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Entanglement


Original motivation for quantum computing [Feynman ‘82]



Nature isn't classical, dammit, and if 
you want to make a simulation of 

Nature, you'd better make it 
quantum mechanical, and by golly 

it's a wonderful problem, because it 
doesn't look so easy.



This talk: can we do better when a system is 
only lightly entangled?



N systems in product state à O(N) degrees of freedom


N entangled systems        à exp(N) degrees of freedom


Describes cost of simulating dynamics or even describing a state.





success story: quantum circuits



+ Complexity interpolates between linear and exponential.���
- Treating all gates as “potentially entangling” is too pessimistic.
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Classical simulation possible in time O(T)⋅exp(k), where


•  k = treewidth [Markov-Shi ‘05]


•  k = max # of gates crossing any single qubit ���

[Yoran-Short ’06, Jozsa ‘06]





success story: 1-D systems



H = H12 + H23 + … + Hn-1,n



Classically easy to minimize energy, calculate tr e-H/T, etc.



Quantumly QMA-complete to estimate ground-state energy���
(to precision 1/poly(n) for H with gap 1/poly(n)).
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Extension to trees: 


[Caramanolis, Hayden, Sigler]



[Landau-Vazirani-Vidick, ‘13] ���
n qudits with gap λ and precision ε à ���
runtime exp(exp(d/λ)log(n)) poly(1/ε)



intuition:



spectral���
gap of H



exponential���
decay of���

correlations



entanglement ���
area law



efficient ���
MPS���

decsription


Hastings ‘03

 Brandão-Horodecki ‘12

 Verstraete-Cirac ‘05



Hastings ‘07, etc.





meta-strategy



1.  solve trivial special case���
(e.g. non-interacting theory)���




2.  treat corrections to theory���
as perturbations





partial success: stabilizer circuits



exact version:


Clifford gates on n qubits = {U s.t. UPU† is a Pauli for all Paulis P}


Generated by various single-qubit gates and CNOTs.���
���
[Gottesman-Knill ’98] Clifford circuits simulable in time Õ(nT).���
intuition: Paulis ≅ 𝔽2

2n,  Cliffords ≅ Sp2n(𝔽2)



interpolation theorem [Aaronson-Gottesman ‘04] ���
Circuits with k non-Clifford gates simulable in time Õ(nT exp(k)).



+ Can simulate some highly entangled computations including most 
quantum error-correction schemes.���
- Almost all single-qubit gates are non-Clifford gates.





partial success: high-degree graphs


Theorem [Brandão-Harrow, 1310.0017]


If H is a 2-local Hamiltonian on a D-regular graph of n 
qudits with H = 𝔼i»jHi,j and each ||Hi,j||≤1, then there 
exists a product state���
|ψ⟩ = |ψ1⟩ ­ … ­ |ψn⟩ such that





λmin ≤ ⟨ψ|H|ψ⟩ ≤ λmin 

+ O(d2/3 / D1/3)



Corollary


The ground-state energy can be approximated to accuracy���
O(d2/3 / D1/3) in NP.



interpretation: quantum PCP [tomorrow] impossible unless D = O(d2) 





intuition from physics: ���
 mean-field approximation



used in limit of high degree, e.g.
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graph
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clustered approximation


Given a Hamiltonian H on a graph G with vertices ���
partitioned into m-qudit clusters (X1, …, Xn/m), can ���
approximateλmin to error���
with a state that has no ���
entanglement between clusters.



X1


X3

X2



X4

 X5



good approximation if



1.   expansion is o(1)


2.   degree is high


3.   entanglement satisfies���

 subvolume law



�(Xi) = Pr
(u,v)2E

(v 62 Xi|u 2 Xi)



proof sketch



Chain rule Lemma: ���
I(X:Y1…Yk) = I(X:Y1) + I(X:Y2|Y1) + … + I(X:Yk|Y1…Yk-1)���
à I(X:Yt|Y1…Yt-1) ≤ log(d)/k for some t≤k.



Decouple most pairs by conditioning: ���
Choose i, j1, …, jk at random from {1, …, n} ���
Then there exists t<k such that



E
i,j,j1,...,jt

I(Xi : Xj |Xj1 . . . Xjt) 
log(d)

k

mostly following [Raghavendra-Tan, SODA ‘12] ���




E
i,j

I(Xi : Xj)q  log(d)

k

Discarding systems j1,…,jt causes error ≤k/n and leaves a 
distribution q for which



E
i⇠j

I(Xi : Xj)q  n

D

log(d)

k



Does this work quantumly?


What changes?


😊 Chain rule, Pinsker, etc, still work.


😧 Can’t condition on quantum information.


😥 I(A:B|C)ρ ≈ 0 doesn’t imply ρ is approximately separable���
[Ibinson, Linden, Winter ‘08]



Key technique: informationally complete measurement ���
maps quantum states into probability distributions with 
poly(d) distortion.





d-3 || ρ – σ ||1 ≤ || M(ρ) – M(σ) ||1 ≤ || ρ - σ ||1 

classical


variational


distance



quantum���
trace


distance



quantum���
trace


distance





Proof of qPCP no-go



1.  Measure εn qudits and condition on outcomes.���
Incur error ε.���




2.  Most pairs of other qudits would have mutual 
information ���
≤ log(d) / εD if measured.���




3.  Thus their state is within distance d2(log(d) / εD)1/2 of 
product.���




4.  Witness is a global product state.  Total error is���
ε + d2(log(d) / εD)1/2.���
Choose ε to balance these terms.





NP vs QMA


Here is the QCD 

Hamiltonian.  Can you 
decribe the 

wavefunction of the 
proton in a way that will 
let me compute its mass?







