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Entanglement

Original motivation for quantum computing [Feynman '82]

you de‘ ‘O ma!e a S|muL|lon Ol

Nature, you'd better make it
quantum mechanical, and by golly
it's a wonderful problem, because it
doesn't look so easy.

N systems in product state = O(N) degrees of freedom
N entangled systems > exp(N) degrees of freedom

Describes cost of simulating dynamics or even describing a state.

"This talk: can we do better when a system is

only lightly entangled?



success story: quantum circuits

n qubits

T gates

Classical simulation possible in time O(T)-exp(k), where

* k = treewidth [Markov-Shi ‘05]

* k = max # of gates crossing any single qubit
[Yoran-Short ‘06, Jozsa ‘06]

+ Complexity interpolates between linear and exponential.

— Treating all gates as “potentially entangling” is too pessimistic.



success story: 1-D systems

nqudits  Hy, S H

WES P n-1,n _

H=H,+H,;+ ..+ Hn_Ln

Classically easy to minimize energy, calculate tr e™/T, etc.

Quantumly QMA-complete to estimate ground-state energy
(to precision 1/poly(n) for H with gap 1/poly(n)).

[Landau-Vazirani-Vidick, '13]
n qudits with gap A and precision € -
runtime exp(exp(d/ A )log(n)) poly(l/ )

Extension to trees:
[Caramanolis, Hayden, Sigler]

infuition: Hastings ‘07, efc.
g exponential i efficient
spectral —>{  decay of 3 entanglement | __5, MPS
gap of H correlations area law decsription

Hastings ‘03 Branddo-Horodecki ‘12 Verstraete-Cirac ‘05



meta-strategy

YCl)'RE TRYING TO PREDICT THE BEHAVIOR
OF <COMPUCATED ‘1"f{!E;r"&>? TJUST MOPEL
ITAS A <SMFLE OF 5 AND THEN ADD
SOME SECOND“RYTERNS TO ACCOUNT'FOR
<COMPLICATIONS T. JUST THOUGHT OF >,
\
EASY, RGHT?
)
S0, WHY DOES <0uR FIELD > NEED
A WHOLE TOURNAL, ANYWAY?

solve trivial special case
(e.g. non-interacting theory)

treat corrections to theory
as perturbations

LIBERAL-ARTS MATORS MAY BE ANNOYING SOMETIMES,
BUT THERES NOTHING MORE QBNOXIOUS ‘IHAN
A PHYSICIST FIRST ENCOUNTERING A NEW SUBJECT.




partial success: stabilizer circuifs

exact version:
Clifford gates on n qubits = {U s.t. UPUt is a Pauli for all Paulis P}
Generated by various single-qubit gates and CNOTs.

[Gottesman-Knill ‘98] Clifford circuits simulable in time O(nT).
intuition: Paulis = F,2", Cliffords = Sp,(F,)

interpolation theorem [Aaronson-Gottesman '04] g
Circuits with k non-Clifford gates simulable in time O(nT exp(k)).

+ Can simulate some highly entangled computations including most
quantum error-correction schemes.

— Almost all single-qubit gates are non-Clifford gates.



partial success: high-degree graphs

Theorem [Brandao-Harrow, 1310.0017]

If His a 2-local Hamiltonian on a D-regular graph of n
qudits with H = E;_H;; and each [IH; ll<1, then there

I~J" "1
exists a product state

V) = 1Y) ® .. ® |, such that

Ain S CUIHIY) ¢ A, * O(d?3 / DVY3)

Corollary

The ground-state energy can be approximated to accuracy
O(d?”® / DY3) in NP.

interpretation: quantum PCP [fomorrow] impossible unless D = O(d?)



intuition from physics:
mean-feld approximation

used in limit of high degree, e.g.

1-D
2-D
Bethe
3-D lattice

Cayley
graph



clustered approximation

Given a Hamiltonian H on a graph G with vertices
partitioned intfo m-qudit clusters (X, ..., X,,,), can

. | S X 1/3
approximate A . to error, <d2 BeeL ( )%)

with a state that has no ; B m
entanglement between clusters.

DX — (v € X;|lu € X;)
ood approximation if
X X3 expansion is o(1)
X, : 2’ degree is high

entanglement satisfies
subvolume law



proof sketch

mostly following [Raghavendra-Tan, SODA '12]

Chain rule Lemma:
I(X:Y,.Y,) = IOKY,) + IOGY,IY) + v+ IOGY,IY,.Y, )
> I(X:Y,lY,...Y, ) < log(d)/k for some t<k.

Decouple most pairs by conditioning:
Choose i, j;, .. j, at random from {1, ..., n}

Then there exists t<k such that

log(d)
B T x
1,79J15--450t

Discarding systems j,,...,j; causes error <k/n and leaves a
distribution q for which

log(d | n log(d)
iEjI(X@-:Xj)q - gk( ) R =



Does this work quantumly?

What changes?
® Chain rule, Pinsker, etc, still work.
® can't condition on quantum information.

