
COMS 4995-3: Advanced Algorithms Feb 15, 2017

Lecture 9 – Nearest Neighbor Search: Locality Sensitive Hashing.

Instructor: Alex Andoni Scribes: Weston Jackson, Edo Roth

1 Introduction

Today’s lecture is about using Locality Sensitive Hashing to solve the problem of approximate Nearest

Neighbor Search. The main problem is concerning performing an approximate Nearest Neighbor Search

in approximately linear space and sublinear time. The motivation behind the problem is to be able to

be able to quickly query a data set for nearest neighbor, while minimizing the complexity of our data

structure.

2 Nearest Neighbor Search

Theorem 1 (KOR ’98 [?]). ∀d, r ∈ Z,∃ θ ∈ (14 ,
3
4), can pick random ϕ : {0, 1}d → {0, 1}k, k = O(lgn

ε2
)

s.t. ∀p, q ∈ {0, 1}d :

Close: if ‖ p− q ‖≤ r ⇒ Pr[‖ ϕ(p)− ϕ(q) ‖≤ θk] ≥ 1− 1
n3

Far: if ‖ p− q ‖> cr ⇒ Pr[‖ ϕ(p)− ϕ(q) ‖> θ(1 + ε)k] ≥ 1− 1
n3

Where c is the approximation factor (i.e. c = 1 + ε, c = 2)

2.1 Solution 1: Linear Search

Given data set D ⊂ {0, 1}d, precompute ϕ(p), ∀p ∈ D.

• On query q ∈ {0, 1}d

• Compute ϕ(q) ∈ {0, 1}k

• Compare ϕ(q) to all {ϕ(p)}, p ∈ D

Complexity:

• Space: O(n log n/ε2)

• Query: O(n logn
ε2

)

We note that while this is a good space complexity, our query time is larger than desired. We also

note that the k bits produced from computing ϕ(q) is the only information we need from the query, and

we leverage this fact in our next solution.

1

http://www.cs.princeton.edu/courses/archive/spr05/cos598E/bib/kushilevitz.pdf

2.2 Solution 2: Exhaustive Storage

Given data set D ⊂ {0, 1}, precompute answer for all possible k bit strings (ϕ(q)).

• Space: O(2k) = O(2
logn

ε2) = nO(1/ε2)

• Query: Compute σ = ϕ(q). O(time to compute ϕ(q)) = O(dk) = O(d logn
ε2

).

While this yields theoretically good bounds, unfortunately, the actual space in practice is closer to n4/ε
2
.

Can we improve this?

3 Solution 3: Locality-Sensitive Hashing (Geometric Hashing)

We introduce the notion of locality-sensitive hashing (which can be thought of as a form of geometric

hashing) to give a solution with better space complexity (albeit not quite as good query time). Intuitively,

this specifies a hash family for which it is actually good to collide, a slightly different treatment from our

earlier encounters with universal and perfect hashing.

Definition 2. Hash family H = {h : Rd → U} is (r, cr, p1, p2)− LSH if ∀p, q ∈ Rd :

Close: if ||p− q|| ≤ r → Prh∈H [h(p) = h(q)] ≥ p1

Far: if ||p− q|| > cr → Prh∈H [h(p) = h(q)] ≤ p2

Where p1 > p2, c > 1.

3.1 Ideal LSH

Example 3. Ideal Locality-Sensitive Hashing is the case where p1 = 1, p2 = 0. To solve, we use a hash

table (independent from data set d).

• Build a dictionary on h(p), p ∈ D,h ∈ H using a universal hash function

• On query q, look up bucket h(q)

• The bucket h(q) contains precisely all nearest neighbors and no far neighbors

Complexity:

• Space: O(n) +O(nd)

• Query: time to compute h+O(1) on expectation

Can we build this? Consider the space partition of points p, q in hash function h. If h(p) 6= h(q), there

is a border separating p and q in the space partition. Consider two points x and y that are neighbors

on either side of the space partition. These points are hashed separately despite being very close. Need

multiple hash functions!

