A quantum e-meter
Detecting pure entanglement is easy, so detecting mixed entanglement is hard

Aram Harrow (University of Washington)
and
Ashley Montanaro (University of Cambridge)
arXiv:1001.0017

Waterloo IQC
9 Apr, 2012
Testing pure state entanglement is easy

Testing mixed-state entanglement is hard
The basic problem

Given a quantum state, is it entangled?
The basic problem

Given a quantum state, is it entangled?

This can mean two different things:

- **Pure product** states are of the form

 \[|\psi_1\rangle \langle \psi_1| \otimes |\psi_2\rangle \langle \psi_2| \otimes \cdots |\psi_k\rangle \langle \psi_k| \].

 For pure states, **entangled** = not product.

- **Sep** = \{**Separable states**\} = convex hull of product states. For mixed states, **entangled** = not separable.
Variants

- Pure- or mixed-state entanglement?
- Are we given 1 copy, k copies, or an explicit description?
- Bipartite or multipartite?
- How much accuracy is necessary?
- Are we detecting entanglement in general or verifying a specific state?
Variants

- Pure- or mixed-state entanglement?
- Are we given 1 copy, k copies, or an explicit description?
- Bipartite or multipartite?
- How much accuracy is necessary?
- Are we detecting entanglement in general or verifying a specific state?

This talk

1. Pure state, two copies, constant accuracy
2. Mixed state, explicit description, constant accuracy
Our main result

Let $|\psi\rangle \in \mathbb{C}^{d^k}$ be a pure state on k d-dimensional systems and

$$1 - \epsilon = \max \left\{ |\langle \psi | \phi \rangle|^2 : |\phi\rangle \text{ is a product state} \right\}.$$

Theorem

There exists a product test which, given $|\psi\rangle \otimes |\psi\rangle$, accepts with probability $1 - \Theta(\epsilon)$.

Note: no dependence on k or d.

The test takes time $O(k \log d)$.

One copy of $|\psi\rangle$ contains no information about ϵ.

Our test is optimal among all tests that always accept product states.

It was previously proposed by [Mintert-Kuš-Buchleitner '05] and implemented experimentally by [Walborn et al '06]. Our theorem was conjectured by [Montanaro-Osborne '09].
Our main result

Let $|\psi\rangle \in \mathbb{C}^{d^k}$ be a pure state on $k d$-dimensional systems and

$$1 - \epsilon = \max \{|\langle \psi | \phi \rangle|^2 : |\phi\rangle \text{ is a product state}\}.$$

Theorem

There exists a product test which, given $|\psi\rangle \otimes |\psi\rangle$, accepts with probability $1 - \Theta(\epsilon)$.

- Note: no dependence on k or d.
- The test takes time $O(k \log d)$.
- One copy of $|\psi\rangle$ contains no information about ϵ.
- Our test is optimal among all tests that always accept product states.
- It was previously proposed by [Mintert-Kuś-Buchleitner '05] and implemented experimentally by [Walborn et al '06]. Our theorem was conjectured by [Montanaro-Osborne '09].
Key primitive

SWAP test

Accept if the outcome of the measurement is “0”, reject if not.

The probability of accepting is \(\frac{1 + \text{tr } \rho \sigma}{2}\).

If \(\rho = \sigma\), then this is related to \(\text{tr } \rho^2\), which is the purity of \(\rho\).

As demonstrated by John Travolta.
Testing productness

Product test algorithm

Accept iff all n swap tests pass.

Why it works: If $|\psi\rangle$ is entangled, some of its subsystems must be mixed and so some swap tests are likely to fail.
Maximum vs. average entanglement

Lemma

Let \(P_{\text{test}}(\rho) \) be the probability that the product test passes on input \(\rho \). Then

\[
P_{\text{test}}(\rho) = \frac{1}{2^k} \sum_{S \subseteq [k]} \text{tr} \rho_S^2.
\]

Measures average purity of the input \(|\psi\rangle \) across bipartitions.

