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Find pairs of similar images
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Measuring similarity
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objects = high-dimensional vectors {0,1}4 R4 Sets of points

¢

similarity = distance b/w vectors |Hamming dist. | | Euclidean dist. | | Earth-Mover

"
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Image courtesy of Kristen Grauman



Problem: Nearest Neighbor Search (NNS)

» Preprocess:a set P of points

O
» Query: given a query point ¢, report a point
p* € P with the smallest distance to g °
» Primitive for: finding all similar pairs ./. P
But also clustering problems, and many other q
problems on large set of multi-feature objects
O

» Applications: O

speech/image/video/music recognition, signal
processing, bioinformatics, etc... n: number of points

d: dimension



Preamble: How to check for an exact match ?

[ just pre-sort !
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Preprocess:
Sort the points

Query:
Perform binary search

Query time |Space

O (logn) 0(n)
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High-dimensional case

Underprepared: no
preprocessing

{0,13¢

n = 1,000,000,000

Overprepared: store an answer
for every possible query

Hamming dist. d = 400
Algorithm Query time |Space
No indexing O(n-d) O(n-d)
Full indexing 0(d) 24

]

Curse of dimensionality:
would refute a (very) strong
version of P # NP conjecture

[Williams’04]

HZ

unaffordable if d > logn

Best indexing ! | 0(d) O(n-d)
A little better n0-99 0(n?)
indexing !

6




Relaxed problem: Approximate Near Neighbor Search

e o
7(\(“3‘ similar

0,6\39‘0
r-near neighbor: glven a query point g,

reporta pointp’ EPst.||p' —q| < cr

as long as there is some point within
distance r

not similar

» Remarks:
In practice: used as a filter

Randomized algorithms: each point
reported with 90% probability

Can use to solve nearest neighbor too

[HarPeled-Indyk-Motwani’ 12] kind of...
either way



Approach: Locality Sensitive Hashing

[Indyk-Motwani'98] [ Map: points — codes: s.t.
“similar” & “exact match”

for similar pairs (when ||g — p|] < 1)
P, =Pr[g(q) = g(p)] is not-too-low
for dissimilar pairs (when ||g — p'|| > cr)

P, =|Pr[g(q) = g(p)]is low
several indexes
Use anrindex on g(p) forp € P

log1/P;
log1/P,

NP, where p =

g L How to construct good maps?

lq — pll
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Map #1 : random grid

[Datar-Indyk-Immorlica-Mirrokni'04] Map g:
 partition in a regular grid
//\ « randomly shifted

/ ® - randomly rotated
q @

® Space | Time | Exponent c=2

\ / n't? | nf p=1/c | p=1/2

L Can we do better?




Map #2 : ball carving

[A-Indyk'06]

» Regular grid — grid of balls

p can hit empty space, so take more such grids
until p is in a ball

» How many grids!?
about d?
start by projecting in dimension ¢

» Choice of re

p closgrto
Number of ¢
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Similar space partitions ubiquitous:

» Approximation algorithms [Goemans, Williamson 1995], [Karger, Motwani,
Sudan 1995], [Charikar, Chekuri, Goel, Guha, Plotkin 1998], [Chlamtac,
Makarychey, Makarychev 2006], [Louis, Makarychev 2014]

» Spectral graph partitioning [Lee, Oveis Gharan, Trevisan 2012], [Louis,
Raghavendra, Tetali,Vempala 2012]

» Spherical cubes [Kindler, O’'Donnell, Rao,Wigderson 2008]
» Metric embeddings [Fakcharoenphol, Rao, Talwar 2003], [Mendel, Naor 2005]

» Communication complexity [Bogdanov, Mossel 201 | ], [Canonne, Guruswami,
Meka, Sudan 2015]



LSH Algorithms for |

fuclidean space

Space | Time | Exponent |c¢c =2 Reference
nltP  |nf p=1/c p=1/2 | [IM98,DIIM04]
p=1/c? |p=1/4 |[AI06]

L Is there even better LSH map!?

NO: any map must satisfy
p=>1/c?

