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a theorem
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a theorem

The [capacity of afngisy’channell equals the
maximum over input distributions of the mufual
information between input and output.

[Shannon ‘49]



2->4 norm

Define ||x||p := (E, Ix[P)vp
Let AcRmxn,
AL, ., := max ¢ llAxIl, : [IxIl, = 1}

How hard is it to estimate this?
4
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optimization problem over a degree-4 polynomial



SDP relaxation for 2->4 norm
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where L is a linear map from deg <k polys to R

L[1] =1
L[p(x) (E; x2 = 1)] =0 if p(x) has degree < k-2
L[p(x)?] > O if p(x) has degree < k/2

Converges to correct answer as k—>co. [Parrilo ‘00, Lasserre ‘O1]

Runs in time noW®



Why is this an SDP?

Constraint: L[p(x)?] > O whenever deg(p) < k/2

p(x) = 2, P e (oz L a)
a; 20
2o, < k/2

LIp(x)2] = 24 5 LIX**#] py Py

>0 for all p(x) iff
M is positive semi-definite (PSD),
where M, 5 = L[x**5]



Why care about 2->4 norm?

Unique Games (UG):
Given a system of linear equations: x; - x; = a; mod k.
Determine whether 21-¢ or <¢ fraction are satisfiable.

Small-Set Expansion (SSE):
Is the minimum expansion of a set with <dn vertices >1-€ or <e?

O
UG = SSE < 2->4

G = normalized adjacency matrix
P, = largest projector s.t. G 2 AP

All sets of volume < ¢ have expansion > 1 - \OW
iff
P, < 1/6°W



quantum states

Pure states

* A quantum (pure) state is a unit vector v&C"

 Given states v&C™ and w&(C", their joint state is
veOwEC™, defined as (v®w), ; = v; w;.

° u is entangled iff it cannot be written as u = v®w.

Density matrices

» 0 satisfying 020, tr[ o ]=1

* extreme points are pure states, i.e. vv'.

* can have classical correlation and/or quantum entanglement

correlated entangled
epey @ epey + e1e]  ere] (60 ®eg+e1& 61) (60 e+ 61)*
2 V2 V2




when IS a mixed state
entangled?

Definition: o is separable (i.e. not entangled)
if it can be written as

O =2pVviVi ®ww

Sep = conviw ® ww'}

probability

distribution  Unif vecfors

Weak membership problem: Given 0 and the promise that
0 ESep or p is far from Sep, determine which is the case.

Optimization: he, (M) := max { tr[Mp]: o ESep }

Sep



monogamy of entanglement

Physics version: 0 “E¢ a state on systems ABC
AB entanglement and AC entanglement trade off.

"proof”: If p "B is very entangled, then measuring B can
reduce the entropy of A, so 0#¢ cannot be very entangled.

Par’rial trace: 08 = tr. o ABC

ABC
'021,’62731732 ' Z p117i2,i3;j1,j2,i3

Works for any basis of C. Interpret as different choices
of measurement on C.




A hierachy of tests for
entanglement

Definition: 0 A is k-extendable if there exists an extension
pABl---Bk with pAB _— pABi for each i.

all quantum states (= 1-extendable)
2-extendable

100-extendable

separable =
co-extendable

Algorithms: Can search/optimize over k-extendable states in time n°®.

Question: How close are k-extendable states to separable states?




2->4 norm = h
A=2 e al

Sep

=F a a' ©® a. a7
Easy direction: M = E; g g a; G

hgep 2 2->4 norm

|Az|[d = E{as, z) = trMp

(2

| All24 = hsep(M)

0 =XX ® XX

Harder direction:
2->4 norm 2 hg,,
Given an arbitrary M, can we make it look like E; a.a” ® aa” ?

Answer: yes, using techniques of [H, Montanaro; 1001.0017]



the dream
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= algorithms

..quasipolynomial (=exp(polylog(n)) upper and lower bounds for unique games



progress so far
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SSE hardness??

1. Estimating hg,,(M) + 0.1 for n-dimensional M is at least

as hard as solvmg 3-SAT instance of length =log?(n).
[H.-Montanaro 1001.0017] [Aaronson-Beigi-Drucker-Fefferman-Shor 0804.0802]

2. The Exponential-Time Hypothesis (ETH) implies a lower

bound of Q(n'°9) for hsep(M).

