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motivation/warmup �
nonlinear optimization --> convex optimization �
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a harder problem�
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SepSym(n,n) = conv {xxT ⊗ xxT : x∈Sn} �

= max{hM,�i : � 2 SepSym(n, n)}



polynomial optimization �
D(n)n = conv {xxT : x∈Sn} �

SepSym(n,n) = conv {xxT ⊗ xxT : x∈Sn} �

EASY�

HARD �
≈ tensor norms ≈ 2->4 norm ≈ small-set expansion �

need to find�
relaxation! �



k-extendable relaxation �
want  σ∈SepSym(n,n) = conv {xxT ⊗ xxT : x∈Sn} �

ideally� ⇢̃i1...ik,j1...jk = xi1 · · ·xikxj1 · · ·xjk

∀π,π’∈Sk �

relax to �

⇢̃i1...ik,j1...jk = ⇢̃i⇡(1)...i⇡(k),j⇡0(1)...j⇡0(k)

⇢̃ 2 D(nk)

recover ρ∈ D(n2)�

⇢i1i2,j1j2 =
X

i3,...,ik

⇢̃i1i2i3...ik,j1j2i3...ik

why?  �
1.  partial trace = quantum analogue of marginal distribution �
2.  using ∑ixi

2 = 1 constraint �



why should this work?�

physics explanation: �
“monogamy of entanglement”�
only separable states are infinitely sharable�

math explanation: �
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convergence rate�

dist(k-extendable, SepSym(n,n)) = f(k,n) = ??�

run-time = nO(k)�

trace dist(ρ,σ) = max0≤M≤I hM,ρ-σi ～ n/k � à nO(n) time �

[Brandão, Christandl, Yard; STOC ‘11] �
distance ～ (log(n)/k)1/2 �
for M that are 1-LOCC�
à time nO(log(n))�

Def of 1-LOCC�
M = ∑i Ai ⊗ Bi such that �
0 ≤ Ai ≤ I �
0 ≤ Bi�
∑i Bi = I �

Pr[i] = �
hI⊗Bi,ρi  

ρ�

i�

Pr[accept | i] = �
 hAi⊗Bi,ρi    / Pr[i]  



our results �
1.  simpler proof of BCY 1-LOCC bound�
2.  extension to multipartite states�
3.  dimension-independent bounds if Alice is non-adaptive�
4.  extension to non-signaling distributions�
5.  explicit rounding scheme�
6.  (next talk) version without symmetry �

applications �

1.  optimal algorithm for degree-√n poly optimization (assuming ETH)�
2.  optimal algorithm for approximating value of free games�
3.  hardness of entangled games�
4.  QMA = QMA with poly(n) unentangled Merlins & 1-LOCC measurements�
5.  “pretty good tomography” without independence assumptions�
6.  convergence of Lasserre�
7.  multipartite separability testing �



proof sketch�

ρ�

b �a�

Pr[accept | a,b] = γab �

Pr[a,b] = h½, Aa ­ Bbi  

 Further restrict to LO measurements�

exact solutions (ρ∈SepSym):�
Pr[a,b] = ∑λi qi(a) ri(b)�

∑a Aa = I �
∑b Bb = I �

M = ∑a,b Υab Aa ⊗ Bb �

0 ≤ Υab ≤ 1 �

Goal: max ∑a,b Pr[a,b] γa,b �



rounding �

exact solutions (ρ∈SepSym):�
Pr[a,b] = ∑λi qi(a) ri(b)�

∑a Aa = I �

∑b Bb = I �

M = ∑a,b Υab Aa ⊗ Bb �

0 ≤ Υab ≤ 1 �
Pr[a,b] = h½, Aa ­ Bbi  

Goal: max ∑a,b Pr[a,b] γa,b �

proof idea�
•  good approximation if �

Pr[a,b1] ≈ε Pr[a] ⋅ Pr[b1] �
•  otherwise�

H(a|b1) < H(a) – ε2 �

relaxation �

Pr[a, b] =
X

b2,...,bk

pa,b,b2,...,bk

pa,b1,...,bk =

h⇢̃, Aa ⌦Bb1 ⌦ · · ·⌦Bbki



information theory�

log(n) ≥ I(a:b1 … bk)�
= I(a:b1) + I(a:b2|b1) + … + I(a:bk|b1…bk-1)�

∴ I(a:bj|b1…bj-1) ≤ log(n)/k  for some j�

∴ρ≈Sep for this particular measurement �

Note: Brandão-Christandl-Yard based on quantum version of I(a:b|c).�

[Raghavendra-Tan, SODA ’12] �



open questions�
1.  Improve 1-LOCC to SEP�

would imply QMA = QMA with poly(n) Merlins�
and quasipolynomial-time algorithms for tensor problems�

2.  Better algorithms for small-set expansion / unique games�

3.  Make use of “partial transpose” symmetry�

4.  Understand quantum conditional mutual information �

5.  extension to entangled games that would yield�
NEXP ⊆ MIP*. (see paper)�

6.  More counter-examples / integrality gaps.�


