Nets vs hierarchies for hard optimization problems

Aram Harrow arXiv:1509.05065 (with Fernando Brandão) in preparation (with Anand Natarajan and Xiaodi Wu)

outline

- 1. separable states and operator norms
- 2. approximating the set of separable states
- 3. approximating general operator norms
- 4. the simple case of the simplex

entanglement and optimization

Weak membership problem: Given ρ and the promise that $\rho \in \text{Sep or } \rho$ is far from Sep, determine which is the case.

Optimization: $h_{Sep}(M) := max \{ tr[M \rho] : \rho \in Sep \}$

operator norms

```
|X:A->B
||X||<sub>A->B</sub> = sup ||Xa||<sub>B</sub> / ||a||<sub>A|</sub>
```

operator norm

Examples

```
l_2 \rightarrow l_2
                     largest singular value
                     MAX-CUT = max\{\langle vec(X), a \otimes b \rangle: ||a||_{\infty}, ||b||_{\infty} \leq 1\}
l_{\infty} \rightarrow l_{1}
l_1 \rightarrow l_{\infty}
                     \max_{i,j} |X_{i,j}| = \max\{\langle \text{vec}(X), a \otimes b \rangle : ||a||_1, ||b||_1 \leq 1\}
S_1 \rightarrow S_1
                     channel distinguishability
                     (cb norm, diamond norm)
of X®id
S_1 \rightarrow S_p
                     max output p-norm, min output Rènyi-p entropy
l_2 \rightarrow l_4
                     hypercontractivity, small-set expansion
                     h_{Sep} = max\{ \langle Choi(X), a \otimes b \rangle : ||a||_{S_1}, ||b||_{S_1} \leq 1 \}
S_1 \rightarrow S_{\infty}
```

complexity of h_{Sep}

$h_{Sep}(M) \pm 0.1 ||M||_{2\rightarrow 2}$ at least as hard as

- planted clique
- 3-SAT[log²(n) / polyloglog(n)]
- [Brubaker, Vempala '09]
- [H, Montanaro '10]

$h_{Sep}(M) \pm 100 h_{Sep}(M)$ at least as hard as

• small-set expansion [Barak, Brandão, H, Kelner, Steurer, Zhou '12]

h_{Sep}(M) ± ||M||_{2→2} / poly(n) at least as hard as • 3-SAT[n] [Gurvits '03], [Le Gall, Nakagawa, Nishimura '12]

complexity of $l_2 \rightarrow l_4$ norm

Unique Games (UG):

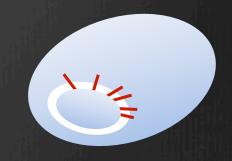
Given a system of linear equations: $x_i - x_j = a_{ij} \mod k$. Determine whether $\ge 1-\epsilon$ or $\le \epsilon$ fraction are satisfiable.

Small-Set Expansion (SSE):

Is the minimum expansion of a set with $\leq \delta n$ vertices $\geq 1-\epsilon$ or $\leq \epsilon$?

UG ≈ SSE ≤ 2->4

G = normalized adjacency matrix P_{λ} = largest projector s.t. G $\geq \lambda P$



Theorem:

All sets of volume $\leq \delta$ have expansion $\geq 1 - \lambda^{O(1)}$ iff

 $\|P_{\lambda}\|_{2\rightarrow 4} \leq n^{-1/4}/\delta^{O(1)}$

A hierachy of tests for entanglement

Definition: $ho^{\, {
m AB}}$ is k-extendable if there exists an extension $ho^{AB_1...B_k}$ with $ho^{AB}=
ho^{AB_i}$ for each i.

all quantum states (= 1-extendable)
2-extendable

100-extendable

separable =
∞-extendable

<u>Algorithms</u>: Can search/optimize over k-extendable states in time $n^{O(k)}$.

Question: How close are k-extendable states to separable states?

SDP hierarchies for h_{Sep}

Sep(n,m) = conv{
$$\rho_1 \otimes ... \otimes \rho_m : \rho_m \in D_n$$
}
SepSym(n,m) = conv{ $\rho^{\otimes m} : \rho \in D_n$ }

bipartite

doesn't match hardness

Thm: If $M = \Sigma_i A_i \otimes B_i$ with $\Sigma_i |B_i| \leq I$, each $|A_i| \leq I$, then $h_{\text{Sep(n,2)}}(M) \leq h_{k-\text{ext}}(M) \leq h_{\text{Sep(n,2)}}(M) + c (\log(n)/k)^{1/2}$

[Brandão, Christandl, Yard '10], [Yang '06], [Brandão, H '12], [Li, Winter '12]

multipartite

$$M = \sum_{i_1, \dots, i_m} c_{i_1, \dots, i_m} A_{i_1}^{(1)} \otimes \dots \otimes A_{i_m}^{(m)} \quad \sum_i |A_i^{(j)}| \le I \quad |c_{i_1, \dots, i_m}| \le 1$$

Thm:

 ε -approx to $h_{\text{SepSym(n,m)}}(M)$ in time $\exp(m^2 \log^2(n)/\varepsilon^2)$.

