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Find pairs of similar images
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how should we 

measure similarity?

Naïvely: about 𝑛2 comparisons

Can we do better?



Measuring similarity
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objects ⇒ high-dimensional vectors

similarity ⇒ distance b/w vectors
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Problem: Nearest Neighbor Search (NNS)

 Preprocess: a set 𝑃 of points

 Query: given a query point 𝑞, report a point 

𝑝∗ ∈ 𝑃 with the smallest distance to 𝑞

 Primitive for: finding all similar pairs

 But also clustering problems, and many other 

problems on large set of multi-feature objects

 Applications:

 speech/image/video/music recognition, signal 

processing, bioinformatics, etc…

𝑞

𝑝∗
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𝑛: number of points

𝑑: dimension



Preamble: How to check for an exact match ?
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Query time Space

𝑂(log 𝑛) 𝑂(𝑛)

just pre-sort !
Preprocess:

Sort the points

Query:

Perform binary search

Also works for NNS for 1-dimensional vectors…
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High-dimensional case
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Algorithm Query time Space

No indexing 𝑂(𝑛 ⋅ 𝑑) 𝑂(𝑛 ⋅ 𝑑)

Full indexing 𝑂(𝑑) 2𝑑

0,1 𝑑

Hamming dist.

Overprepared: store an answer 

for every possible query

Best indexing ? 𝑂(𝑑) 𝑂(𝑛 ⋅ 𝑑)

Underprepared: no 

preprocessing

unaffordable if 𝑑 ≫ log 𝑛

A little better 

indexing ?

𝑛0.99 𝑂(𝑛2)

Curse of dimensionality: 

would refute a (very) strong 

version of 𝑷 ≠ 𝑵𝑷 conjecture 

[Williams’04]

𝑛 = 1,000,000,000

𝑑 = 400



Relaxed problem: Approximate Near Neighbor Search

 𝑟-near neighbor: given a query point 𝑞, 

report a point 𝑝′ ∈ 𝑃 s.t. 𝑝′ − 𝑞 ≤ 𝑟

 as long as there is some point within 

distance 𝑟

 Remarks:

 In practice: used as a filter

 Randomized algorithms: each point 

reported with 90% probability 

 Can use to solve nearest neighbor too

[HarPeled-Indyk-Motwani’12]

𝑟

𝑞

𝑝∗

𝑝′

𝑐𝑟

𝑐𝑟
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similar

not similar

kind of…

either way



Approach: Locality Sensitive Hashing

Map 𝑔 on 𝑅𝑑 s.t. for any points 𝑝, 𝑞

 for similar pairs (when 𝑞 − 𝑝 ≤ 𝑟 )

𝑔(𝑞) = 𝑔(𝑝)

 for dissimilar pairs (when 𝑞 − 𝑝′ > 𝑐𝑟 )

𝑔 𝑞 ≠ 𝑔 𝑝′

𝑞

𝑝

𝑞 − 𝑝

Pr[𝑔(𝑞) = 𝑔(𝑝)]

𝑟 𝑐𝑟

1

𝑃1

𝑃2

𝑛𝜌, where

𝑞

Pr[𝑔(𝑞) = 𝑔(𝑝)] is not-too-low𝑃1 =

𝑃2 =

𝜌 =
log 1/𝑃1
log 1/𝑃2
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𝑝′
Map: points → codes: s.t.

“similar” ⇔ “exact match”

Pr[𝑔(𝑞) = 𝑔(𝑝)] is low

[Indyk-Motwani’98]

How to construct good maps?

several indexes

Use an index on 𝑔(𝑝) for 𝑝 ∈ 𝑃



Space Time Exponent 𝒄 = 𝟐

𝑛1+𝜌 𝑛𝜌 𝜌 = 1/𝑐 𝜌 = 1/2

Map #1 : random grid
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𝑞 𝑝

𝑝′

Map 𝑔:

• partition in a regular grid

• randomly shifted

• randomly rotated

Can we do better?

[Datar-Indyk-Immorlica-Mirrokni’04]



 Regular grid → grid of balls
 𝑝 can hit empty space, so take more such grids 

until 𝑝 is in a ball

 How many grids?
 about 𝑑𝑑

 start by projecting in dimension 𝑡

 Choice of reduced dimension 𝑡?
 𝜌 closer to bound for higher 𝑡
 Number of grids is 𝑡𝑂(𝑡)

Map #2 : ball carving

2D

𝑝

𝑝
𝑅𝑡

[A-Indyk’06]

Space Time Exponent 𝒄 = 𝟐

𝑛1+𝜌 𝑛𝜌 𝜌 → 1/𝑐2 𝜌 → 1/4



Similar space partitions ubiquitous:
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 Approximation algorithms [Goemans, Williamson 1995], [Karger, Motwani, 

Sudan 1995], [Charikar, Chekuri, Goel, Guha, Plotkin 1998], [Chlamtac, 

Makarychev, Makarychev 2006], [Louis, Makarychev 2014]

 Spectral graph partitioning [Lee, Oveis Gharan, Trevisan 2012], [Louis, 

Raghavendra, Tetali, Vempala 2012]

 Spherical cubes [Kindler, O’Donnell, Rao, Wigderson 2008]

 Metric embeddings [Fakcharoenphol, Rao, Talwar 2003], [Mendel, Naor 2005]

 Communication complexity [Bogdanov, Mossel 2011], [Canonne, Guruswami, 

Meka, Sudan 2015]



LSH Algorithms for Euclidean space
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Space Time Exponent 𝒄 = 𝟐 Reference

𝑛1+𝜌 𝑛𝜌 𝜌 = 1/𝑐 𝜌 = 1/2 [IM’98, DIIM’04]

𝜌 ≈ 1/𝑐2 𝜌 = 1/4 [AI’06]

Is there even better LSH map?

