COMS 4995-3: Advanced Algorithms

Feb 08, 2017

Lecture 7 – Dimension Reduction and Johnson-Linderstrauss Lemma

 $Instructor: Alex \ Andoni$

Scribes: Jiahui Liu, David Pu

1 Introduction

This lecture mainly focuses on dimension reduction: Johnson-Linderstrauss Lemma and especially its distributional version. Chi-squared distribution is introduced when there is a sum of Gaussian distributed variables.

2 Last Time

Tug-of-War:

- for frequency vector $f \in \mathbb{R}$:
- pick random $\sigma_i \in \{\pm 1\}$
- $z_i = \sum_{i=1} \sigma_i f_i$
- Estimator: z^2

Tug-of-War+ : k estimators

$$z_j = \sum_{j=1} \sigma_{ij} f_i, j = 1, \dots, k$$
$$\frac{1}{k} \sum_{j=1}^{k} z_j^2$$

Estimator:

3 Dimension Reduction

Definition 1 (Sketching function). For $\bar{x} \in \mathbb{R}^n$, $\bar{x} = (x_1, x_2, ..., x_n)$, a sketching function $\varphi : \mathbb{R}^n \to \mathbb{R}^k$ is defined as

$$\varphi(x) = \frac{1}{\sqrt{k}} \left(\sum \sigma_{1i} x_i, \sum \sigma_{2i} x_i, \dots \sum \sigma_{ki} x_i \right)$$

Definition 2 (Linear Property). φ is linear if:

$$\varphi(x) + \varphi(y) = \varphi(x+y)$$
$$\varphi(x) - \varphi(y) = \varphi(x-y)$$

Estimator:

$$\varphi(x) \to \|\varphi(x)\|^2 = \frac{1}{k} \Sigma_{j=1} z_j^2$$

$$\varphi(x) = \frac{1}{\sqrt{k}}(z_i, z_2, \dots z_k)$$

Given sketches $\varphi(x)$ and $\varphi(y)$: we can compute

$$\|\varphi(x) - \varphi(y)\|_{2}^{2} = \|\varphi(x - y)\|_{2}^{2} = (1 \pm \epsilon)\|x - y\|_{2}^{2} = (1 \pm \epsilon)\sum_{i=1}^{n} (x_{i} - y_{i})^{2}$$

3.1 Johnson-Lindenstrauss Lemma

Lemma 3 (Distributional Johnson-Lindenstrauss 1984).

$$\forall \epsilon > 0$$
, there is a randomized $\varphi : (R)^n \to (R)^k$ such that $\forall x, y \in (R)^n$

 $we\ have$

$$P\left[\|\varphi(x) - \varphi(y)\| \in (1 \pm \epsilon) \|x - y\|_2\right] \ge 1 - e^{\frac{\epsilon^2 k}{9}}$$

 $(e^{\frac{\epsilon^2 k}{9}}$ is the failure probability.)

In original Johnson-Lindenstrauss lemma: φ : a random k-dimensional subspace. Proof.

Take

$$\varphi(x) = \left(\sum_{i=1}^{n} g_{1i}x_i, \sum_{i=1}^{n} g_{2i}x_i, \dots, \sum_{i=1}^{n} g_{ki}x_i\right) \frac{1}{\sqrt{k}}$$

Each g_{ji} is a Gaussian/normal N(0,1):

$$pdf(g) = \frac{1}{2\pi}e^{-\frac{g^2}{2}}$$

Recall: What did we use to prove the correctness of Tug-of-War?

- (1) $E[\sigma_i] = 0$
- (2) $E[\sigma_i^2] = 1$
- (3) $E[\sigma_i^4] = 1$

This is satisfied by $\sigma_i \in \{\pm 1\}$, but also by the Gaussian/normal random variable.

Consider k = 1:

$$\varphi(x) = \sum g_i x_i$$

Definition 4 (Stability Property).

$$\sum_{i=1}^{k} g_i x_i \sim \|x\|_2 \cdot a = (\sum x_i^2)^{\frac{1}{2}} \cdot a$$

a is another Gaussian N(0,1)

The probability density distribution for a centrally spherically symmetric vector $\bar{g} = (g_1, \dots, g_n)$

$$pdf(\bar{g}) = \left(\frac{1}{\sqrt{2\pi}}\right)^n \cdot e^{\frac{-g_1^2}{2}} \cdot e^{\frac{-g_2^2}{2}} \cdots e^{\frac{-g_n^2}{2}} = \left(\frac{1}{\sqrt{2\pi}}\right)^n \cdot e^{\frac{-\sum_{i=1}^n g_i^2}{2}}$$