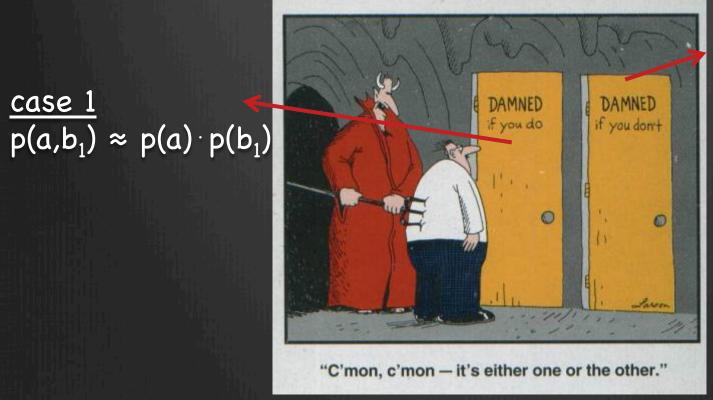
 ε -approx to $h_{Sep(n,m)}(M)$ in time $exp(m^3 log^2(n)/ \varepsilon^2)$.

[Brandão, H '12], [Li, Smith '14]

≈matches Chen-Drucker hardness

proof intuition

Measure extended state and get outcomes $p(a,b_1,...,b_k)$. Possible because of 1-LOCC form of M.



case 2 p(a, b₂ | b₁) has less mutual information

questions

- \otimes Run-time exp(c log²(n) / ε ²) appears in both

 - ⊕ Hardness for M in SEP.

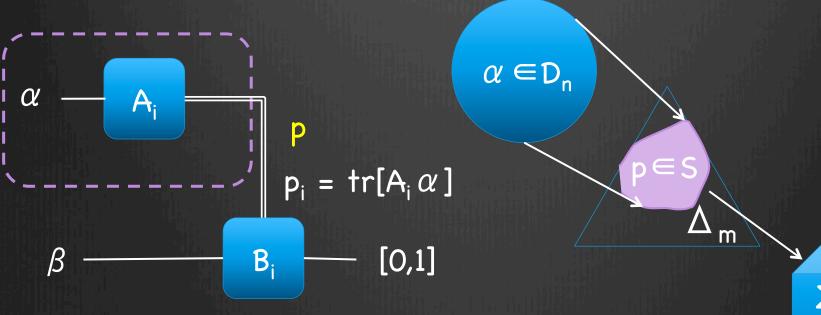
Why? Can we bridge the gap?

Can we find multiplicative approximations, or otherwise use these approaches for SSE?

net-based algorithms

 $M = \sum_{i \in [m]} A_i \otimes B_i$ with $\sum_i A_i \leq I$, each $|B_i| \leq I$, $A_i \geq 0$ Hierarchies estimate $h_{Sep}(M) \pm \varepsilon$ in time $exp(log^2(n)/\varepsilon^2)$

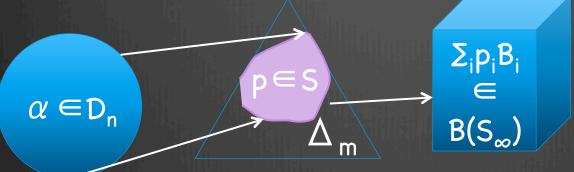
 $h_{Sep}(M) = \max_{\alpha, \beta} tr[M(\alpha \otimes \beta)] = \max_{p \in S} ||p||_{B}$



 $S = \{p : \exists \alpha \in D_n \text{ s.t. } p_i = \text{tr}[A_i \alpha]\} \subseteq \Delta_m$ $||x||_B = ||\Sigma_i x_i B_i||_{2\rightarrow 2}$ $\Sigma_{i}p_{i}B_{i}$ \in $B(S_{\infty})$

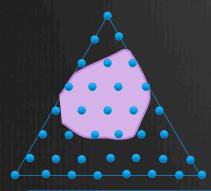
net-based algorithms

 $h_{Sep}(M) = \max_{\alpha, \beta} tr[M(\alpha \otimes \beta)] = \max_{p \in S} ||p||_{B}$



$$||x||_{B} = ||\Sigma_{i} x_{i} B_{i}||_{2\rightarrow 2}$$

$$S = \{p : \exists \alpha \in D_n \text{ s.t. } p_i = \text{tr}[A_i \alpha]\}$$



Lemma: $\forall p \in \Delta_m \exists q \text{ k-sparse (i.e. } \in \mathbb{Z}^m/k) \text{ s.t.}$ $||p-q||_B \le c(\log(n)/k)^{1/2}$

Pf: matrix Chernoff [Ahlswede-Winter]

Algorithm:

Enumerate over k-sparse q

- check whether $\exists p \in S$, $||p-q||_{B} \le \varepsilon$
- if so, compute ||q||_B

Performance

 $k \approx log(n)/\varepsilon^2$, m=poly(n) $\frac{run-time}{O(m^k)} = exp(log^2(n)/\varepsilon^2)$

nets for Banach spaces

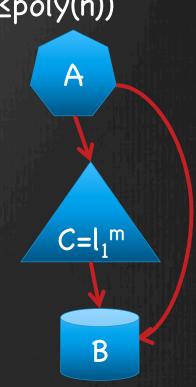
X:A->B $||X||_{A->B} = \sup ||Xa||_B / ||a||_A$ operator norm $||X||_{A->C->B} = \min \{||Z||_{A->C} ||Y||_{C->B} : X=YZ\}$ factorization norm

Let A,B be arbitrary. $C = l_1^m$ Only changes are sparsification (cannot assume m≤poly(n)) and operator Chernoff for B.

Type-2 constant: $T_2(B)$ is smallest λ such that

$$\mathbb{E}_{\epsilon_1, \dots, \epsilon_n \in \{\pm 1\}} \left\| \sum_{1=1}^n \epsilon_i Z_i \right\|_B^2 \le \lambda^2 \sum_{1=1}^n \|Z_i\|_B^2$$

result: $\|X\|_{A\to B} \pm \epsilon \|X\|_{A\to \ell_1^m\to B}$ estimated in time $\exp(T_2(B)^2\log(m)/\varepsilon^2)$



applications

```
S_1 \rightarrow S_p norms of entanglement-breaking channels N(\rho) = \Sigma_i \operatorname{tr}[A_i \rho] B_i, where \Sigma_i A_i = I, ||B_i||_1 = 1. Can estimate ||N||_{1\rightarrow p} \pm \varepsilon in time n^{O(c)} where c = p/\varepsilon^2 for p \ge 2 c = (p/\varepsilon^p)^{1/(p-1)} for 1  (uses bounds on <math>T_2(S_p) from [Ball-Carlen-Lieb '94]
```

low-rank measurements:

 $h_{\text{Sep}}(\Sigma_i A_i \otimes B_i) \pm \varepsilon$ for $\Sigma_i |A_i| = 1$, $||B_i||_{\infty} \le 1$, rank $B_i \le r$ in time $n^{O(r/\varepsilon^2)}$

$$\begin{split} & \mathbf{l_2} \!\!\!\! \to \!\!\!\! \mathbf{l_p} \text{ for even p24} \\ & \|X\|_{2 \to p}^p \pm \epsilon \|X\|_{2 \to 2}^2 \|X\|_{2 \to \infty}^{p-2} \\ & \text{ in time n}^{\mathrm{O(p/\,\epsilon^{\,2})}} \end{split}$$

Multipartite versions of 1-LOCC norm too [cf. Li-Smith '14]

ε -nets vs. SoS

Problem	ε -nets	SoS/info theory
$\max_{p \in \Delta} p^T A p$	BK '02, KLP '06	DF '80 BK '02, KLP '06
approx Nash	LMM '03	HNW '16
free games	AIM '14	BH '13
unique games	ABS '10	BRS '11
small-set expansion	ABS '10	BBHKSZ '12
h _{Sep}	SW '11 BH '15	BCY '10 BH '12 BKS '13

simplest version: polynomial optimization over the simplex

$$\Delta_n = \{ p \in \mathbb{R}^n : p \ge 0, \Sigma_i p_i = 1 \}$$

Given homogenous degree-d poly $f(p_1, ..., p_n)$, find max_p $f(p)$.