\(P_{\text{test}}(\rho) = 1 \) if and only if \(\rho \) is a pure product state.

Main result rephrased: "If the average entanglement across bipartitions of \(|\psi\rangle \) is low, \(|\psi\rangle \) must be close to a product state."

Similarly \(P_{\text{test}}(\rho) \) is related to the average overlap of \(\rho \) with a random product state.

The purity of \(D \otimes k \frac{1}{\sqrt{d}+1} (\rho) \).
Maximum vs. average entanglement

Lemma

Let $P_{\text{test}}(\rho)$ be the probability that the product test passes on input ρ. Then

$$P_{\text{test}}(\rho) = \frac{1}{2^k} \sum_{S \subseteq [k]} \text{tr} \rho_S^2.$$

- Measures average purity of the input $|\psi\rangle$ across bipartitions.
- $P_{\text{test}}(\rho) = 1$ if and only if ρ is a pure product state.
- Main result rephrased: “If the average entanglement across bipartitions of $|\psi\rangle$ is low, $|\psi\rangle$ must be close to a product state.”
- Similarly $P_{\text{test}}(\rho)$ is related to
 - The average overlap of ρ with a random product state.
 - The purity of $D_{1/\sqrt{d+1}}^\otimes k(\rho)$.
Generalization: stability of the depolarizing channel

Consider the qudit depolarizing channel with noise rate $1 - \delta$, i.e.

$$\mathcal{D}_\delta(\rho) = (1 - \delta)(\text{tr} \rho) \frac{I}{d} + \delta \rho.$$
Generalization: stability of the depolarizing channel

Consider the qudit depolarizing channel with noise rate $1 - \delta$, i.e.

$$D_\delta(\rho) = (1 - \delta)(\text{tr} \rho) \frac{I}{d} + \delta \rho.$$

It turns out that

$$\text{tr}(D_\delta \otimes^k (\rho))^2 \propto \sum_{S \subseteq [k]} \gamma^{|S|} \text{tr} \rho^2_S,$$

for some constant γ depending on δ and d.
Generalization: stability of the depolarizing channel

Consider the qudit depolarizing channel with noise rate $1 - \delta$, i.e.

$$D_\delta(\rho) = (1 - \delta)(\text{tr } \rho) \frac{I_d}{d} + \delta \rho.$$

It turns out that

$$\text{tr}(D_\delta^{\otimes k}(\rho))^2 \propto \sum_{S \subseteq [k]} \gamma^{|S|} \text{tr } \rho_S^2,$$

for some constant γ depending on δ and d.

A generalized version of our main result is that:

- For small enough δ...
Generalization: stability of the depolarizing channel

Consider the qudit depolarizing channel with noise rate $1 - \delta$, i.e.

$$D_\delta(\rho) = (1 - \delta)(\text{tr}\ \rho) \frac{I}{d} + \delta \rho.$$

It turns out that

$$\text{tr}(D_\delta^\otimes k(\rho))^2 \propto \sum_{S \subseteq [k]} \gamma^{|S|} \text{tr} \rho_S^2,$$

for some constant γ depending on δ and d.

A generalized version of our main result is that:

- For small enough δ...
- ...if $\text{tr}(D_\delta^\otimes k |\psi\rangle\langle\psi|)^2 \geq (1 - \epsilon) \text{tr}((D_\delta(|0\rangle\langle0|)^\otimes k)^2$...
Generalization: stability of the depolarizing channel

Consider the qudit depolarizing channel with noise rate $1 - \delta$, i.e.

$$D_\delta(\rho) = (1 - \delta)(\text{tr} \, \rho) \frac{I}{d} + \delta \rho.$$

It turns out that

$$\text{tr}(D_\delta^\otimes k(\rho))^2 \propto \sum_{S \subseteq [k]} \gamma^{|S|} \text{tr} \rho_S^2,$$

for some constant γ depending on δ and d.

