<u>3.1</u>	<u>3.2</u>	<u>3.3</u>	<u>3.4</u>	<u>3.5</u>	<u>3.6</u>	<u>3.7</u>	<u>Total</u>
2	1	4	1	6	6	24	44

Dimerization Thermodynamics (CODS-CT Team Round Pt. 2 #1)

 NO_2 causes the brown color of smog. At 300 K, the following reaction can occur with equilibrium constant $K_p = 0.10$:

$$N_2O_{4(g)} \rightleftharpoons 2 NO_{2(g)}$$

<u>**3.1</u>** Draw the Lewis Structures of NO_2 and N_2O_4 </u>

<u>3.2</u> Smog is browner on hot days than on cold days. Is the formation of N_2O_4 from NO_2 exothermic or endothermic?

<u>3.3</u> What are the Constant Pressure($C_{p,m}$) and Constant Volume ($C_{v,m}$) Molar Heat Capacities of NO₂ and N₂O₄ respectively according to the equipartition theorem?

The values of $S_m^{\circ}(300 \text{ K})$ for NO₂ and N₂O₄ are 240.1J/(mol K), 304.3 J/(mol K) at 300 K.

<u>3.4</u> What is the change in entropy for the dimerization of NO_2 at 300 K?

<u>3.5</u> What is the change in entropy for the dimerization of NO₂ at constant pressure at 400 K? <u>Hint:</u> Recall that dS=dq/T for some infinitesimal heat transfer at temperature T. You may need to use the heat capacities from <u>3.3</u>

0.1 mol of N_2O_4 (g) is added to a container and allowed to equilibrate at 300 K at which point it has volume $V_i = 1$ L. The sample of gas is allowed to expand reversibly and isothermally(the temperature is always 300 K) to a final volume of $V_f = 5$ L. (You may assume that the expansion is carried out such that the sample is always at equilibrium)

<u>**3.6**</u> Ignoring the formation of NO_2 , how much work is done by the gas reversibly expanding from 1 L to 5 L?

<u>Hint:</u>

The work done by a single gas expanding in a piston is dW = -PdV for an infinitesimal increase in volume. At each point in this reversible expansion, P = nRT/V, so dW = -nRT/V dV. From here the amount of work done can be computed via integration.

<u>3.7</u> How much work is actually done by the gas in Joules, taking into account formation of NO_2 ? <u>Hint:</u>

You will need to modify the approach from $\underline{3.6}$ to solve this problem and potentially make some approximations.