. [Motwani-Naor-Panigrahy’06, O’'Donell-Wu-Zhou’ | 1]

Example of isoperimetry, example of which is question:

» Among bodies in R? of volume |, which has the lowest perimeter?

» A ball!
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Some other LSH algorithms

» Hamming distance

g: pick a random coordinate(s) [IM’98]
» Manhattan distance:

g:cell in a randomly shifted grid

» Jaccard distance between sets:
ANB

AUB
g:pick a random permutation  on the words

g(A) = minm(a)
min-wise hashing
[Broder’97, Christiani-Pagh’| 7]

To be or To search or
not to be not to search

285% 0 8§s§s
11101.. ..01111..
21102.. ..01122..

{be,not,or,to}  {not,orto,search}

be to

for m=be,to,search,or,not



LSH is tight... what’s next?

Datasets with additional structure A
[Clarkson’99,
Karger-Ruh!’02,
Krauthgamer-Lee’04,

Beygelzimer-Kakade-Langford’06, —

Indyk-Naor’07, -
Dasgupta-Sinha’l 3, _

Abdullah-A.-Krauthgamer-Kannan’14,...]

Space-time trade-offs...
[Panigrahy’06, A.-Indyk’06, Kapralov’l5,
A.-Laarhoven-Razenshteyn-Waingarten’| 7]

L Are we really done with basic NNS algorithms!?




Beyond Locality Sensitive Hashing?

Can get better maps, if allowed to
depend on the dataset!

“I'll tell you where to find

The Origin of Species once
define g(gq) to be the identity of closest point to g you recite all existing books

» Non-example:

computing g(q) is as hard as the problem-to-be-solved!

Can get better, efficient maps, if
depend on the dataset!

Space | Time | Exponent |c =2 Reference
n'*P Inf p=1/c* |p=1/4|[AI06] _— best LSH
algorithm

1 p = 1/7 | [A-Indyk-Nguyen-Razenshteyn’|4,
T 2c2 -1 A.-Razenshteyn’| 5]

p




New Approach: Data-dependent LSH

[A-Razenshteyn’|5]

» Two new ideas:

U) a nice point configuration ¢mm has LSH with better quality p

-

' 2) can always reduce to such configuration  ¢mmsm data-dependent




[ |) a nice point configuration

» As if vectors chosen randomly from Gaussian distribution
» Points on a unit sphere, where

cr = /2, i.e., dissimilar pair is (near) orthogonal
Similar pair:r = v2/c

Map g:
 Randomly slice out caps
on sphere surface

Like ball carving
Curvature helps get better quality partition



U) a nice point configuration

—

|2) can always reduce to such configuration

» A worst-case to (pseudo-)random-case reduction

a form of “regularity lemma”

» Lemma: any pointset P € R can be decomposed
into clusters, where one cluster is pseudo-random
and the rest have smaller diameter
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Beyond Euclidean space

» Data-dependent hashing:
Better algorithms for Hamming space

Also algorithms for distances where vanilla LSH does not work!

E.g.: distance ||x — || = mla1>c<l|xi — v;| [Indyk’98, ...]
l=1..

Sets of point
» Even more beyond? =t o1 point {0,13

» Approach 3: metric embeddings —

Earth-Mover Distance |[Charikar'02 : :
Geometric reduction b/w . I[ | T”_Fir 04 Hamming dist.
. (Wasserstein space)  |'NdyKk-haperus,
different spaces Naor-Schechtman’06,

Rich theory in Functional Analysis A-Indyk-Krauthgamer’08...]



Summary: Similarity Search

) 2

Lobjects ) Lhigh-dimensional vectors

r
-similarity ) Ldistance b/w vectors

- Geometry

(‘Similarity N * Nearest Neighbor

_ Search o Search -

» Different applications lead to different geometries

» Connects to rich mathematical areas:
Space partitions and isoperimetry: what’s the body with least perimeter?

Metric embeddings: can we map some geometries into others well?
» Only recently we (think we) understood the Euclidean metric To search or
not to search

Properties of many other geometries remain unsolved!
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