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"Marge, I agree with you - in theory. In theory, 
communism works. In theory."
      -- Homer Simpson



Experiment?



Simulation!

ENIAC (1946)



FERMIAC



modern uses of randomness
query complexity communication complexity

computational 
complexity

cryptography

volume estimation averages

If the 
election were 
held today...

e.g. equality testing

P BPP (x+y)(x-y)
=x2-y2



quantum computing:
also started with simulation

Nature isn't classical, dammit, 
and if you want to make a 
simulation of Nature, you'd better 
make it quantum mechanical, and 
by golly it's a wonderful problem, 
because it doesn't look so easy.

Richard Feynman, 1982
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From a talk by S. Aaronson from a talk by A. Aspuru-Guzik.

use of DOE supercomputers by area
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74623189746213487612387461238
7946239147231642931476324941

? ?= ×
n digits Best classical algorithm:

time O(exp(n1/3))

Shor’s algorithm (1994):
poly(n) time
on a quantum computer
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Fourier sampling

A function f(x) has Fourier transform       .f̂(k)

Parseval’s theorem:
If                  then 

�

k

|f̂(k)|2 = 1
�

x

|f(x)|2 = 1

Key tool in Shor’s algorithm:
Quantum computers can sample from

Pr[k] = |f̂(k)|2
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probabilistic bits

description: �p =

�
p0
p1

�
p0, p1 ≥ 0
p0 + p1 = 1

evolution:
0

1

0

1

q
1-q

1-r
r

�
q r

1− q 1− r

�

stochastic matrix

measurement:
�p =

�
p0
p1

� 0

1

with probability p0

with probability p1
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quantum bits (qubits)
description:

|a0|2 + |a1|2 = 1

|ψ� = a0|0�+ a1|1� =
�

a0
a1

�

evolution:
0

1

0

1

u00

u01

u11

u10 unitary matrix

�
u00 u01

u10 u11

�

measurement:
0

1

with probability |a0|2

with probability |a1|2
|ψ�



basis dependence
n qubits = 2n dimensions

The computational basis is one choice:
 {|000�, |001�, |010�, |011�, |100�, |101�, |110�, |111�}

Measurements can be in any basis.

But not the only one...



quantum analogues of 
sampling

1. Sampling from a distribution, but encoded in 
an unknown basis.

2.Sampling in a known basis

3.The ability to prepare
N�

i=1

√
pi|i�



1. the birthday problem

Classical

Quantum
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Draw random vectors from a 
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1. the birthday problem

Classical

Quantum

Draw random items from a set of 
size N or N/2.

Draw random vectors from a 
subspace of dimension N or N/2. 

√
N

N

# samples
needed?Distinguish BIG from small

Proof/algorithm uses Schur-Weyl 
duality between representation theory 
of symmetric and unitary groups
[Childs, H, Wocjan. STACS ’07]



2. testing probability distributions

Random numbers are valuable, but how do 
you know you’re getting what you pay for?
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classical
sampling 
algorithm

i with probability pi

Note: too unstructured for exponential speedup!

Take the internal coin-flips outside

classical
sampling 
algorithm

i=f(r)
Random seed
 r∈{0,1}m

where pi =
|f−1(i)|

2m



Samples/queries needed

Problem Classical Quantum

Uniformity testing N1/2 N1/3

Statistical 
distance N1-o(1) N1/2

Orthogonality N1/2 N1/3

[Bravyi, H, Hassidim.  IEEE Trans. Inf. Th. 2011]



Samples/queries needed

Problem Classical Quantum

Uniformity testing N1/2 N1/3

Statistical 
distance N1-o(1) N1/2

Orthogonality N1/2 N1/3

[Bravyi, H, Hassidim.  IEEE Trans. Inf. Th. 2011]
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Where this is going

Classical distribution testing has a “canonical 
tester” [Valiant, STOC ‘08].

All of our quantum algorithms look different.

What can quantum computers do with 
unstructured problems?  Is there a quantum 
canonical tester?
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3. q-sampling
N�

i=1

√
pi|i�

SWAP test: Given q-samples of p and q, 
the swap test accepts with probability

1 +
��N

i=1
√
piqi

�2

2

Uniformity testing, etc. with O(1) samples.



product test
Problem: p is a distribution on
Is p close or far from a product distribution?

Classically: Need O(dn/2) samples.

With q-samples: 2 samples suffice
[H, Montanaro. FOCS 2010]

Applications: complexity of tensor problems

n� �� �
[d]× · · ·× [d]
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q-samples and Markov chains

Markov chain Mi j
Pr[j] = Mji

Def: π is stationary distribution ⇔ Mπ=π

Thm: q-samples of π can be distinguished 
from orthogonal states for reasonable M

Used for testing quantum money.



Pseudo-entanglement

Entanglement is a q-sample of correlated 
randomness.

Are there quantum versions of pseudo-randomness?
Goal: fool low-communication protocols

Can test entanglement using quantum expanders and 
very little communication.

Therefore, pseudo-entanglement is impossible.
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Reversing dynamics
Probabilistic dynamics are irreversible, but 
quantum mechanics is reversible.

With q-samples we can apply M or M-1.

Linear systems of equations:
Given A,b solve Ax=b.

Exponential speedup 
(sometimes).
[H, Hassidim, Lloyd. Phys. Rev. Lett. ’09]
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3. Create powerful new quantum algorithms



Recap
Quantum versions of sampling can:
1. Estimate quantum states
2. Estimate probability distributions
3. Create powerful new quantum algorithms

...and can help answer the big questions:
What advantages do quantum computers offer?
How should we think about quantum information?



For more information

visit me: CSE 596

or my website:
http://www.cs.washington.edu/homes/aram

or my (quantum) class 599D
MW10:30-11:50

http://www.cs.washington.edu/homes/aram
http://www.cs.washington.edu/homes/aram

