress in geometric recon-
struction (e.g., SLAM [1], Structure from Motion [2], and
Multi-View Stereo [3]) and deep-learning-based semantic
segmentation (e.g., [4]–[10]), research in these two fields has
traditionally proceeded in isolation. However, recently there
has been a growing interest towards research and applications
at the intersection of these areas [1], [11]–[15].

This growing interest motivated us to create and release
Kimera, a library for metric-semantic localization and map-
ping that combines the state of the art in geometric and
semantic understanding into a modern perception library.
Contrary to related efforts targeting visual-inertial odometry
(VIO) and SLAM, we combine visual-inertial SLAM, mesh
reconstruction, and semantic understanding. Our effort also
complements approaches at the boundary between metric
and semantic understanding in several aspects. First, while

https://github.com/MIT-SPARK/Kimera


Method Sensors Back-end Geometry Sema-
ntics

ORB-SLAM [22] mono g2o points 7
DSO [23] mono g2o points 7

VINS-mono [24] mono/IMU Ceres points 7

VINS-Fusion [25] mono/Stereo/IMU Ceres points 7
ROVIOLI [26] stereo/IMU EKF points 7

ElasticFusion [18] RGB-D alternation surfels 7
Voxblox [27] RGB-D [26] TSDF 7

SLAM++ [16] RGB-D alternation objects 3
SemanticFusion [17] RGB-D [18] surfels 3

Mask-fusion [28] RGB-D [29] surfels 3
SegMap [30] lidar GTSAM points/segments 3
XIVO [31] mono/IMU EKF objects 3

Voxblox++ [14] RGB-D [26] TSDF 3

Kimera mono/stereo/IMU GTSAM mesh/TSDF 3

TABLE I: Related open-source libraries for visual and visual-
inertial SLAM (top) and metric-semantic reconstruction (bottom).

existing efforts focus on RGB-D sensing, Kimera focuses on
(RGB) visual-inertial sensing, which works well in a broader
variety of (indoor and outdoor) environments. Second, while
related works [16]–[18] require a GPU for 3D mapping,
our focus in to provide a fast, lightweight, and scalable
CPU-based solution. Finally, we focus on robustness: we
include state-of-the-art outlier rejection methods to ensure
that Kimera executes robustly and with minimal parameter
tuning across a variety of scenarios, from real benchmarking
datasets [19] to photo-realistic simulations [20], [21].

Related Work. We refer the reader to Table I for a
visual comparison against existing VIO and visual-SLAM
systems, and to [1] for a broader review on SLAM. While
early work on metric-semantic understanding [11], [32] were
designed for offline processing, recent years have seen a
surge of interest towards real-time metric-semantic mapping,
triggered by pioneering works such as SLAM++ [16]. Most
of these works (i) rely on RGB-D cameras, (ii) use GPU
processing, (iii) alternate tracking and mapping (“alterna-
tion” in Table I), and (iv) use voxel-based (e.g., Trun-
cated Signed Distance Function, TSDF), surfel, or ob-
ject representations. Examples include SemanticFusion [17],
the approach of Zheng et al. [15], Tateno et al. [33],
and Li et al. [34], Fusion++ [35], Mask-fusion [28], Co-
fusion [36], and MID-Fusion [37]. Recent work investigates
CPU-based approaches, e.g., Wald et al. [38], PanopticFu-
sion [39], and Voxblox++ [14]; these also rely on RGB-
D sensing. A sparser set of contributions address other
sensing modalities, including monocular cameras (e.g., CNN-
SLAM [40], VSO [41], VITAMIN-E [42], XIVO [31]) and
lidar (e.g., SemanticKitti [43], SegMap [30]). XIVO [31] and
Voxblox++ [14] are the closest to our proposal. XIVO [31]
is an EKF-based visual-inertial approach and produces an
object-based map. Voxblox++ [14] relies on RGB-D sensing
and builds on maplab [26] to obtain visual-inertial pose
estimates. Contrary to these works, Kimera (i) provides a
highly-accurate real-time optimization-based VIO, (ii) uses
a robust and versatile pose graph optimizer, and (iii) provides
a lightweight mesh reconstruction.

Contribution. We release Kimera, an open-source C++
library that uses visual-inertial sensing to estimate the state
of the robot and build a lightweight metric-semantic mesh
model of the environment. The name Kimera stems from

the hybrid nature of our library, that unifies state-of-the-
art efforts across research areas, including VIO, pose graph
optimization (PGO), mesh reconstruction, and 3D semantic
segmentation. Kimera includes four key modules:
• Kimera-VIO: a VIO module for fast and accurate

IMU-rate state estimation. At its core, Kimera-VIO fea-
tures a GTSAM-based VIO approach [44], using IMU-
preintegration and structureless vision factors [45], and
achieves top performance on the EuRoC dataset [19];

• Kimera-RPGO: a robust pose graph optimization (RPGO)
method that capitalizes on modern techniques for outlier
rejection [46]. Kimera-RPGO adds a robustness layer
that avoid SLAM failures due to perceptual aliasing, and
relieves the user from time-consuming parameter tuning;

• Kimera-Mesher: a module that computes a fast per-frame
and multi-frame regularized 3D mesh to support obstacle
avoidance. The mesher builds on previous algorithms by
the authors and other groups [42], [47]–[49];

• Kimera-Semantics: a module that builds a slower-but-
more-accurate global 3D mesh using a volumetric ap-
proach [27], and semantically annotates the 3D mesh using
2D pixel-wise semantic segmentation.
Kimera can work both with offline datasets or online using

the Robot Operating System (ROS) [50]. It runs in real-time
on a CPU and provides useful debugging and visualization
tools. Moreover, it is modular and allows replacing each
module or executing them in isolation. For instance, it
can fall back to a VIO solution or can simply estimate a
geometric mesh if the semantic labels are not available.