". lower bound of Q(nl°s) for estimating [|All,_,, for
some family of projectors A.

4. These A might not be P,; for any graph G.

5. (Still, first proof of hardness for
constant-factor approximation of |I-l,5,).




positive results about
hierarchies: 1. use dual

Primal: max L[f(x)] over L such that

L is a linear map from deg <k polys to R
L[1] =1

L{p(x) (2, x2 - 1)] =0

L[p(x)?] 2 O

Dual: min A such that
f(x) + p(x) (E; Xl S
for some polynomials p(x), {qi(x)} s.t. all degrees are < k.

Interpretation: "Prove that f(x) is < A using only the
facts that E, x.2 = 1 = 0 and sum of square (SOS)
polynomials are >0. Use only terms of degree <k. “

"Positivestellensatz” [Stengel '74]



SoS proof example

z2<z > 0<z«1

Axiom: z2 < z Derive: z < 1

l1-z=2z - 2% + (1-2)?
> Zi=l7e (non-negativity of squares)
20 (axiom)



SoS proof of hypercontractivity

Hypercontractive inequality:
_et f:{0,1}"—R be a polynomial of degree <d. Then
IF1l, < 99/ lIFll,.

equivalently:
IP,II,., ¢ 994 where P, projects onto deg <d polys.

Proof:
uses induction on n and Cauchy-Schwarz.
Only inequality is q(x)? > O.

Implication: SDP returns answer <94 on input P,



SoS proofs of UG soundness

[BBHKSZ '12]

Result: Degree-8 SoS relaxation refutes UG instances
based on long-code and short-code graphs

Proof: Rewrite previous soundness proofs as SoS proofs.

Ingredients:
1. Cauchy-Schwarz / Holder UG Integrality Gap:

2. Hypercontractive inequality Feasible SDP solution
3. Influence decoding

4. Independent rounding
5. Invariance principle

SoS upper bound

Upper bound to actual solutions

actual solutions



positive results about
hierarchies: 2. use g. info

Idea: [Branddo-Christandl-Yard ‘10] [Branddo-H. '12]

Monogamy relations for entanglement imply performance
bounds on the SoS relaxation.

Proof sketch:

o is k-extendable, lives on AB, ... B,.

M can be implemented by measuring Bob, then Alice. (1-LOCC)
Let measurement outcomes be X,Y,,...,Y,.

Then

log(n) > I(X:Y,...Y,) = I(X:Y,) + I(X:YLlY) + .o + I(X:Y, Y. Y, )

..algebra...

hsep(M) < hy_oxi(M) < hg, (M) + c(log(n) / k)¥2



Alternate perspective

For i=l,... kK
* Measure B..
« If entropy of A doesnt change, then A:B, are =product.
* If entropy of A decreases, then condition on B..

i DAMNED
if you dorrt

“C’'mon, ¢'mon — it's either one or the other.”




the dream: quanfum proofs
for classical algorithms

Information-theory proofs of de Finetti/monogamy,
e.g. [Brandao-Christandl-Yard, 1010.1750] [Brandao-H., 1210.6367]

eep(M) € hyexi(M) € B, (M) + (log(n) / )72 [IMI
if ME1-LOCC

. Constant-factor approximation in time nO(log)?

. Problem: [IMI| can be > hg,(M). Need multiplicative
approximaton or we lose dim factors.

. Still yields subexponential-time algorithm.




SDPs in quantum information

1. Goal: approximate Sep
Relaxation: k-extendable + PPT
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2. Goal: A, for Hamiltonian on n qudits
Relaxation: L : k-local observables 2> R
such that L[X*X] > O for all k/2-local X.

3. Goal: entangled value of multiplayer games
Relaxation: L : products of <k operators 2 R
such that L[ptp] > O V noncommutative poly p of degree < Kk,
and operators on different parties commute.

Non-commutative positivstellensatz [Helton-McCullough ‘04]
relation between these? tools to analyze?



questions

We are developing some vocabulary for understanding
these hierarchies (SoS proofs, quantum entropy, etc.).
Are these the right terms?

Are they on the way fo the right terms?

Unique games, small-set expansion, eftc:
quasipolynomial hardness and/or algorithms

Relation of different SDPs for quantum states.
More tools to analyze #2 and #3.






Why is this an SDP?
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