The power of quantum sampling

Aram Harrow Bristol/UW Feb 3, 2011

computer science

building computers:
-mechanical
-electronic
-quantum

> physics

computer science

building computers:
-mechanical
-electronic
-quantum

> physics

simulating physics

Theory?

Theory?

Theory?

"Marge, I agree with you - in theory. In theory, communism works. In theory." -- Homer Simpson

Experiment?

Simulation!

ENIAC (1946)

FERMIAC

modern uses of randomness

query complexity

volume estimation

If the

election were

held today...

averages

computational complexity

 $(x+y)(x-y) = x^2 - y^2$

communication complexity

e.g. equality testing

cryptography

quantum computing: also started with simulation

Nature isn't classical, dammit, and if you want to make a simulation of Nature, you'd better make it quantum mechanical, and by golly it's a wonderful problem, because it doesn't look so easy.

Richard Feynman, 1982

use of DOE supercomputers by area

Fusion Energy 24.2%				
Materials Sciences 15.9%			_	
Chemistry 15.4%		~	-	
Climate Science 9.9%				
Astrophysics 7.8%				
Accelerator Physics 6.9%				
Lattice QCD 6.8%	-			
Life Sciences 5.5%				
Nuclear Physics 3.7%				
Geosciences 1.5%				
Mathematics 1.2%				
Computer Science 0.4%				
Engineering 0.3%				
Environmental Sciences 0.39	6			
High Energy Physics 0.1%				
5.000.000 10.000.000) 15.0	0.000 2	0.000.000	25.000.000

From a talk by S. Aaronson from a talk by A. Aspuru-Guzik.

beyond simulation

n digits

beyond simulation

21398123901238912371293872190 3871239871238917239812739102 837129083712988964375843658 7165023647892316487123462918 74623189746213487612387461238 7946239147231642931476324941

n digits

Best classical algorithm: time $O(exp(n^{1/3}))$

beyond simulation

21398123901238912371293872190 3871239871238917239812739102 837129083712988964375843658 7165023647892316487123462918 74623189746213487612387461238 7946239147231642931476324941

Best classical algorithm: time $O(exp(n^{1/3}))$

Shor's algorithm (1994): poly(n) time on a quantum computer

Fourier sampling

A function f(x) has Fourier transform f(k). Parseval's theorem: If $\sum_x |f(x)|^2 = 1$ then $\sum_k |\hat{f}(k)|^2 = 1$

Fourier sampling

A function f(x) has Fourier transform f(k) . Parseval's theorem: If $\sum |f(x)|^2 = 1$ then $\sum |\hat{f}(k)|^2 = 1$ Key tool in Shor's algorithm: Quantum computers can sample from $\Pr[k] = |\hat{f}(k)|^2$

description: $\vec{p} = \begin{bmatrix} p_0 \\ p_1 \end{bmatrix}$ $\begin{array}{c} p_0, p_1 \ge 0 \\ p_0 + p_1 = 1 \end{array}$

evolution:

 $\begin{bmatrix} q & r \\ 1-q & 1-r \end{bmatrix}$ stochastic matrix

evolution:

 $\begin{bmatrix} q & r \\ 1-q & 1-r \end{bmatrix}$ stochastic matrix

measurement: $\vec{p} = \begin{bmatrix} p_0 \\ p_1 \end{bmatrix}$ with probability p_1

description: $|\psi\rangle = a_0|0\rangle + a_1|1\rangle = \begin{pmatrix} a_0 \\ a_1 \end{pmatrix}$ $|a_0|^2 + |a_1|^2 = 1$

description: $|\psi\rangle = a_0|0\rangle + a_1|1\rangle = \begin{pmatrix} a_0 \\ a_1 \end{pmatrix}$ $|a_0|^2 + |a_1|^2 = 1$

evolution:

 $\begin{bmatrix} u_{00} & u_{01} \\ u_{10} & u_{11} \end{bmatrix}$ unitary matrix

description: $|\psi\rangle = a_0|0\rangle + a_1|1\rangle = \begin{pmatrix} a_0 \\ a_1 \end{pmatrix}$ $|a_0|^2 + |a_1|^2 = 1$

 $|\psi\rangle$

evolution:

 $\begin{bmatrix} u_{00} & u_{01} \\ u_{10} & u_{11} \end{bmatrix}$ unitary matrix

measurement:

1 with prob

with probability $|a_1|^2$

with probability $|a_0|^2$

basis dependence

n qubits = 2^n dimensions

Measurements can be in any basis.