II. KIMERA

Fig. 2 shows Kimera’s architecture. Kimera takes stereo
frames and high-rate inertial measurements as input and
returns (i) a highly accurate state estimate at IMU rate, (ii)
a globally-consistent trajectory estimate, and (iii) multiple
meshes of the environment, including a fast local mesh and
a global semantically annotated mesh. Kimera is heavily
parallelized and uses four threads to accommodate inputs
and outputs at different rates (e.g., IMU, frames, keyframes).
Here we describe the architecture by threads, while the
description of each module is given in the following sections.

The first thread includes the Kimera-VIO front-end (Sec-
tion II-A) that takes stereo images and IMU data and
outputs feature tracks and preintegrated IMU measurements.
The front-end also publishes IMU-rate state estimates. The
second thread includes (i) the Kimera-VIO back-end, that
outputs optimized state estimates, and (ii) Kimera-Mesher
(Section II-C), that computes low-latency (< 20ms) per-
frame and multi-frame 3D meshes. These two threads allow
creating the per-frame mesh in Fig. 2(b) (which can also
come with semantic labels as in Fig. 2(c)), as well as the
multi-frame mesh in Fig. 2(d). The last two threads operate
at slower rate and are designed to support low-frequency
functionalities, such as planning. The third thread includes
Kimera-RPGO (Section II-B), a robust PGO implementation
that detects loop closures, rejects outliers, and estimates a
globally consistent trajectory (Fig. 2(a)). The last thread



Fig. 2: Kimera’s architecture. Kimera uses images and IMU data as input (shown on the left) and outputs (a) pose estimates and (b-e)
multiple metric-semantic reconstructions. Kimera has 4 key modules: Kimera-VIO, Kimera-RPGO, Kimera-Mesher, Kimera-Semantics.

includes Kimera-Semantics (Section II-D), that uses dense
stereo and 2D semantic labels to obtain a refined metric-
semantic mesh, using the pose estimates by Kimera-VIO.

A. Kimera-VIO: Visual-Inertial Odometry Module

Kimera-VIO implements the keyframe-based maximum-a-
posteriori visual-inertial estimator presented in [45]. In our
implementation, the estimator can perform both full smooth-
ing or fixed-lag smoothing, depending on the specified time
horizon; we typically use the latter since it ensures bounded
estimation time. We also extend [45] to work with both
monocular and stereo frames. Kimera-VIO includes a (visual
and inertial) front-end which is in charge of processing the
raw sensor data, and a back-end, that fuses the processed
measurements to obtain an estimate of the state of the sensors
(i.e., pose, velocity, and sensor biases).

1) VIO Front-end: Our IMU front-end performs on-
manifold preintegration [45] to obtain compact preintegrated
measurements of the relative state between two consecu-
tive keyframes from raw IMU data. The vision front-end
detects Shi-Tomasi corners [51], tracks them across frames
using the Lukas-Kanade tracker [52], finds left-right stereo
matches, and performs geometric verification. We perform
both mono(cular) verification using 5-point RANSAC [53]
and stereo verification using 3-point RANSAC [54]; the code
also offers the option to use the IMU rotation and perform
mono and stereo verification using 2-point [55] and 1-point
RANSAC, respectively. Feature detection, stereo matching,
and geometric verification are executed at each keyframe,
while we only track features at intermediate frames.

2) VIO Back-end: At each keyframe, preintegrated IMU
and visual measurements are added to a fixed-lag smoother
(a factor graph) which constitutes our VIO back-end. We
use the preintegrated IMU model and the structureless vision

model of [45]. The factor graph is solved using iSAM2 [56]
in GTSAM [57]. At each iSAM2 iteration, the structureless
vision model estimates the 3D position of the observed
features using DLT [58] and analytically eliminates the
corresponding 3D points from the VIO state [59]. Before
elimination, degenerate points (i.e., points behind the camera
or without enough parallax for triangulation) and outliers
(i.e., points with large reprojection error) are removed, pro-
viding an extra robustness layer. Finally, states that fall out of
the smoothing horizon are marginalized out using GTSAM.

B. Kimera-RPGO: Robust Pose Graph Optimization Module

Kimera-RPGO is in charge of (i) detecting loop closures
between the current and past keyframes, and (ii) computing
globally consistent keyframe poses using robust PGO.

1) Loop Closure Detection: The loop closure detection
relies on the DBoW2 library [60] and uses a bag-of-word
representation to quickly detect putative loop closures. For
each putative loop closure, we reject outlier loop closures
using mono and stereo geometric verification (as described
in Section II-A), and pass the remaining loop closures to
the robust PGO solver. Note that the resulting loop closures
can still contain outliers due to perceptual aliasing (e.g., two
identical rooms on different floors of a building).

2) Robust PGO: This module is implemented in GTSAM,
and includes a modern outlier rejection method, Incremental
Consistent Measurement Set Maximization (PCM) [46], that
we tailor to a single-robot and online setup. We store sep-
arately the odometry edges (produced by Kimera-VIO) and
the loop closures (produced by the loop closure detection);
each time the PGO is executed, we first select the largest set
of consistent loop closures using a modified version of PCM,
and then execute GTSAM on the pose graph including the
odometry and the consistent loop closures.



PCM is designed for the multi-robot case and only checks
that inter-robot loop closures are consistent. We developed
a C++ implementation of PCM that (i) adds an odometry
consistency check on the loop closures and (ii) incrementally
updates the set of consistent measurements to enable online
operation. The odometry check verifies that each loop closure
(e.g., l1 in Fig. 2(a)) is consistent with the odometry (in red in
the figure): in the absence of noise, the poses along the cycle
formed by the odometry and the loop l1 must compose to
the identity. As in PCM, we flag as outliers loops for which
the error accumulated along the cycle is not consistent with
the measurement noise using a Chi-squared test. If a loop
detected at the current time t passes the odometry check, we
test if it is pairwise consistent with previous loop closures
as in [46] (e.g., check if loops l1 and l2 in Fig. 2(a) are
consistent with each other). PCM [46] builds an adjacency
matrix A ∈ RL×L, where L is the number of detected
loop closures, to keep track of pairwise-consistent loops. To
enable online operation, rather than building the matrix A
from scratch, each time a new loop is detected, we only add
a row and column to the matrix and only test the new loop
against the previous ones. Finally, we use the fast maximum
clique implementation of [61] to compute the largest set of
consistent loop closures. The set of consistent measurements
are added to the pose graph (together with the odometry)
and optimized using the Gauss-Newton method in GTSAM.

C. Kimera-Mesher: 3D Mesh Reconstruction

Kimera-Mesher can quickly generate two types of 3D
meshes: (i) a per-frame 3D mesh, and (ii) a multi-frame 3D
mesh spanning the keyframes in the VIO fixed-lag smoother.

1) Per-frame mesh: As in [47], we first perform a 2D
Delaunay triangulation over the successfully tracked 2D
features (generated by the VIO front-end) in the current
keyframe. Then, we back-project the 2D Delaunay triangu-
lation to generate a 3D mesh (Fig. 2(b)), using the 3D point
estimates from the VIO back-end. While the per-frame mesh
is designed to provide low-latency obstacle detection, we also
provide the option to semantically label the resulting mesh,
by texturing the mesh with 2D labels (Fig. 2(c)).

2) Multi-frame mesh: The multi-frame mesh fuses the
per-frame meshes collected over the VIO receding horizon
into a single mesh and regularizes planar surfaces (Fig. 2(d)).
Both the per-frame and multi-frame 3D meshes are encoded
as a list of vertex positions, together with a list of triplets
of vertex IDs to describe the triangular faces. Assuming we
already have a multi-frame mesh at time t− 1, for each new
per-frame 3D mesh that we generate (at time t), we loop
over its vertices and triplets and add vertices and triplets
that are in the per-frame mesh but are missing in the multi-
frame one. Then we loop over the multi-frame mesh vertices
and update their 3D position according to the latest VIO
back-end estimates. Finally, we remove vertices and triplets
corresponding to old features observed outside the VIO time
horizon. The result is an up-to-date 3D mesh spanning the
keyframes in the current VIO time horizon. If planar surfaces
are detected in the mesh, regularity factors [47] are added to

the VIO back-end, which results in a tight coupling between
VIO and mesh regularization, see [47] for further details.

D. Kimera-Semantics: Metric-Semantic Segmentation
We adapt the bundled raycasting technique introduced in

[27] to (i) build an accurate global 3D mesh (covering the
entire trajectory), and (ii) semantically annotate the mesh.

1) Global mesh: Our implementation builds on Voxblox
[27] and uses a voxel-based (TSDF) model to filter out
noise and extract the global mesh. At each keyframe, we
use dense stereo (semi-global matching [62]) to obtain a
3D point cloud from the current stereo pair. Then we apply
bundled raycasting using Voxblox [27], using the “fast”
option discussed in [27]. This process is repeated at each
keyframe and produces a TSFD, from which a mesh is
extracted using marching cubes [63].

2) Semantic annotation: Kimera-Semantics uses 2D se-
mantically labeled images (produced at each keyframe) to
semantically annotate the global mesh; the 2D semantic
labels can be obtained using off-the-shelf tools for pixel-level
2D semantic segmentation, e.g., deep neural networks [7]–
[9], [64]–[69] or classical MRF-based approaches [70]. To
this end, during the bundled raycasting, we also propagate
the semantic labels. Using the 2D semantic segmentation, we
attach a label to each 3D point produced by the dense stereo.
Then, for each bundle of rays in the bundled raycasting, we
build a vector of label probabilities from the frequency of
the observed labels in the bundle. We then propagate this
information along the ray only within the TSDF truncation
distance (i.e., near the surface) to spare computation. In
other words, we spare the computational effort of updating
probabilities for the “empty” label. While traversing the
voxels along the ray, we use a Bayesian update to update the
label probabilities at each voxel, similar to [17]. After this
bundled semantic raycasting, each voxel has a vector of label
probabilities, from which we extract the most likely label.
The metric-semantic mesh is finally extracted using marching
cubes [63]. The resulting mesh is significantly more accurate
than the multi-frame mesh of Section II-C, but it is slower
to compute (>1.0s, see Section III-D).

E. Debugging Tools
While we limit the discussion for space reasons, it is worth

mentioning that Kimera also provides an open-source suite
of evaluation tools for debugging, visualization, and bench-
marking of VIO, SLAM, and metric-semantic reconstruction.
Kimera includes a Continuous Integration server (Jenkins)
that asserts the quality of the code (compilation, unit tests),
but also automatically evaluates Kimera-VIO and Kimera-
RPGO on the EuRoC’s datasets using evo [71]. Moreover,
we provide Jupyter Notebooks to visualize intermediate VIO
statistics (e.g., quality of the feature tracks, IMU preintegra-
tion errors), as well as to automatically assess the quality of
the 3D reconstruction using Open3D [72].

III. EXPERIMENTAL EVALUATION

Section III-A shows that (i) Kimera attains state-of-the-art
state estimation performance and (ii) our robust PGO relieves



TABLE II: RMSE of state-of-the-art open-source VIO pipelines
(reported from [76] and [24]) compared to Kimera, on the EuRoC
dataset. In bold the best result, with and without loop closures (LC).