Greetings! The 
proton is the 
ground state 
of the u, u and 
d quarks.!

Can you give me some 
description I can use to 

get a 0.1% accurate 
estimate using fewer 

than 1050 steps?






No.!
I can, however, 
give you many 
protons, whose 
mass you can 
measure.!



better approximation?



Approximation quality depends on:


•  degree  (fixed)


•  average expansion (can change, but might always be high)


•  average entropy (can change, but might always be high)



improves with k

 need better ansatz, eg MPS


SDP relaxation ≤ true ground state energy ≤ variational bounds



- There is no guaranteed way to improve the approximation 
with a larger witness.



Can prove this finds a good product state when k ≫ poly(threshold rank).���
Clearly converges to the true ground state energy as kàn.



SDP hierarchy:


variables = {density matrices for all sets of ≤k qubits}


constraints = overlap compatibility + global PSD constraint (tomorrow)





quantifying entanglement


bipartite pure states – the nice case






•  λ1  ≥ λ2 ≥ … ≥ λd ≥ 0 determine equivalence under local unitaries


•  LOCC can modify λ according to majorization partial order


•  entanglement can be quantified by [Rènyi] entropies of λ



•  asymptotic entanglement determined by H(λ) = S(ψA) = S(ψB)���
“entropy of entanglement”  à entanglement as resource���
[Bennett, Bernstein, Popescu, Schumacher ‘95]
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mixed / multipartite


mixed-state and/or multipartite entanglement measures form a zoo


•  relating to pure bipartite entanglement (formation/distillation)


•  distance to separable states (relative entropy of entanglement, squashed ent.)


•  easy to compute but not operational (log negativity, concurrence)


•  operational but hard to compute (distillable key, geometric measure, tensor rank) 


•  not really measuring entanglement (ent. of purification, ent. of assistance)


•  regularized versions of most of the above



Brandão-Christandl-Yard ‘10

 Christandl ‘06



Generally “entropic” i.e. match on pure states.


Hopefully convex, continuous, monotonic, etc.





conditional mutual information ���
and Markov states



I(A:B|C) = H(A|C) + H(B|C) – H(AB|C)




= H(AC) + H(BC) – H(ABC) – H(C)




= ∑c p(C=c) I(A:B)p(⋅, ⋅|C=c)            only true classically! ���


≥ 0 

 

 

 

   still true quantumly



Classical


TFAE:


•  I(A:B|C)=0


•  p(a,b,c) = p1(c) p2(a|c) p3(b|c)


•  p = exp(HAC + HBC) for some HAC, HBC���

    [Hammersley-Clifford]


•  A & B can be reconstructed from C



Quantum



I(A:B|C)=0



⇢ABC =
X

i

pi↵
ACA,i ⌦ �BCB,i

C ⇠=
M

i

CA,i ⌦ CB,i

ρAB is separable



[Hayden, Jozsa, ���
Petz, Winter ‘04]





conditional mutual information


I(A:B|C)=0  ⇔ ρ is a Markov state 


I(A:B|C)=ε ⇔ ρ is an approximate Markov state?



I(A:B|C)p = minq Markov D(p || q)



Classical



I(A:B|C) small à can ���
approximately reconstruct ���
A,B from C.



Quantum



I(A:B|C)ρ ≤ minσ Markov D(ρ||σ)



I(A:B|C) can be ≪ RHS���
[Ibinson, Linden, Winter ’06]



ρAB can be far from separable���
in trace distance but not 1-LOCC���
distance. [Brandão,Christandl,Yard ‘10]



approximate reconstruction? [Winter]



application to Hamiltonians?


[Poulin, Hastings ‘10]  [Brown, Poulin ‘12]





approximate quantum Markov 
state



three possible definitions



1. I(A:B|C)ρ ≤ small



2. minσ Markov D(ρ||σ) ≤ small



3. reconstruction: ���
There exists a map T:CàBC 
such that T(ρAC) ≈ ρABC



ρAB is ���
≈ k-extendable
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dynamics



Can we simulate lightly entangled dynamics?


i.e. given the promise that entanglement is always “≤ k” is there���
a simulation that runs with overhead exp(k)?



Time evolution of quantum systems


d⇢

dt
= �i(H⇢� ⇢H) + noise terms that are linear in ⇢

noise per gate



0

 1


ideal���
QC



10-2-ish



FTQC���
possible



≈0.3

 classical���
simulation ���
possible

?

 ?





open question


If exponential quantum speedup/hardness is due to ���
entanglement, then can we make this quantitative?



Answer may include:


•  saving the theory of entanglement measures from itself


•  new classical ways to describe quantum states (e.g. MPS)


•  conditional mutual information


•  the right definition of “approximate quantum Markov states”




