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Outline

1 Testing pure state entanglement is easy

2 Testing mixed-state entanglement is hard



The basic problem

Given a quantum state, is it entangled?

This can mean two different things:

Pure product states are of the form

|ψ1〉〈ψ1| ⊗ |ψ2〉〈ψ2| ⊗ · · · |ψk〉〈ψk |.

For pure states, entangled = not product.

Sep= {Separable states} = convex hull of product states. For

mixed states, entangled = not separable.
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Variants

Pure- or mixed-state entanglement?

Are we given 1 copy, k copies, or an explicit description?

Bipartite or multipartite?

How much accuracy is necessary?

Are we detecting entanglement in general or verifying a
specific state?

This talk
1 Pure state, two copies, constant accuracy

2 Mixed state, explicit description, constant accuracy
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Our main result
Let |ψ〉 ∈ Cdk

be a pure state on k d-dimensional systems and

1− ε = max
{
| 〈ψ|φ〉 |2 : |φ〉 is a product state

}
.

Theorem

There exists a product test which, given |ψ〉 ⊗ |ψ〉, accepts with
probability 1−Θ(ε).

Note: no dependence on k or d .

The test takes time O(k log d).

One copy of |ψ〉 contains no information about ε.

Our test is optimal among all tests that always accept product
states.

It was previously proposed by [Mintert-Kuś-Buchleitner ’05] and
implemented experimentally by [Walborn et al ’06]. Our theorem
was conjectured by [Montanaro-Osborne ’09].
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Key primitive

[Buhrman-Cleve-Watrous-de Wolf, Phys. Rev. Lett. ’01]

SWAP test

Accept if the outcome of the
measurement is “0”, reject if not.

The probability of accepting is
1+tr ρσ

2 .

If ρ = σ, then this is related to
tr ρ2, which is the purity of ρ. As demonstrated by John

Travolta.



Testing productness

Product test algorithm

1

1

swap
test
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2
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test
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k

k

swap
test

|ψ〉

|ψ〉

Accept iff all n swap tests pass.

Why it works: If |ψ〉 is entangled, some of its subsystems must be
mixed and so some swap tests are likely to fail.



Maximum vs. average entanglement

Lemma

Let Ptest(ρ) be the probability that the product test passes on
input ρ. Then

Ptest(ρ) =
1

2k

∑
S⊆[k]

tr ρ2
S .

Measures average purity of the input |ψ〉 across bipartitions.

Ptest(ρ) = 1 if and only if ρ is a pure product state.

Main result rephrased: “If the average entanglement across
bipartitions of |ψ〉 is low, |ψ〉 must be close to a product
state.”

Similarly Ptest(ρ) is related to

The average overlap of ρ with a random product state.
The purity of D⊗k

1/
√
d+1

(ρ).
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Generalization: stability of the depolarizing
channel

Consider the qudit depolarizing channel with noise rate 1− δ, i.e.

Dδ(ρ) = (1− δ)(tr ρ)
I

d
+ δ ρ.

It turns out that

tr(D⊗kδ (ρ))2 ∝
∑
S⊆[k]

γ|S | tr ρ2
S ,

for some constant γ depending on δ and d .
A generalized version of our main result is that:

For small enough δ...

...if tr(D⊗kδ |ψ〉〈ψ|)
2 ≥ (1− ε) tr((Dδ(|0〉〈0|)⊗k)2...

...there is a product state |φ1, . . . , φk〉 such that
| 〈ψ|φ1, . . . , φk〉 |2 ≥ 1− O(ε).

This is a stability result for this channel.
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Separable states

Definition

Sepk(d) := conv{ψ1 ⊗ · · · ⊗ ψk : |ψ1〉, . . . , |ψk〉 ∈ S(Cd)}
ψ := |ψ〉〈ψ| and S(Cd) := unit vectors.

Two related tasks
1 Weak membership: Given ρ and the promise that either
ρ ∈ Sepk(d) or ρ is ε-far from Sepk(d), determine which is
the case.

2 Weak optimization: Given 0 ≤ M ≤ I , approximately compute

hSepk (d)(M) := max
ρ∈Sepk (d)

trMρ.

Approximate equivalence proved by
[Grötschel-Lovász-Schrijver], [Liu: 0712.3041] and [Gharibian: 0810.4507].
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TFA≈E

Estimating hSep2(d)(·).

Weak membership for hSep2(d).

QMAlog(2)1−ε,1

Computing max
∑

i ,j ,k Aijkxiyjzk over unit vectors ~x , ~y ,~z .

Estimating the minimum entanglement of any state in a
subspace of a bipartite space.

Estimating the capacity or minimum output entropy of a noisy
quantum channel.

Estimating superoperator norms.

Estimating the ground-state energy of a mean-field
Hamiltonian.



Mean-field Hamiltonians

For M ∈ L(Cd ⊗ Cd), define H ∈ L((Cd)⊗n) by

H =
−1

n(n − 1)

∑
1≤i 6=j≤n

M(i ,j).

[Fannes-Vanderplas; quant-ph/0605216] showed that the ground state
energy is ≈ −maxρ∈Sep trMρ = −hSep2(d)(M).