RMSE ATE [cm]

Seq. OKVIS MSCKF ROVIO
VINS-
Mono

Kimera-
VIO

VINS-
Mono-LC

Kimera-
RPGO

MH 01 16 42 21 15 11 12 8
MH 02 22 45 25 15 10 12 9
MH 03 24 23 25 22 16 13 11
MH 04 34 37 49 32 24 18 15
MH 05 47 48 52 30 35 21 24
V1 01 9 34 10 8 5 7 5
V1 02 20 20 10 11 8 8 11
V1 03 24 67 14 18 7 19 12
V2 01 13 10 12 8 8 8 7
V2 02 16 16 14 16 10 16 10
V2 03 29 113 14 27 21 22 19

the user from time-consuming parameter tuning. Towards
this goal, we compare Kimera against state-of-the-art VIO
pipelines on the EuRoC dataset [19]. Section III-B assesses
the performance of Kimera’s 3D mesh reconstruction on
EuRoC, using the subset of scenes providing a ground-
truth point cloud. Section III-C inspects Kimera’s 3D metric-
semantic reconstruction using a photo-realistic simulator
(see video attachment), which provides ground truth 3D
semantics. Finally, Section III-D highlights Kimera’s real-
time performance and analyzes the runtime of each module.

A. Pose Estimation Performance
Table II compares the accuracy of Kimera-VIO against

state-of-the-art VIO implementations. We compare the Root
Mean Squared Error (RMSE) of the Absolute Translation Er-
ror (ATE) of our pipeline against OKVIS [73], MSCKF [74],
ROVIO [75], and VINS-Mono [24], using the independently
reported values in [76] and the self-reported values in [24].
Note that these algorithms use a monocular camera, while we
use a stereo camera. Therefore, while [76] aligns the trajec-
tories using Sim(3), we use SE(3) for our approach (using
Sim(3) would result in an even smaller error for Kimera).
The last two columns of Table II compare Kimera-RPGO
against VINS-Mono with loop closures (VINS-Mono-LC).
Kimera-VIO and Kimera-RPGO achieve top performance
(i.e., smaller error) in the majority of the EuRoC datasets.

Kimera-RPGO ensures robust performance and is less
sensitive to loop closure parameter tuning. To showcase this
desirable feature, Table III shows the PGO accuracy with
and without outlier rejection (PCM) for different values of
the loop closure threshold α used in DBoW2 [60]. Small
values of α lead to many loop closures, while for large
values (α = 10) no loop closure is selected and PGO returns
the odometric estimate. Table III shows that without PCM
the choice of α largely influences the PGO accuracy. On
the other hand, thanks to PCM, Kimera-RPGO is fairly
insensitive to α. The results in Table II use α = 0.001.

TABLE III: RMSE ATE [m] vs. loop closure threshold α (V1 01).

α=10 α=1 α=0.1 α=0.01 α=0.001

PGO w/o PCM 0.05 0.45 1.74 1.59 1.59
Kimera-RPGO 0.05 0.05 0.05 0.045 0.049

B. Geometric Reconstruction

We use the ground truth point cloud available in the
EuRoC V1 and V2 datasets to assess the quality of the
3D meshes produced by Kimera. We evaluate our meshes
against the ground truth using the accuracy and completeness
metrics as in [77, Sec. 4.3]: (i) we compute a point cloud by
sampling our mesh with a uniform density of 103 points/m2,
(ii) we register the estimated and the ground truth clouds with
ICP [78] using CloudCompare [79], and (iii) we evaluate the
average distance from ground truth point cloud to its nearest
neighbor in the estimated point cloud (“accuracy”), and vice-
versa (“completeness”). Fig. 3(a) shows the estimated cloud
(corresponding to the global mesh of Kimera-Semantics on
V1 01) color-coded by the distance to the closest point in the
ground-truth cloud (accuracy); Fig. 3(b) shows the ground-
truth cloud, color-coded with the distance to the closest-point
in the estimated cloud (completeness).

Fig. 3: (a) Kimera’s 3D mesh color-coded by the distance to the
ground-truth point cloud. (b) Ground-truth point cloud color-coded
by the distance to the estimated cloud. EuRoC V1 01 dataset.

Table IV provides a quantitative comparison between the
fast multi-frame mesh produced by Kimera-Mesher and the
slow mesh produced via TSDF by Kimera-Semantics. To
obtain a complete mesh from Kimera-Mesher we set a large
VIO horizon (i.e., we perform full smoothing). As expected
from Fig. 3(a), the global mesh from Kimera-Semantics is
very accurate, with an average error of 0.35− 0.48m across
datasets. Kimera-Mesher produces a noisier mesh (up to 24%
error increase), but requires two orders of magnitude less
time to compute it (see Section III-D).

TABLE IV: Evaluation of Kimera multi-frame and global meshes’
completeness [77, Sec. 4.3.3] with an ICP threshold of 1.0m.

RMSE [m] Relative
Improvement [%]

Seq. Multi-Frame Global

V1 01 0.482 0.364 24.00
V1 02 0.374 0.384 -2.00
V1 03 0.451 0.353 21.00
V2 01 0.465 0.480 -3.00
V2 02 0.491 0.432 12.00
V2 03 0.530 0.411 22.00



TABLE V: Evaluation of Kimera-Semantics.

Kimera-Semantics using:

Metrics
GT Depth
GT Poses

GT Depth
Kimera-VIO

Dense-Stereo
Kimera-VIO

Semantic mIoU [%] 80.10 80.03 57.23
Acc [%] 94.68 94.50 80.74

Geometric ATE [m] 0.0 0.04 0.04
RMSE [m] 0.079 0.131 0.215

C. Semantic Reconstruction

To evaluate the accuracy of the metric-semantic recon-
struction from Kimera-Semantics, we use a photo-realistic
Unity-based simulator provided by MIT Lincoln Lab, that
provides sensor streams (in ROS) and ground truth for both
the geometry and the semantics of the scene, and has an
interface similar to [20], [21]. To avoid biasing the results
towards a particular 2D semantic segmentation method, we
use ground truth 2D semantic segmentations and we refer
the reader to [70] for potential alternatives.