NO: any map must satisfy

𝜌 ≥ 1/𝑐2

[Motwani-Naor-Panigrahy’06, O’Donell-Wu-Zhou’11]

Example of isoperimetry, example of which is question:

 Among bodies in 𝑅𝑑 of volume 1, which has the lowest perimeter?

 A ball!



Some other LSH algorithms

 Hamming distance

 𝑔: pick a random coordinate(s) [IM’98]

 Manhattan distance:

 𝑔: cell in a randomly shifted grid

 Jaccard distance between sets:

 𝐽 𝐴, 𝐵 =
𝐴∩𝐵

𝐴∪𝐵

 𝑔: pick a random permutation 𝜋 on the words

𝑔 𝐴 = min
𝑎∈𝐴

𝜋(𝑎)

min-wise hashing

[Broder’97, Christiani-Pagh’17]
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To be or 

not to be
To search or 

not to search
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LSH is tight… what’s next?
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Space-time trade-offs…
[Panigrahy’06,  A.-Indyk’06, Kapralov’15, 

A.-Laarhoven-Razenshteyn-Waingarten’17]

Datasets with additional structure
[Clarkson’99,

Karger-Ruhl’02,

Krauthgamer-Lee’04,

Beygelzimer-Kakade-Langford’06,

Indyk-Naor’07,

Dasgupta-Sinha’13,  

Abdullah-A.-Krauthgamer-Kannan’14,…]

Are we really done with basic NNS algorithms?



Beyond Locality Sensitive Hashing?
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 Non-example:

 define 𝑔 𝑞 to be the identity of closest point to 𝑞

 computing 𝑔(𝑞) is as hard as the problem-to-be-solved!

Can get better maps, if allowed to 

depend on the dataset!

Can get better, efficient maps, if

depend on the dataset!

Space Time Exponent 𝒄 = 𝟐 Reference

𝑛1+𝜌 𝑛𝜌 𝜌 ≈ 1/𝑐2 𝜌 = 1/4 [AI’06]

𝜌 ≈
1

2𝑐2 − 1

𝜌 = 1/7 [A.-Indyk-Nguyen-Razenshteyn’14,

A.-Razenshteyn’15]

best LSH

algorithm

“ I’ll tell you where to find 

The Origin of Species once 

you recite all existing books



New Approach: Data-dependent LSH
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 Two new ideas:

has LSH with better quality 𝜌

data-dependent

[A-Razenshteyn’15]

1) a nice point configuration 

2) can always reduce to such configuration
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 As if vectors chosen randomly from Gaussian distribution

 Points on a unit sphere, where

 𝑐𝑟 ≈ 2, i.e., dissimilar pair is (near) orthogonal

 Similar pair: 𝑟 = 2/𝑐

 Like ball carving

 Curvature helps get better quality partition

𝑐𝑟

1) a nice point configuration 

Map 𝑔:

• Randomly slice out caps 

on sphere surface
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 A worst-case to (pseudo-)random-case reduction

 a form of “regularity lemma”

 Lemma: any pointset 𝑃 ∈ 𝑅𝑑 can be decomposed 

into clusters, where one cluster is pseudo-random 

and the rest have smaller diameter

1) a nice point configuration 

2) can always reduce to such configuration

𝑐𝑟



Beyond Euclidean space
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 Data-dependent hashing:

 Better algorithms for Hamming space

 Also algorithms for distances where vanilla LSH does not work! 

 E.g.: distance ||𝑥 − 𝑦||∞ = max
𝑖=1..𝑑

|𝑥𝑖 − 𝑦𝑖| [Indyk’98, …]

 Even more beyond?

 Approach 3: metric embeddings

 Geometric reduction b/w

different spaces

 Rich theory in Functional Analysis

0,1 𝑑

Hamming dist.

Sets of points

Earth-Mover Distance

(Wasserstein space)

[Charikar’02,

Indyk-Thaper’04,

Naor-Schechtman’06,

A-Indyk-Krauthgamer’08…]



Summary: Similarity Search
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 Different applications lead to different geometries

 Connects to rich mathematical areas:
 Space partitions and isoperimetry: what’s the body with least perimeter?

 Metric embeddings: can we map some geometries into others well?

 Only recently we (think we) understood the Euclidean metric
 Properties of many other geometries remain unsolved! 

objects

similarity

high-dimensional vectors

distance b/w vectors

Similarity

Search

Nearest Neighbor 

Search

Geometry

To search or 

not to search