 $\bar{g} \cdot x$ is distributed as $\bar{g}' \cdot (||X||_x, 0, 0, \cdots, 0) = g'_1 \cdot ||x||_2$ General k:

$$||\phi(x) - \phi(y)|| = ||\phi(x - y)|| \approx ||x - y||_2 \leftarrow ||z||_2$$
 where $z = x - y$

fix z:

$$\phi(z) = \frac{1}{\sqrt{k}} \cdot \left(\sum g_{1i}z_i, \dots \sum g_{ki}z_i\right) \sim \frac{1}{\sqrt{k}} \cdot \left(a_1 \cdot ||z||, a_2 \cdot ||z|, \dots, a_k \cdot ||z||\right)$$

where each a_i is Gaussian distributed

$$\begin{split} ||\phi(z)||_2^2 &= \frac{1}{k} \sum_{j=1}^k a_j^2 \cdot ||z||^2 \\ &= ||z||^2 \cdot \frac{1}{k} \sum_{j=1}^k \mathbf{a}_j^2 \\ &= ||z||^2 \cdot \mathcal{X}_k^2 \end{split}$$

This is \mathcal{X}^2 (Chi-squared) distributed with k degrees of freedom. **Fact:**

$$P\left[\mathcal{X}_k^2 \notin (1 \pm \epsilon)\right] \le 2 \cdot e^{\frac{-k}{4}(\epsilon^2 - \epsilon^3)}$$

for $\epsilon < \frac{1}{2}$ this gives the DJL

Corollary 5. For all N vectors $(x_1, x_2, \dots, x_N) \in \mathbb{R}^d$ in d-dimension, there exists a random ϕ from DJL such that with $k = O(\frac{\log(N)}{\epsilon^2})$, for all $i \neq j; i, j \in [N]$:

$$P\left[||\phi(x_i) - \phi(x_j)|| \in (1 \pm \epsilon)||x_i - x_j||\right] \ge 1 - \frac{1}{N}$$

Proof. Pick $k = c \cdot \frac{\log(N)}{\epsilon^2},$ DJL states:

$$\forall x, y \quad P\left[||\phi(x) - \phi(y)|| \in (1 \pm \epsilon) ||x - y|| \right] \ge 1 - e^{\frac{-\epsilon^2 k}{9}} \ge 1 - \frac{1}{N^3}$$

by union bound:

$$P\left[\forall i, j: ||\phi(x) - \phi(y)|| \in (1 \pm \epsilon) ||x - y|| \text{ for } x = x_i, y = x_j\right] \ge 1 - \binom{N}{2} \cdot \frac{1}{N^3} \ge 1 - \frac{1}{N}$$

For $k \times n$ matrix \mathbb{G} and vector \mathbf{x} , where each entry in \mathbb{G} is a Gaussian:

$$\phi(x) = \frac{1}{\sqrt{k}} \cdot \mathbb{G} \cdot \mathbf{x}$$

with $1 \pm \epsilon$ approximation,

$$\phi : l_2^d \to l_2^k$$

where

$$l_2^d = ||x - y||_2 = \sum_{j=1}^d (x_i \cdots y_i)$$

What about l_1 ?

$$l_1^d : \mathbb{R}^d \text{ where } ||x - y||_1 = \sum_{i=1}^n |x_i - y_i|$$
$$l_p^d : \mathbb{R}^d \text{ where } ||x - y||_1 = \left(\sum_{i=1}^n |x_i - y_i|^p\right)^{\frac{1}{p}}$$

For l_1 : N vectors into lower dimensional l_1

$$K = N^{\Omega(\frac{1}{D})}$$
 for D-approximation

Alternative Sketch:

$$\phi(x) = \frac{1}{k} \cdot \mathbb{C} \cdot \mathbf{x}$$

where \mathbb{C} is a matrix with Cauchy distribution. So given $\phi(x)$, $\phi(y)$ we can estimate ||x-y|| as the median $(||\phi(x) - \phi(y)||$ of the absolute values of the k coordinates.

It's enough to take

$$k = O(\frac{\log(N)}{\epsilon^2})$$

Cauchy variables are the 1-stable distribution: $\sum c_i x_i$, where c_i are random Cauchy, is distributed as $||x||_1 \cdot c$ where c is also Cauchy. In general, for $p \in (0, 2]$, there exist p-stable distributions satisfying the above with $||x||_1$ replaced by $||x||_p$.