Kimera-Semantics builds a 3D mesh from the VIO pose
estimates, and uses a combination of dense stereo and bun-
dled raycasting. We evaluate the impact of each of these com-
ponents by running three different experiments. First, we use
Kimera-Semantics with ground-truth (GT) poses and ground-
truth depth maps (available in simulation) to assess the initial
loss of performance due to bundled raycasting. Second,
we use Kimera-VIO’s pose estimates. Finally, we use the
full Kimera-Semantics pipeline including dense stereo. To
analyze the semantic performance, we calculate the mean
Intersection over Union (mIoU) [13], and the overall portion
of correctly labeled points (Acc) [80]. We also report the
ATE to correlate the results with the drift incurred by
Kimera-VIO. Finally, we evaluate the metric reconstruction
registering the estimated mesh with the ground truth and
computing the RMSE for the points as in Section III-B.

Table V summarizes our findings and shows that bundled
raycasting results in a small drop in performance both
geometrically (< 8cm error on the 3D mesh) as well as
semantically (accuracy > 94%). Using Kimera-VIO also
results in negligible loss in performance since our VIO has
a small drift (< 0.2%, 4cm for a 32m long trajectory).
Certainly, the biggest drop in performance is due to the use
of dense stereo. Dense stereo [62] has difficulties resolving
the depth of texture-less regions such as walls, which are
frequent in simulated scenes. Fig. 4 shows the confusion
matrix when running Kimera-Semantics with Kimera-VIO
with ground-truth depth (Fig. 4(a)), compared with using
dense stereo (Fig. 4(b)). Large values in the confusion matrix
appear between Wall/Shelf and Floor/Wall. This is exactly
where dense stereo suffers the most; texture-less walls are
difficult to reconstruct and are close to shelves and floor,
resulting in increased geometric and semantic errors.

D. Timing

Fig. 5 reports the timing performance of Kimera’s mod-
ules. The IMU front-end requires around 40µs for prein-
tegration, hence can generate state estimates at IMU rate

Fig. 4: Confusion matrices for Kimera-Semantics using bundled
raycasting and (a) ground truth stereo depth or (b) dense stereo [62].
Both experiments use ground-truth 2D semantics. Values are satu-
rated to 104 for visualization purposes.

Fig. 5: Runtime breakdown for Kimera-VIO, RPGO, and Mesher.

(200Hz in our tests). The vision front-end module shows a
bi-modal distribution since, for every frame, we just perform
feature tracking (which takes an average of 4.5ms), while, at
keyframe rate, we perform feature detection, stereo matching,
and geometric verification (which overall take an average of
45ms). Kimera-Mesher is capable of generating per-frame
3D meshes in less than 5ms, while building the multi-
frame mesh takes 15ms on average. The Kimera-VIO back-
end solves the factor-graph optimization in less than 40ms.
Kimera-RPGO and Kimera-Semantics run on slower threads
since their outputs are not required for time-critical actions
(e.g., control, obstacle avoidance). Kimera-RPGO took an
average of 55ms in our experiments on EuRoC, but in general
its runtime depends on the size of the pose graph. Finally,
Kimera-Semantics (not reported in figure for clarity) takes an
average of 1.28s to update the global metric-semantic mesh
at each keyframe, fusing a 720 × 480 dense depth image,
as the one produced by our simulator. Note that Kimera-
Semantics can run in ≈ 100ms without semantic annotations,
using the fast raycasting method described in [27].

IV. CONCLUSION

Kimera is an open-source C++ library for metric-semantic
SLAM. It includes state-of-the-art implementations of visual-
inertial odometry, robust pose graph optimization, mesh
reconstruction, and 3D semantic labeling. It runs in real-time
on a CPU and provides a suite of continuous integration and
benchmarking tools. We hope Kimera can provide a solid
basis for future research on robot perception, and an easy-
to-use infrastructure for researchers across communities.

Acknowledgments. We are thankful to Dan Griffith, Ben
Smith, Arjun Majumdar, and Zac Ravichandran for kindly
sharing the photo-realistic simulator, and to Winter Guerra
and Varun Murali for the discussions about Unity.



REFERENCES

[1] C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza, J. Neira,
I. Reid, and J. J. Leonard, “Past, present, and future of simultaneous
localization and mapping: Toward the robust-perception age,” IEEE
Trans. Robotics, vol. 32, no. 6, pp. 1309–1332, 2016, arxiv preprint:
1606.05830, (pdf).

[2] O. Enqvist, F. Kahl, and C. Olsson, “Non-sequential structure from
motion,” in Intl. Conf. on Computer Vision (ICCV), 2011, pp. 264–
271.

[3] T. Schöps, J. L. Schönberger, S. Galliani, T. Sattler, K. Schindler,
M. Pollefeys, and A. Geiger, “A multi-view stereo benchmark with
high-resolution images and multi-camera videos,” in Conference on
Computer Vision and Pattern Recognition (CVPR), 2017.

[4] A. Garcia-Garcia, S. Orts-Escolano, S. Oprea, V. Villena-Martinez, and
J. Garcı́a-Rodrı́guez, “A review on deep learning techniques applied
to semantic segmentation,” ArXiv Preprint: 1704.06857, 2017.

[5] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” in Advances in Neural
Information Processing Systems (NIPS), ser. NIPS’12, 2012, pp. 1097–
1105.

[6] J. Redmon and A. Farhadi, “YOLO9000: Better, faster, stronger,” in
IEEE Conf. on Computer Vision and Pattern Recognition (CVPR),
2017, pp. 6517–6525.

[7] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards
realtime object detection with region proposal networks,” in Advances
in Neural Information Processing Systems (NIPS), 2015, pp. 91–99.

[8] K. He, G. Gkioxari, P. Dollar, and R. Girshick, “Mask R-CNN,” in
Intl. Conf. on Computer Vision (ICCV), 2017, pp. 2980–2988.

[9] R. Hu, P. Dollar, and K. He, “Learning to segment every thing,” in
Intl. Conf. on Computer Vision (ICCV), 2017, pp. 4233–4241.