Quantum Merlin-Arthur games

The complexity class QMA is like NP but with a quantum proof
and a quantum poly-time verifier, and with some probability of
error allowed.

Merlin

Arthur

|ψ〉

Completeness: For YES instances, there exists a witness |ψ〉
that Arthur accepts with probability ≥ c .

Soundness: For NO instances, there is no witness |ψ〉 that
Arthur accepts with probability ≥ s.

What this means: Arthur’s measurement is parametrized by
the input, and Merlin is trying to convince Arthur to accept.



Quantum Merlin-Arthur games

QMA(k) is a variant where Arthur has access to k unentangled
Merlins.

Merlin1 Merlin2
. . . Merlink

Arthur

|ψ1〉

|ψ2〉

|ψk〉

More generally, QMAm(k)s,c means that there are k messages,
each with m qubits (i.e. dimension 2m).



QMAm(k) as an optimization problem

Arthur’s measurement is a 2km-dimensional matrix M with
0 ≤ M ≤ I .

QMAm(k)s,c = determine whether

max
|ψ〉=|ψ1〉⊗···⊗|ψk 〉

〈ψ|M|ψ〉

is ≥ c or ≤ s.

When k = 1, this is an eigenvalue problem with a exp(m)-time
algorithm.

For k > 1, this problem is to estimate

hSepk (2m)(M)

When k = 2, no exp(m) time algorithm is known, so even
QMAlog(2) is not likely to be in BQP.



Hardness? Algorithms?

Input: 0 ≤ M ≤ I .

1 NP-hard to estimate hSep2(n)(M)± 1/n1.01.
[Gurvits, Blier-Tapp, Gharibian, Hillar-Lim, Le Gall-Nakagawa-Nishimura]

2 Algorithm to estimate hSep2(n)(M)± ε trM.

Runs in time npoly(1/ε).
[de la Vega et al.](see also [Shi-Wu; 1112.0808])

3 Algorithm to estimate hSep2(n)(M)± ε
Runs in time nO(log n)/ε2

Requires that M is 1-LOCC: i.e. M =
∑

i Ai ⊗ Bi with
Ai ,Bi ≥ 0,

∑
i Ai ≤ I , Bi ≤ I .

[Brandão-Christandl-Yard:1010.1750]

4 NP-hard to estimate h
Sep

√
n poly log n(n)

(M)± 0.99. [0804.0802]

5 This work: NPlog2-hard to estimate hSep2(n)(M)± 0.99.

Assuming the Exponential Time Hypothesis, this implies an
nΩ̃(log(n)) lower bound on constant-error approximations to
hSep2(n)(·).
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What our product test implies about QMA(k)

Theorem (2 provers can simulate k provers)

QMAm(k)s=1−ε,c ⊆ QMAmk(2)1− ε
50
,c

Proof.

If the QMA(k) protocol had proofs |ψ1〉, . . . , |ψk〉 then
simulate in QMA(2) by asking each prover to submit
|ψ1〉 ⊗ · · · ⊗ |ψk〉.
Then use the product test to verify that they indeed submit
product states.

Corollary: 3-SAT ∈ QMA√n poly log(n)(2)0.99,1.

Corollary: Estimating hSepk (d)(·) reduces to estimating hSep2(dk )(·).
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Hardness of separability testing

Let K be a set that approximates Sep2(d).

Things we want

1 K is convex.

2 Hausdorff distance from K to Sep2(d) is ≤ 0.99.

3 Weak membership for K (with error ε) can be performed in
time poly(d , 1/ε).

Corollary

Not all of the above are possible if the Exponential Time
Hypothesis holds.

We suspect that the convexity requirement isn’t necessary, but
don’t know how to prove this.
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Coming attraction: application to unique
games

[Barak, Brandão, H, Kelner, Steurer, Zhou; to appear, STOC 2012]

Small-Set Expansion (SSE) Conjecture

It is NP-hard to distinguish, given an n-vertex graph, whether

1 Some small (size εn) set doesn’t expand very much.

2 All small sets expand a lot.

The SSE conjecture is roughly equivalent to the Unique
Games Conjecture.

The SSE of a graph can be approximated by the 2→ 4 norm
of a matrix (defined as ‖A‖2→4 := maxx ‖Ax‖4/‖x‖2.)

Estimating ‖A‖2→4 is equivalent in difficulty to estimating
hSep2(n)(·).
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Summary

Justifying the title:

Detecting pure-state entanglement is easy.
Therefore detecting mixed-state entanglement is hard.

There are lots of great open questions:

More progress on small-set expansion/unique games!

We know NPlog2 ⊆ QMAlog(2)1/2,1 ⊆ NPBQP. Which one is
tight?

Similarly the QMApoly(2) ⊆ NEXP bound seems pretty loose.

Improve our hardness results for weak membership in Sep.

Estimate hSep2(n)(M)± ε in time nO(log n)/ε2
?

Improve the product test, e.g. in special cases.

Relate stability to additivity and strong converses.

arXiv:1001.0017
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