The computational basis is one choice: $\{|000\rangle, |001\rangle, |010\rangle, |011\rangle, |100\rangle, |101\rangle, |110\rangle, |111\rangle\}$

But not the only one...

quantum analogues of sampling

1. Sampling from a distribution, but encoded in an unknown basis.

2. Sampling in a known basis

3. The ability to prepare

 $\sum_{i=1}^{N} \sqrt{p_i} |i\rangle$

samples
needed?

Classical	Draw random items from a set of size N or N/2.	
Quantum	Draw random vectors from a subspace of dimension N or N/2.	

samples
needed?

Classical	Draw random items from a set of size N or N/2.	\sqrt{N}
Quantum	Draw random vectors from a subspace of dimension N or N/2.	

samples
needed?

Classical	Draw random items from a set of size N or N/2.	\sqrt{N}
Quantum	Draw random vectors from a subspace of dimension N or N/2.	N

samples
needed?

Classical	Draw random items from a set of size N or N/2.	\sqrt{N}
Quantum	Draw random vectors from a subspace of dimension N or N/2.	N

Proof/algorithm uses Schur-Weyl duality between representation theory of symmetric and unitary groups [Childs, H, Wocjan. STACS '07]

2. testing probability distributions

int getRandomNumber() { return 4; // chosen by fair dice roll. // guaranteed to be random. }

Random numbers are valuable, but how do you know you're getting what you pay for?

Click to LOOK INSIDE!

A MILLION Random Digits

100,000 Normal Deviates

Share your own customer images Search inside this book

A Million Random Digits with 100,000 Normal Deviates [Paperback] RAND Corporation (Author)

★★★★☆
(213 customer reviews)

List Price: \$90.00

Price: \$81.01 & this item ships for FREE with Super Saver Shipping. Details You Save: \$8.99 (10%)

Usually ships within 1 to 2 months.

Ships from and sold by Amazon.com. Gift-wrap available.

8 new from \$78.61 7 used from \$75.36

Formats	Amazon Price	New from	Used from
+ Hardcover			\$94.58
Paperback	\$81.01	\$78.61	\$75.36
Show 1 more format			

Click to LOOK INSIDE!

A MILLION Random Digits

100,000 Normal Deviates

Share your own customer images Search inside this book

A Million Random Digits with 100,000 Normal Deviates [Paperback] RAND Corporation (Author)

☆☆☆☆☆ マ (213 customer reviews)

List Price: \$90.00

Price: \$81.01 & this item ships for FREE with Super Saver Shipping. Details You Save: \$8.99 (10%)

Usually ships within 1 to 2 months.

Ships from and sold by Amazon.com. Gift-wrap available.

8 new from \$78.61 7 used from \$75.36

Formats	Amazon Price	New from	Used from
+ Hardcover			\$94.58
Paperback	\$81.01	\$78.61	\$75.36
Show 1 more format			

6		TABLE OF	RANDOM	DIGITS				
00250	59467 58309	87834 57213	37510	33689	01259	62486	56320	46265
00251	73452 17619	56421 40725	23439	41701	93223	41682	45026	47505
00252	27635 56293	91700 04391	67317	89604	73020	69853	61517	51207
00253	86040 02596	01655 09918	45161	00222	54577	74821	47335	08582
00253	52403 94255	26351 46527	68224	90183	85057	72310	34963	83462
00255	49465 46581	61499 04844	94626	02963	41482	83879	44942	63915
00256	94365 92560	12363 30246	02086	75036	88620	91088	67691	67762
00257	34261 08769	91830 23313	18256	28850	37639	92748	57791	71328
00258	37110 66538	39318 15626	44324	82827	08782	65960	58167	01305
00259	83950 45424	72453 19444	68219	64733	94088	62006	89985	36936
00260	61630 97966	76537 46467	30942	07479	67971	14558	22458	35148
00261	01929 17165	12037 74558	16250	71750	55546	29693	94984	37782
00262	41659 39098	23982 29899	71594	77979	54477	13764	17315	72893
00263	32031 39608	75992 73445	01317	50525	87313	45191	30214	19769
00264	90043 93478	58044 06949	31176	88370	50274	83987	45316	38551

This review is from: A Million Random Digits with 100,000 Normal Deviates (Paperback)

The book is a promising reference concept, but the execution is somewhat sloppy. Whatever algorithm they used was not fully tested. The bulk of each page seems random enough. However at the lower left and lower right of alternate pages, the number is found to increment directly.

Help other customers find the most helpful reviews

Was this review helpful to you? Yes

classical sampling algorithm

with probability pi

i

Take the internal coin-flips outside

Random seed r∈{0,1}^m

classical

sampling algorithm \rightarrow i=f(r) where $p_i = \frac{|f^{-1}(i)|}{2^m}$

Take the internal coin-flips outside

Random seed $r \in \{0,1\}^{m} \longrightarrow$ Classical sampling algorithm $r \in \{p_{i} = f(r)$ where $p_{i} = \frac{|f^{-1}(i)|}{2^{m}}$

Note: too unstructured for exponential speedup!

Samples/queries needed

Problem	Classical	Quantum
Uniformity testing	N ^{1/2}	N ^{1/3}
Statistical distance	N ^{1-o(1)}	N ^{1/2}
Orthogonality	N ^{1/2}	N ^{1/3}

[Bravyi, H, Hassidim. IEEE Trans. Inf. Th. 2011]

Samples/queries needed

	Problem	Classical	Quantum
SZK	Uniformity testing	N ^{1/2}	N ^{1/3}
	Statistical distance	N ^{1-o(1)}	N ^{1/2}
	Orthogonality	N ^{1/2}	N ^{1/3}

[Bravyi, H, Hassidim. IEEE Trans. Inf. Th. 2011]

Where this is going

Classical distribution testing has a "canonical tester" [Valiant, STOC '08].

All of our quantum algorithms look different.

What can quantum computers do with unstructured problems? Is there a quantum canonical tester?

3. q-sampling

 $\sum_{i=1}^{N} \sqrt{p_i} |i\rangle$

3. q-sampling $\sum_{i=1} \sqrt{p_i} |i\rangle$

SWAP test: Given q-samples of p and q, the swap test accepts with probability $\frac{1 + \left(\sum_{i=1}^{N} \sqrt{p_i q_i}\right)^2}{2}$

Uniformity testing, etc. with O(1) samples.

product test

n

Problem: p is a distribution on $[d] \times \cdots \times [d]$ Is p close or far from a product distribution? Classically: Need O($d^{n/2}$) samples.

With q-samples: 2 samples suffice [H, Montanaro. FOCS 2010]

Applications: complexity of tensor problems

 $i \longrightarrow Markov chain M \longrightarrow j$

<u>Def:</u> π is stationary distribution \Leftrightarrow M π = π

Def: π is stationary distribution \Leftrightarrow M π = π **Thm:** q-samples of π can be distinguished from orthogonal states for reasonable M

 $i \longrightarrow Markov chain M \longrightarrow j$

Def: π is stationary distribution $\Leftrightarrow M\pi = \pi$ **Thm:** q-samples of π can be distinguished from orthogonal states for reasonable M **Used** for testing quantum money.

Pseudo-entanglement

Entanglement is a q-sample of correlated randomness.

Are there quantum versions of pseudo-randomness? Goal: fool low-communication protocols

Can test entanglement using quantum expanders and very little communication.

Therefore, pseudo-entanglement is impossible.

Probabilistic dynamics are irreversible, but quantum mechanics is reversible.

Probabilistic dynamics are irreversible, but quantum mechanics is reversible.

The With q-samples we can apply M or M^{-1} .

Probabilistic dynamics are irreversible, but quantum mechanics is reversible.

 \odot With q-samples we can apply M or M⁻¹.

Linear systems of equations:
 Given A,b solve Ax=b.

Probabilistic dynamics are irreversible, but quantum mechanics is reversible.

 \odot With q-samples we can apply M or M⁻¹.

- Linear systems of equations:
 Given A,b solve Ax=b.
- Exponential speedup
 (sometimes).
 [H, Hassidim, Lloyd. Phys. Rev. Lett. '09]

Recap

Quantum versions of sampling can: 1. Estimate quantum states 2. Estimate probability distributions 3. Create powerful new quantum algorithms

Recap

Quantum versions of sampling can: 1. Estimate quantum states 2. Estimate probability distributions 3. Create powerful new quantum algorithms

<u>...and can help answer the big questions:</u> What advantages do quantum computers offer? How should we think about quantum information?

For more information

visit me: CSE 596

or my website: http://www.cs.washington.edu/homes/aram

> or my (quantum) class 599D MW10:30-11:50