@ I(A:BIC), = O doesnt imply 0 is approximately separable
[Ibinson, Linden, Winter ‘08]

Key technique: informationally complete measurement

maps quantum states info probability distributions with
poly(d) distortion.

d3llp- ol <lIMp)-Mo)ll,<ll p- ol

quantum |

trace classical ?Udn’fum
[ iati race

distance variational

distance distance



Proof of qPCP no-go

. Measure € n qudits and condition on outcomes.
Incur error €.

. Most pairs of other qudits would have mutual
information
< log(d) / €D if measured.

. Thus their state is within distance d?(log(d) / € D)"? of
product.

. Witness is a global product state. Total error is
€ + d¥(log(d) / € D)“2.
Choose € to balance these terms.



NP vs QMA

I, U MASS J0U CaAN
: MEASURE.




better approximation?

— There is no guaranteed way to improve the approximation
with a larger witness.

Approximation quality depends on:

* degree (fixed)

* average expansion (can change, but might always be high)
 average entropy (can change, but might always be high)

SDP hierarchy:
= {density matrices for all sets of <k qubits}
= overlap compatibility + global PSD constraint (fomorrow)

Can prove this finds a good product state when k > poly(threshold rank).
Clearly converges to the true ground state energy as k—=>n.

SDP relaxation < frue ground state energy < variational bounds

improves with K need better ansatz, eq MPS



quantifying entanglement

bipartite pure states - the nice case

d d
¥y =) e

i=1 j=1

= Z Vi las) ® |b)

A, 2 A,2 .2 A 2 0 determine equivalence under local unitaries
* LOCC can modify A according to majorization partial order
 entanglement can be quantified by [Renyi] entropies of A

« asymptotic entanglement determined by H(A1) = S(¢¥#) = S(¢¥8)
“entropy of entanglement” - entanglement as resource
[Bennett, Bernstein, Popescu, Schumacher '95]



mixed / multipartite

mixed-state and/or multipartite entanglement measures form a zoo

relating to pure bipartite entanglement (formation/distillation)

distance to separable states (relative entropy of entanglement, squashed ent.)
easy to compute but not operational (log negativity, concurrence)

operational but hard to compute (distillable key, geometric measure, tensor rank)
not really measuring entanglement (ent. of purification, ent. of assistance)
regularized versions of most of the above

Generally “entropic” i.e. match on pure states.
Hopefully convex, continuous, monotonic, efc.

Branddo-Christandl-Yard ‘10

Christandl '06



conditional mutual information
and Markov states

I(A:BIC) = H(AIC) + H(BIC) - H(ABIC)
= H(AC) + H(BC) - H(ABC) - H(C)

= 3, p(C=c) I(A:B),(., .1ceq) only true classically!
20 still true quantumly
Classical Quantum
TFAE:
. I(A:BIC)=0 I(A:BIC)=0
. P(Cl,b,C) - Pl(c) Pz(alc) P3(b|c) [Haydenf Jozs‘a,
* p = exp(Hac + Hgo) for some Hac, Hgc Beg e 104]
[Hammersley-Clifford] O = @ o Cx

e A & B can be reconstructed from C

(
ABC ACN N o
p ZE [l Q 075
i

o A8 is separable



conditional mutual information

I(A:B|C)=0 ¢ p is a Markov state
I(A:BIC)=¢ < p is an approximate Markov state?

Classical Quantum

: I(A:BIC) , < ming pukow D(O IO
I(A:BIC), = Ming marker D(P Il Q) (A:BIC), < MiNg ooy D(O110)

I(A:BIC) can be <€ RHS

I(A:B|C) small = can [Ibinson, Linden, Winter ‘06]
approximately reconstruct
A,B from C. 0 "B can be far from separable

in trace distance but not 1-LOCC
distance. [Branddo,Christandl,Yard ‘10]

approximate reconstruction? [Winter]

application to Hamiltonians?
[Poulin, Hastings '10] [Brown, Poulin '12]



conjecture [Winter]

approximate quantum Markov

state

three possible definitions

1. I(A:BIC), < small

2. MiNg parkoy PO 1107) < small

3. reconstruction:
There exists a map T:C>BC
such that T(,0#¢) = pABC

,OAB is
~ Kk-extendable



dynamics

Time evolution of quantum systems

d
d_lz(t) = —i(Hp — pH) + noise terms that are linear in p

Can we simulate lightly entangled dynamics?

i.e. given the promise that entanglement is always "< k” is there
a simulation that runs with overhead exp(k)?

noise per gate

. 0 :
0 10-2-ish ‘ i ’ ~0.3 classical 1
¢ simulation
: FTQC y :
ideal
QcC possible ? relole




open question

If exponential quantum speedup/hardness is due to
entanglement, then can we make this quantitative?

Answer may include:
* saving the theory of enfanglement measures from itself

* new classical ways to describe quantum states (e.g. MPS)
« conditional mutual information

 the right definition of “approximate quantum Markov states”