NP-complete: given graph G with clique number α , max_p p^TAp = 1 - 1/ α . [Motzkin-Strauss, '65]

Approximation algorithms

- Net: Enumerate over all points in $\Delta_n(k) := \Delta_n \cap \mathbb{Z}^n/k$.
- Hierarchy: min λ s.t. $(\Sigma_i p_i)^k$ $(\lambda(\Sigma_i p_i)^d f(p))$ has all nonnegative coefficients.

Thm: Each gives error ≤ (max_pf(p)-min_pf(p)) exp(d) / k in time n^{O(k)}. [de Klerk, Laurent, Parrilo, '06]

sum-of-squares (SoS) proofs

Axioms:

$$g_1(x) \ge 0$$

 \vdots
 $g_m(x) \ge 0$ derive $f(x) \le \lambda$

Rules:

- 1. polynomial operations
- 2. intermediate polys have deg ≤ k
- 3. [optional: changes LP to SDP] $r(x)^2 \ge 0$ for any polynomial r(x)

hierarchies & SoS proofs

Given axioms: Σ_i $p_i = 1$ and $p_i \ge 0$ prove that $\lambda - f(p) \ge 0$.

Previous strategy:

$$\lambda (\Sigma_i p_i)^d - f(p) = (\Sigma_i p_i)^k (\lambda (\Sigma_i p_i)^d - f(p)) \geq 0$$

difference is divisible by $1 - \Sigma_i p_i$

LHS is nonnegative sum of products of p_i

Dual is equivalent to net enumeration for modified objective function.

[Bomze, de Klerk '02] [de Klerk, Laurent, Sun '14]

k-extendable hierarchy

For a deg-d homogenous poly f(p), define $vec(f) \in (\mathbb{R}^n)^{\otimes d}$ to be the symmetric tensor such that $f(x) = \langle vec(f), x^{\otimes d} \rangle$.

```
Then \max_{p} f(p) = h_{K}(\text{vec}(f)) for K = \text{conv}\{p^{\otimes d} : p \in \Delta_{n}\} h_{K}(y) := \max_{x \in K} \langle x, y \rangle
```

relaxation:

```
q \in \Delta_{nd+k} symmetric (aka "exchangeable")

\pi = q^{(1,2,...,d)}
```

```
convergence: [Diaconis, Freedman '80] dist(\pi, \text{conv}\{p^{\otimes d}\}) \leq O(d^2/k) \rightarrow error \|\text{vec}(f)\|_{\infty} / k in time n^{O(k)}
```

Nash equilibria

Non-cooperative games:

Players choose strategies $p^A \in \Delta_m$, $p^B \in \Delta_n$. Receive values $\langle V_A, p^A \otimes p^B \rangle$ and $\langle V_B, p^A \otimes p^B \rangle$.

Nash equilibrium: neither player can improve own value ε -approximate Nash: cannot improve value by > ε

Correlated equilibria:

Players follow joint strategy $p^{AB} \in \Delta_{mn}$. Receive values $\langle V_A, p^{AB} \rangle$ and $\langle V_B, p^{AB} \rangle$. Cannot improve value by unilateral change.

- Can find in poly(m,n) time with LP.
- Nash equilibrium = correlated equilibrum with $p = p^A \otimes p^B$

finding (approximate) Nash eq

Known complexity:

Finding exact Nash eq. is PPAD complete.

Optimizing over exact Nash eq is NP-complete.

Algorithm for ε -approx Nash in time $\exp(\log(m)\log(n)/\varepsilon^2)$ based on enumerating over nets for Δ_m , Δ_n . Planted clique and 3-SAT[log²(n)] reduce to optimizing over ε -approx Nash.

[Lipton, Markakis, Mehta '03], [Hazan-Krauthgamer '11], [Braverman, Ko, Weinstein '14]

New result [HNW16]: Another algorithm for finding ε -approximate Nash with the same run-time.

(uses k-extendable distributions)

algorithm for approx Nash

Search over $p^{AB_1...B_k}\in\Delta_{mn^k}$ such that the A:B_i marginal is a correlated equilibrium conditioned on any values for B₁, ..., B_{i-1}.

LP, so runs in time poly(mnk)

<u>Claim</u>: Most conditional distributions are ≈ product.

Proof:

```
log(m) \ge H(A) \ge I(A:B_1...B_k) = \sum_{1 \le i \le k} I(A:B_i|B_{< i})

\mathbb{E}_i \ I(A:B_i|B_{< i}) \le log(m)/k =: \varepsilon^2

\vdots \ k = log(m)/\varepsilon^2 \ suffices.
```

open questions

- Application to unique games, small-set expansion, etc. Which norms are the right ones here?
- Tight hardness results, e.g. for h_{Sep}.
- Explain the coincidences!