2

3.2 LSH for ANN: Proof Part 1

Theorem 4 (IM ’98 [?]). (r, cr, p1, p2)− LSH implies solution for Approximate Nearest Neighbor with:

Space: O(nd+ n1+%/p1)

Query time: O(n%/p1log(n))

Where % = log 1/p1
log 1/p2

∈ (0, 1).

Proof. Property of any LSH H: fix k ∈ N. Build G = {g : Rd → Uk} as follows:

g(p) := h1(p) · h2(p)...hk(p) ∈ Uk

Where h1...hk are iid from H (and · denotes concatenation).

Fact: If H is (r, cr, p1, p2)− LSH, G is (r, cr, pk1, p
k
2)− LSH. If p,q are close:

Prg[g(p) = g(q)] =

k∏
i=1

Pr[hi(p) = hi(q)] ≥ pk1

Fix k, take L := (1/p1)
k. Use the following algorithm:

• Build L hash tables each with a fresh, random gi ∈ Gk

• Store all gi(p) in a dictionary

• On query q, for tables i = 1...L

– Retrieve points p ∈ D where gi(p) = gi(q)

– Return first p where d(p, q) < cr

3.3 LSH for ANN: Proof Part 2 (Analysis)

Correctness

1) Never reports a far point

2) If ∃p∗ which is distance ≤ r from q, fix i ∈ L:

Prgi∈G[gi(p
∗) = gi(q)] ≥ pk1

Thus, the probability the algorithm fails is bounded by:

Pr[6 ∃i s.t. gi(p
∗) = gi(q)] ≤ (1− pk1)L = e−p

k
1L = e−1 < 0.4

Query Time

3

http://www.cs.princeton.edu/courses/archive/spr04/cos598B/bib/IndykM-curse.pdf

The query time is Lk hash function evaluations + # far points colliding with q in all l hash functions.

We first calculate the expected number of points colliding with q in one hash table.

E[# far points colliding in 1 hash table] ≤ npk2

Calculating the total query time:

E[total time] = O(Lkτ) +O(Lnpk2)

Where τ is the hash function evaluation time. Let k = dlog1/p2 ne = d logn
log (1/p2)

e. Fixing k, take L

from before:

L = (1/p1)
k ≤ (1/p1)

log1/p2 n+1

= n%/p1

Where % = log1/p2 1/p1. Substituting L = n%/p1:

E[total time] ≤ O(τn%/p1 log n) +O(Lnpk2) ≤ O(τn%/p1 log n) +O(n)

= O(τn%/p1 log n)

Thus, we achieve the following complexity:

• Space: O(nd+ Ln) = O(nd+ n(1+%)/p1)

• Query: O(τn%/p1 log n)

4 LSH for ANN: Hamming Spaces

Can we build LSH? We can construct an LSH for Hamming spaces, {0, 1}d.

Hash family H = {h : Rd → U = {0, 1}}

Let δ = ||p− q|| be the hamming distance. Fix p,q:

Prh1∈H [hi(p) = hi(q)] =
that are close

#of total coordinates
=
d− δ
d

= 1− δ/d

Using Taylor Series expansion:

p1 = 1− r/d ≈ e−r/d

p2 = 1− cr/d ≈ e−cr/d

Thus:
log 1/p1
log 1/p2

=
r/d

cr/d

= 1/c

If we set c = 2, we get % = 1/2. We achieve a data structure with the following properties:

4

• Space: O(n1.5 + nd)

• Query: O(
√
nlog(n)d)

5

	Introduction
	Nearest Neighbor Search
	Solution 1: Linear Search
	Solution 2: Exhaustive Storage

	Solution 3: Locality-Sensitive Hashing (Geometric Hashing)
	Ideal LSH
	LSH for ANN: Proof Part 1
	LSH for ANN: Proof Part 2 (Analysis)

	LSH for ANN: Hamming Spaces