A generalized version of our main result is that:

- For small enough δ...
- ...if $\text{tr}(D_\delta^\otimes k |\psi\rangle\langle \psi|)^2 \geq (1 - \epsilon) \text{tr}((D_\delta(|0\rangle\langle 0|)^\otimes k)^2$...
- ...there is a product state $|\phi_1, \ldots, \phi_k\rangle$ such that $|\langle \psi|\phi_1, \ldots, \phi_k\rangle|^2 \geq 1 - O(\epsilon)$.

This is a stability result for this channel.
Generalization: stability of the depolarizing channel

Consider the qudit depolarizing channel with noise rate \(1 - \delta \), i.e.

\[
D_\delta(\rho) = (1 - \delta)(\text{tr} \rho) \frac{I_d}{d} + \delta \rho.
\]

It turns out that

\[
\text{tr}(D_\delta \otimes^k (\rho))^2 \propto \sum_{S \subseteq [k]} \gamma^{|S|} \text{tr} \rho^2_S,
\]

for some constant \(\gamma \) depending on \(\delta \) and \(d \).

A generalized version of our main result is that:

- For small enough \(\delta \)...
- ...if \(\text{tr}(D_\delta \otimes^k |\psi\rangle\langle\psi|)^2 \geq (1 - \epsilon) \text{tr}((D_\delta (|0\rangle\langle0|) \otimes^k)^2) \)...
- ...there is a product state \(|\phi_1, \ldots, \phi_k\rangle \) such that

\[
|\langle \psi | \phi_1, \ldots, \phi_k \rangle|^2 \geq 1 - O(\epsilon).
\]

This is a stability result for this channel.
Outline

1. Testing pure state entanglement is easy
2. Testing mixed-state entanglement is hard
Separable states

Definition

\(\text{Sep}^k(d) \) := conv\{\(\psi_1 \otimes \cdots \otimes \psi_k : |\psi_1\rangle, \ldots, |\psi_k\rangle \in S(\mathbb{C}^d) \}\)

\(\psi := |\psi\rangle\langle\psi| \text{ and } S(\mathbb{C}^d) := \text{unit vectors.} \)
Separable states

Definition

\[\text{Sep}^k(d) := \text{conv}\{\psi_1 \otimes \cdots \otimes \psi_k : |\psi_1\rangle, \ldots, |\psi_k\rangle \in S(\mathbb{C}^d)\} \]

\[\psi := |\psi\rangle\langle\psi| \quad \text{and} \quad S(\mathbb{C}^d) := \text{unit vectors}. \]

Two related tasks

1. **Weak membership:** Given \(\rho \) and the promise that either \(\rho \in \text{Sep}^k(d) \) or \(\rho \) is \(\epsilon \)-far from \(\text{Sep}^k(d) \), determine which is the case.

2. **Weak optimization:** Given \(0 \leq M \leq I \), approximately compute

\[h_{\text{Sep}^k(d)}(M) := \max_{\rho \in \text{Sep}^k(d)} \text{tr} M \rho. \]

Approximate equivalence proved by [Grötschel-Lovász-Schrijver], [Liu: 0712.3041] and [Gharibian: 0810.4507].
Estimating $h_{\text{Sep}}^2(d)(\cdot)$.

Weak membership for $h_{\text{Sep}}^2(d)$.

$\text{QMA}_{\log(2)} 1-\epsilon,1$

Computing $\max \sum_{i,j,k} A_{ijk} x^i y^j z^k$ over unit vectors $\vec{x}, \vec{y}, \vec{z}$.

Estimating the minimum entanglement of any state in a subspace of a bipartite space.

Estimating the capacity or minimum output entropy of a noisy quantum channel.

Estimating superoperator norms.

Estimating the ground-state energy of a mean-field Hamiltonian.
Mean-field Hamiltonians

For $M \in \mathcal{L}(\mathbb{C}^d \otimes \mathbb{C}^d)$, define $H \in \mathcal{L}((\mathbb{C}^d)^\otimes n)$ by

$$H = \frac{-1}{n(n-1)} \sum_{1 \leq i \neq j \leq n} M^{(i,j)}.$$

[Fannes-Vanderplas; quant-ph/0605216] showed that the ground state energy is $\approx - \max_{\rho \in \text{Sep}} \text{tr} \ M \rho = - h_{\text{Sep}^2(d)}(M)$.
Quantum Merlin-Arthur games

The complexity class QMA is like NP but with a quantum proof and a quantum poly-time verifier, and with some probability of error allowed.

Completeness: For YES instances, there exists a witness $|\psi\rangle$ that Arthur accepts with probability $\geq c$.

Soundness: For NO instances, there is no witness $|\psi\rangle$ that Arthur accepts with probability $\geq s$.

What this means: Arthur’s measurement is parametrized by the input, and Merlin is trying to convince Arthur to accept.
Quantum Merlin-Arthur games

QMA(\(k\)) is a variant where Arthur has access to \(k\) unentangled Merlins.

More generally, **QMA\(_m(k)\)\(_s,c\)** means that there are \(k\) messages, each with \(m\) qubits (i.e. dimension \(2^m\)).
QMA$_m(k)$ as an optimization problem

Arthur’s measurement is a 2^{km}-dimensional matrix M with $0 \leq M \leq I$.

QMA$_m(k)_{s,c} =$ determine whether

$$\max_{|\psi\rangle = |\psi_1\rangle \otimes \cdots \otimes |\psi_k\rangle} \langle \psi | M | \psi \rangle$$

is $\geq c$ or $\leq s$.

When $k = 1$, this is an eigenvalue problem with a $\exp(m)$-time algorithm.

For $k > 1$, this problem is to estimate

$$h_{\text{Sep}^k(2^m)}(M)$$

When $k = 2$, no $\exp(m)$ time algorithm is known, so even QMA$\log(2)$ is not likely to be in BQP.
Hardness? Algorithms?

Input: $0 \leq M \leq I$.

- NP-hard to estimate $h_{\text{Sep}^2(n)}(M) \pm 1/n^{1.01}$.

 [Gurvits, Blier-Tapp, Gharibian, Hillar-Lim, Le Gall-Nakagawa-Nishimura]
Input: $0 \leq M \leq I$.

1. **NP-hard** to estimate $h_{\text{Sep}^2(n)}(M) \pm 1/n^{1.01}$.
 - [Gurvits, Blier-Tapp, Gharibian, Hillar-Lim, Le Gall-Nakagawa-Nishimura]

2. **Algorithm** to estimate $h_{\text{Sep}^2(n)}(M) \pm \epsilon \text{ tr } M$.
 - Runs in time $n^{\text{poly}(1/\epsilon)}$.
 - [de la Vega et al.](see also [Shi-Wu; 1112.0808])

This work: NP-log_2-hard to estimate $h_{\text{Sep}^2(n)}(M) \pm 0.99$.

Assuming the Exponential Time Hypothesis, this implies an $n^{\sim \Omega(\log(n))}$ lower bound on constant-error approximations to $h_{\text{Sep}^2(n)}(\cdot)$.
Input: $0 \leq M \leq I$.

1. **NP-hard** to estimate $h_{\text{Sep}^2 (n)} (M) \pm 1/n^{1.01}$.

 [Gurvits, Blier-Tapp, Gharibian, Hillar-Lim, Le Gall-Nakagawa-Nishimura]

2. Algorithm to estimate $h_{\text{Sep}^2 (n)} (M) \pm \epsilon \text{ tr } M$.

 - Runs in time $n^{\text{poly}(1/\epsilon)}$.
 - [de la Vega et al.](see also [Shi-Wu; 1112.0808])

3. Algorithm to estimate $h_{\text{Sep}^2 (n)} (M) \pm \epsilon$

 - Runs in time $n^{O(\log n)/\epsilon^2}$
 - Requires that M is 1-LOCC: i.e. $M = \sum_i A_i \otimes B_i$ with $A_i, B_i \geq 0$, $\sum_i A_i \leq I$, $B_i \leq I$.
 - [Brandão-Christandl-Yard:1010.1750]
Input: $0 \leq M \leq I$.

1. **NP-hard** to estimate $h_{\text{Sep}^2(n)}(M) \pm 1/n^{1.01}$.
 [Gurvits, Blier-Tapp, Gharibian, Hillar-Lim, Le Gall-Nakagawa-Nishimura]

2. **Algorithm** to estimate $h_{\text{Sep}^2(n)}(M) \pm \epsilon \text{ tr } M$.
 - Runs in time $n^{\text{poly}(1/\epsilon)}$.
 - [de la Vega et al.](see also [Shi-Wu; 1112.0808])

3. **Algorithm** to estimate $h_{\text{Sep}^2(n)}(M) \pm \epsilon$
 - Runs in time $n^{O(\log n)/\epsilon^2}$
 - Requires that M is 1-LOCC: i.e. $M = \sum_i A_i \otimes B_i$ with $A_i, B_i \geq 0$, $\sum_i A_i \leq I$, $B_i \leq I$.
 - [Brandão-Christandl-Yard:1010.1750]

4. **NP-hard** to estimate $h_{\text{Sep}^{\sqrt{n} \text{ poly log } n}}(n)(M) \pm 0.99$. [0804.0802]
Input: $0 \leq M \leq I$.

1. **NP-hard** to estimate $h_{\text{Sep}^2(n)}(M) \pm 1/n^{1.01}$.
 [Gurvits, Blier-Tapp, Gharibian, Hillar-Lim, Le Gall-Nakagawa-Nishimura]

2. **Algorithm** to estimate $h_{\text{Sep}^2(n)}(M) \pm \epsilon \text{ tr } M$.
 - Runs in time $n^{\text{poly}(1/\epsilon)}$.
 - [de la Vega et al.](see also [Shi-Wu; 1112.0808])

3. **Algorithm** to estimate $h_{\text{Sep}^2(n)}(M) \pm \epsilon$
 - Runs in time $n^{O(\log n)/\epsilon^2}$
 - Requires that M is 1-LOCC: i.e. $M = \sum_i A_i \otimes B_i$ with $A_i, B_i \geq 0$, $\sum_i A_i \leq I$, $B_i \leq I$.
 - [Brandão-Christandl-Yard:1010.1750]

4. **NP-hard** to estimate $h_{\text{Sep}^\sqrt{n \log \log n}}(M) \pm 0.99$. [0804.0802]

5. **This work:** NP_{log^2}-hard to estimate $h_{\text{Sep}^2(n)}(M) \pm 0.99$.

Assuming the Exponential Time Hypothesis, this implies an $n^{\tilde{\Omega}(\log(n))}$ lower bound on constant-error approximations to $h_{\text{Sep}^2(n)}(\cdot)$.

What our product test implies about QMA(k)

Theorem (2 provers can simulate k provers)

$$\text{QMA}_m(k)_{s=1-\epsilon,c} \subseteq \text{QMA}_{mk}(2)_{1-\frac{\epsilon}{50},c}$$

Proof.

- If the QMA(k) protocol had proofs $|\psi_1\rangle, \ldots, |\psi_k\rangle$ then simulate in QMA(2) by asking each prover to submit $|\psi_1\rangle \otimes \cdots \otimes |\psi_k\rangle$.
- Then use the product test to verify that they indeed submit product states.
What our product test implies about $\text{QMA}(k)$

Theorem (2 provers can simulate k provers)

$$\text{QMA}_m(k)_{s=1-\epsilon,c} \subseteq \text{QMA}_{mk}(2)_{1-\frac{\epsilon}{50},c}$$

Proof.

- If the $\text{QMA}(k)$ protocol had proofs $|\psi_1\rangle, \ldots, |\psi_k\rangle$ then simulate in $\text{QMA}(2)$ by asking each prover to submit $|\psi_1\rangle \otimes \cdots \otimes |\psi_k\rangle$.
- Then use the product test to verify that they indeed submit product states.

Corollary: $3\text{-SAT} \in \text{QMA}_{\sqrt{n} \text{poly log}(n)}(2)^{0.99,1}$.

Corollary: Estimating $h_{\text{Sep}^k(d)}(\cdot)$ reduces to estimating $h_{\text{Sep}^2(d^k)}(\cdot)$.
Hardness of separability testing

Let K be a set that approximates $\text{Sep}^2(d)$.

Things we want

1. K is convex.
2. Hausdorff distance from K to $\text{Sep}^2(d)$ is ≤ 0.99.
3. Weak membership for K (with error ϵ) can be performed in time $\text{poly}(d, 1/\epsilon)$.

Corollary

Not all of the above are possible if the Exponential Time Hypothesis holds.
Hardness of separability testing

Let K be a set that approximates $\text{Sep}^2(d)$.

Things we want

1. K is convex.
2. Hausdorff distance from K to $\text{Sep}^2(d)$ is ≤ 0.99.
3. Weak membership for K (with error ϵ) can be performed in time $\text{poly}(d, 1/\epsilon)$.

Corollary

Not all of the above are possible if the Exponential Time Hypothesis holds.

We suspect that the convexity requirement isn’t necessary, but don’t know how to prove this.
Small-Set Expansion (SSE) Conjecture

It is NP-hard to distinguish, given an n-vertex graph, whether

1. Some small (size ϵn) set doesn’t expand very much.
2. All small sets expand a lot.
Small-Set Expansion (SSE) Conjecture

It is NP-hard to distinguish, given an n-vertex graph, whether

1. Some small (size ϵn) set doesn’t expand very much.
2. All small sets expand a lot.

- The SSE conjecture is roughly equivalent to the Unique Games Conjecture.
- The SSE of a graph can be approximated by the $2 \rightarrow 4$ norm of a matrix (defined as $\|A\|_{2\rightarrow4} := \max_x \|Ax\|_4/\|x\|_2$.)
- Estimating $\|A\|_{2\rightarrow4}$ is equivalent in difficulty to estimating $h_{\text{Sep}^2(n)}$.
Justifying the title:

Detecting pure-state entanglement is easy.
Therefore detecting mixed-state entanglement is hard.
Summary

Justifying the title:

Detecting pure-state entanglement is easy. Therefore detecting mixed-state entanglement is hard.

There are lots of great open questions:

- More progress on small-set expansion/unique games!
- We know $\text{NP}_{\log^2} \subseteq \text{QMA}_{\log(2)^{1/2},1} \subseteq \text{NP}^{\text{BQP}}$. Which one is tight?
- Similarly the $\text{QMA}_{\text{poly}}(2) \subseteq \text{NEXP}$ bound seems pretty loose.
- Improve our hardness results for weak membership in Sep.
- Estimate $h_{\text{Sep}^2(n)}(M) \pm \epsilon$ in time $n^{O(\log n)/\epsilon^2}$?
- Improve the product test, e.g. in special cases.
- Relate stability to additivity and strong converses.

arXiv:1001.0017
There's nothing more important than QMA(2)

That's why auditors are the most valuable beings on Earth. And that's why an auditor needs the correct tool. A Quantum.

As an auditor you follow an exact path. There's no room for error. That's why you need a Mark Super VII Quantum™ E-Meter®. Its laser-precision means everything for rapid progress up The Bridge, yours and everyone you audit.

Get a Quantum
Use it to free yourself and others

Use the order form, or purchase from your org's Bookstore Officer.

Cut right to the core of deep-rooted apathy, revitalize anyone and bring...