[10] V. Badrinarayanan, A. Kendall, and R. Cipolla, “SegNet: A deep
convolutional encoder-decoder architecture for image segmentation,”
IEEE Trans. Pattern Anal. Machine Intell., 2017.

[11] S. Y.-Z. Bao and S. Savarese, “Semantic structure from motion,” in
IEEE Conf. on Computer Vision and Pattern Recognition (CVPR),
2011.

[12] S. Bowman, N. Atanasov, K. Daniilidis, and G. Pappas, “Probabilistic
data association for semantic slam,” in IEEE Intl. Conf. on Robotics
and Automation (ICRA), 2017, pp. 1722–1729.

[13] T. Hackel, N. Savinov, L. Ladicky, J. D. Wegner, K. Schindler,
and M. Pollefeys, “Semantic3d.net: A new large-scale point cloud
classification benchmark,” arXiv preprint arXiv:1704.03847, 2017.

[14] M. Grinvald, F. Furrer, T. Novkovic, J. J. Chung, C. Cadena, R. Sieg-
wart, and J. Nieto, “Volumetric Instance-Aware Semantic Mapping and
3D Object Discovery,” IEEE Robotics and Automation Letters, vol. 4,
no. 3, pp. 3037–3044, 2019.

[15] L. Zheng, C. Zhu, J. Zhang, H. Zhao, H. Huang, M. Niessner, and
K. Xu, “Active scene understanding via online semantic reconstruc-
tion,” arXiv preprint:1906.07409, 2019.

[16] R. F. Salas-Moreno, R. A. Newcombe, H. Strasdat, P. H. J. Kelly, and
A. J. Davison, “SLAM++: Simultaneous localisation and mapping at
the level of objects,” in IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), 2013.

[17] J. McCormac, A. Handa, A. J. Davison, and S. Leutenegger, “Seman-
ticFusion: Dense 3D Semantic Mapping with Convolutional Neural
Networks,” in IEEE Intl. Conf. on Robotics and Automation (ICRA),
2017.

[18] T. Whelan, S. Leutenegger, R. Salas-Moreno, B. Glocker, and A. Davi-
son, “ElasticFusion: Dense SLAM without a pose graph,” in Robotics:
Science and Systems (RSS), 2015.

[19] M. Burri, J. Nikolic, P. Gohl, T. Schneider, J. Rehder, S. Omari,
M. Achtelik, and R. Siegwart, “The EuRoC micro aerial vehicle
datasets,” Intl. J. of Robotics Research, 2016.

[20] R. Sayre-McCord, W. Guerra, A. Antonini, J. Arneberg, A. Brown,
G. Cavalheiro, Y. Fang, A. Gorodetsky, D. McCoy, S. Quilter, F. Ri-
ether, E. Tal, Y. Terzioglu, L. Carlone, and S. Karaman, “Visual-inertial
navigation algorithm development using photorealistic camera simu-
lation in the loop,” in IEEE Intl. Conf. on Robotics and Automation
(ICRA), 2018, (pdf) (code).

[21] W. Guerra, E. Tal, V. Murali, G. Ryou, and S. Karaman, “FlightGog-
gles: Photorealistic sensor simulation for perception-driven robotics
using photogrammetry and virtual reality,” in arXiv preprint:
1905.11377, 2019.

[22] R. Mur-Artal, J. Montiel, and J. Tardós, “ORB-SLAM: A versatile and
accurate monocular SLAM system,” IEEE Trans. Robotics, vol. 31,
no. 5, pp. 1147–1163, 2015.

[23] J. Engel, V. Koltun, and D. Cremers, “Direct sparse odometry,” IEEE
Trans. Pattern Anal. Machine Intell., 2018.

[24] T. Qin, P. Li, and S. Shen, “Vins-mono: A robust and versatile monoc-
ular visual-inertial state estimator,” IEEE Transactions on Robotics,
vol. 34, no. 4, pp. 1004–1020, 2018.

[25] T. Qin, J. Pan, S. Cao, and S. Shen, “A general optimization-based
framework for local odometry estimation with multiple sensors,” arXiv
preprint: 1901.03638, 2019.

[26] T. Schneider, M. T. Dymczyk, M. Fehr, K. Egger, S. Lynen,
I. Gilitschenski, and R. Siegwart, “maplab: An open framework for
research in visual-inertial mapping and localization,” IEEE Robotics
and Automation Letters, 2018.

[27] H. Oleynikova, Z. Taylor, M. Fehr, R. Siegwart, and J. Nieto,
“Voxblox: Incremental 3d euclidean signed distance fields for on-
board mav planning,” in IEEE/RSJ Intl. Conf. on Intelligent Robots
and Systems (IROS). IEEE, 2017, pp. 1366–1373.

[28] M. Runz, M. Buffier, and L. Agapito, “Maskfusion: Real-time recogni-
tion, tracking and reconstruction of multiple moving objects,” in IEEE
International Symposium on Mixed and Augmented Reality (ISMAR).
IEEE, 2018, pp. 10–20.

[29] M. Keller, D. Lefloch, M. Lambers, S. Izadi, T. Weyrich, and A. Kolb,
“Real-time 3d reconstruction in dynamic scenes using point-based
fusion,” in Intl. Conf. on 3D Vision (3DV), 2013.

[30] R. Dubé, A. Cramariuc, D. Dugas, J. Nieto, R. Siegwart, and C. Ca-
dena, “SegMap: 3d segment mapping using data-driven descriptors,”
in Robotics: Science and Systems (RSS), 2018.

[31] J. Dong, X. Fei, and S. Soatto, “Visual-inertial-semantic scene repre-
sentation for 3D object detection,” 2017.

[32] G. J. Brostow, J. Shotton, J. Fauqueur, and R. Cipolla, “Segmentation
and recognition using structure from motion point clouds,” in Euro-
pean Conf. on Computer Vision (ECCV), 2008, pp. 44–57.

[33] K. Tateno, F. Tombari, and N. Navab, “Real-time and scalable in-
cremental segmentation on dense slam,” in IEEE/RSJ Intl. Conf. on
Intelligent Robots and Systems (IROS), 2015, pp. 4465–4472.

[34] C. Li, H. Xiao, K. Tateno, F. Tombari, N. Navab, and G. D. Hager,
“Incremental scene understanding on dense SLAM,” in IEEE/RSJ Intl.
Conf. on Intelligent Robots and Systems (IROS), 2016, pp. 574–581.

[35] J. McCormac, R. Clark, M. Bloesch, A. J. Davison, and S. Leuteneg-
ger, “Fusion++: Volumetric object-level SLAM,” in Intl. Conf. on 3D
Vision (3DV), 2018, pp. 32–41.

[36] M. Rünz and L. Agapito, “Co-fusion: Real-time segmentation, tracking
and fusion of multiple objects,” in IEEE Intl. Conf. on Robotics and
Automation (ICRA). IEEE, 2017, pp. 4471–4478.

[37] B. Xu, W. Li, D. Tzoumanikas, M. Bloesch, A. Davison, and
S. Leutenegger, “MID-Fusion: Octree-based object-level multi-
instance dynamic slam,” 2019, pp. 5231–5237.

[38] J. Wald, K. Tateno, J. Sturm, N. Navab, and F. Tombari, “Real-time
fully incremental scene understanding on mobile platforms,” IEEE
Robotics and Automation Letters, vol. 3, no. 4, pp. 3402–3409, 2018.

[39] G. Narita, T. Seno, T. Ishikawa, and Y. Kaji, “Panopticfusion: Online
volumetric semantic mapping at the level of stuff and things,” arxiv
preprint: 1903.01177, 2019.

[40] K. Tateno, F. Tombari, I. Laina, and N. Navab, “CNN-SLAM: Real-
time dense monocular slam with learned depth prediction,” in IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR), 2017.

[41] K.-N. Lianos, J. L. Schönberger, M. Pollefeys, and T. Sattler, “Vso:
Visual semantic odometry,” in European Conf. on Computer Vision
(ECCV), 2018, pp. 246–263.

[42] M. Yokozuka, S. Oishi, S. Thompson, and A. Banno, “VITAMIN-
E: visual tracking and mapping with extremely dense feature points,”
CoRR, vol. abs/1904.10324, 2019.

[43] J. Behley, M. Garbade, A. Milioto, J. Quenzel, S. Behnke, C. Stach-
niss, and J. Gall, “SemanticKITTI: A Dataset for Semantic Scene
Understanding of LiDAR Sequences,” in Intl. Conf. on Computer
Vision (ICCV), 2019.

[44] F. Dellaert et al., “Georgia Tech Smoothing And Mapping (GTSAM),”
https://gtsam.org/, 2019.

[45] C. Forster, L. Carlone, F. Dellaert, and D. Scaramuzza, “On-manifold
preintegration theory for fast and accurate visual-inertial navigation,”
IEEE Trans. Robotics, vol. 33, no. 1, pp. 1–21, 2016, arxiv preprint:
1512.02363, (pdf), technical report GT-IRIM-CP&R-2015-001.

https://arxiv.org/abs/1606.05830
https://www.dropbox.com/s/p3q60g5psuwbcmv/2018c-ICRA-flightGoggles.pdf?dl=0
https://github.com/AgileDrones/FlightGoggles
https://gtsam.org/
http://arxiv.org/abs/1512.02363


[46] J. G. Mangelson, D. Dominic, R. M. Eustice, and R. Vasudevan,
“Pairwise consistent measurement set maximization for robust multi-
robot map merging,” in IEEE Intl. Conf. on Robotics and Automation
(ICRA), 2018, pp. 2916–2923.

[47] A. Rosinol, T. Sattler, M. Pollefeys, and L. Carlone, “Incremental
visual-inertial 3D mesh generation with structural regularities,” in
IEEE Intl. Conf. on Robotics and Automation (ICRA), 2019, extended
arxiv version: 1903.01067, (pdf), (web).

[48] W. N. Greene and N. Roy, “Flame: Fast lightweight mesh estimation
using variational smoothing on delaunay graphs,” in 2017 IEEE
International Conference on Computer Vision (ICCV). IEEE, 2017,
pp. 4696–4704.

[49] L. Teixeira and M. Chli, “Real-time mesh-based scene estimation for
aerial inspection,” in IEEE/RSJ Intl. Conf. on Intelligent Robots and
Systems (IROS). IEEE, 2016, pp. 4863–4869.

[50] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “Ros: an open-source robot operating
system,” in ICRA workshop on open source software, vol. 3, no. 3.2.
Kobe, Japan, 2009, p. 5.

[51] J. Shi and C. Tomasi, “Good features to track,” in IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR), 1994, pp. 593–
600.

[52] J. Bouguet, “Pyramidal implementation of the Lucas Kanade feature
tracker,” 2000.

[53] D. Nistér, “An efficient solution to the five-point relative pose prob-
lem,” IEEE Trans. Pattern Anal. Machine Intell., vol. 26, no. 6, pp.
756–770, 2004.

[54] B. Horn, “Closed-form solution of absolute orientation using unit
quaternions,” J. Opt. Soc. Amer., vol. 4, no. 4, pp. 629–642, Apr 1987.

[55] L. Kneip, M. Chli, and R. Siegwart, “Robust real-time visual odometry
with a single camera and an IMU,” in British Machine Vision Conf.
(BMVC), 2011, pp. 16.1–16.11.

[56] M. Kaess, H. Johannsson, R. Roberts, V. Ila, J. Leonard, and F. Del-
laert, “iSAM2: Incremental smoothing and mapping using the Bayes
tree,” Intl. J. of Robotics Research, vol. 31, pp. 217–236, Feb 2012.

[57] F. Dellaert, “Factor graphs and GTSAM: A hands-on introduction,”
Georgia Institute of Technology, Tech. Rep. GT-RIM-CP&R-2012-
002, September 2012.

[58] R. I. Hartley and A. Zisserman, Multiple View Geometry in Computer
Vision, 2nd ed. Cambridge University Press, 2004.

[59] L. Carlone, Z. Kira, C. Beall, V. Indelman, and F. Dellaert, “Elim-
inating conditionally independent sets in factor graphs: A unifying
perspective based on smart factors,” in IEEE Intl. Conf. on Robotics
and Automation (ICRA), 2014, pp. 4290–4297.

[60] D. Gálvez-López and J. D. Tardós, “Bags of binary words for fast place
recognition in image sequences,” IEEE Transactions on Robotics,
vol. 28, no. 5, pp. 1188–1197, October 2012.

[61] B. Pattabiraman, M. M. A. Patwary, A. H. Gebremedhin, W. K. Liao,
and A. Choudhary, “Fast algorithms for the maximum clique prob-
lem on massive graphs with applications to overlapping community
detection,” Internet Mathematics, vol. 11, no. 4-5, pp. 421–448, 2015.

[62] H. H. Hirschmüller, “Stereo processing by semiglobal matching and
mutual information,” IEEE Trans. Pattern Anal. Machine Intell.,
vol. 30, no. 2, pp. 328–341, 2008.

[63] W. Lorensen and H. Cline, “Marching cubes: A high resolution 3d
surface construction algorithm,” in SIGGRAPH, 1987, pp. 163–169.

[64] H. Lang, Y. Yuhui, G. Jianyuan, Z. Chao, C. Xilin, and W. Jingdong,
“Interlaced sparse self-attention for semantic segmentation,” arXiv
preprint arXiv:1907.12273, 2019.

[65] L. Zhang, X. Li, A. Arnab, K. Yang, Y. Tong, and P. H. Torr, “Dual
graph convolutional network for semantic segmentation,” in British
Machine Vision Conference, 2019.

[66] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille,
“Deeplab: Semantic image segmentation with deep convolutional nets,
atrous convolution, and fully connected crfs,” IEEE Trans. Pattern
Anal. Machine Intell., vol. 40, no. 4, pp. 834–848, 2017.

[67] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, “Pyramid scene parsing
network,” in IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), 2017, pp. 2881–2890.

[68] G. Yang, H. Zhao, J. Shi, Z. Deng, and J. Jia, “Segstereo: Exploiting
semantic information for disparity estimation,” in Proceedings of the
European Conference on Computer Vision (ECCV), 2018, pp. 636–
651.

[69] A. Paszke, A. Chaurasia, S. Kim, and E. Culurciello, “Enet: A
deep neural network architecture for real-time semantic segmentation,”
arXiv preprint arXiv:1606.02147, 2016.

[70] S. Hu and L. Carlone, “Accelerated inference in Markov Random
Fields via smooth Riemannian optimization,” IEEE Robotics and
Automation Letters (RA-L), 2019, extended ArXiv version: (pdf).

[71] M. Grupp, “evo: Python package for the evaluation of odometry and
slam.” https://github.com/MichaelGrupp/evo, 2017.

[72] Q.-Y. Zhou, J. Park, and V. Koltun, “Open3D: A modern library for
3D data processing,” arXiv:1801.09847, 2018.

[73] S. Leutenegger, P. Furgale, V. Rabaud, M. Chli, K. Konolige, and
R. Siegwart, “Keyframe-based visual-inertial slam using nonlinear
optimization,” in Robotics: Science and Systems (RSS), 2013.

[74] A. Mourikis and S. Roumeliotis, “A multi-state constraint Kalman
filter for vision-aided inertial navigation,” in IEEE Intl. Conf. on
Robotics and Automation (ICRA), April 2007, pp. 3565–3572.

[75] M. Bloesch, S. Omari, M. Hutter, and R. Siegwart, “Robust visual
inertial odometry using a direct EKF-based approach,” in IEEE/RSJ
Intl. Conf. on Intelligent Robots and Systems (IROS). IEEE, 2015.

[76] J. Delmerico and D. Scaramuzza, “A benchmark comparison of
monocular visual-inertial odometry algorithms for flying robots,” in
2018 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 2018, pp. 2502–2509.

[77] A. Rosinol, “Densifying Sparse VIO: a Mesh-based approach using
Structural Regularities.” Master’s thesis, ETH Zurich, 2018-09-14.

[78] P. J. Besl and N. D. McKay, “A method for registration of 3-D shapes,”
IEEE Trans. Pattern Anal. Machine Intell., vol. 14, no. 2, 1992.

[79] Cloudcompare.org, “CloudCompare - open source project,” https://
www.cloudcompare.org, 2019.

[80] D. Wolf, J. Prankl, and M. Vincze, “Enhancing semantic segmentation
for robotics: The power of 3-d entangled forests,” IEEE Robotics and
Automation Letters, vol. 1, no. 1, pp. 49–56, 2015.

https://arxiv.org/pdf/1903.01067.pdf
https://www.mit.edu/~arosinol/research/struct3dmesh.html
https://arxiv.org/pdf/1810.11689.pdf
https://github.com/MichaelGrupp/evo
https://www.cloudcompare.org
https://www.cloudcompare.org

	Introduction
	Kimera
	Kimera-VIO: Visual-Inertial Odometry Module
	VIO Front-end
	VIO Back-end

	Kimera-RPGO: Robust Pose Graph Optimization Module
	Loop Closure Detection
	Robust PGO

	Kimera-Mesher: 3D Mesh Reconstruction
	Per-frame mesh
	Multi-frame mesh

	Kimera-Semantics: Metric-Semantic Segmentation
	Global mesh
	Semantic annotation

	Debugging Tools

	Experimental Evaluation
	Pose Estimation Performance
	Geometric Reconstruction
	Semantic Reconstruction
	Timing

	Conclusion
	References

