1 Introduction

This lecture mainly focuses on dimension reduction: Johnson-Linderstrauss Lemma and especially its distributional version. Chi-squared distribution is introduced when there is a sum of Gaussian distributed variables.

2 Last Time

Tug-of-War:

- for frequency vector $f \in \mathbb{R}$:
- pick random $\sigma_{i} \in\{ \pm 1\}$
- $z_{i}=\sum_{i=1} \sigma_{i} f_{i}$
- Estimator: z^{2}

Tug-of-War+ : k estimators

$$
z_{j}=\sum_{j=1} \sigma_{i j} f_{i}, j=1, \ldots ., k
$$

Estimator:

$$
\frac{1}{k} \sum z_{j}{ }^{2}
$$

3 Dimension Reduction

Definition 1 (Sketching function). For $\bar{x} \in \mathbb{R}^{n}, \bar{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, a sketching function $\varphi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$ is defined as

$$
\varphi(x)=\frac{1}{\sqrt{k}}\left(\sum \sigma_{1 i} x_{i}, \sum \sigma_{2 i} x_{i}, \ldots \sum \sigma_{k i} x_{i}\right)
$$

Definition 2 (Linear Property). φ is linear if:

$$
\begin{aligned}
& \varphi(x)+\varphi(y)=\varphi(x+y) \\
& \varphi(x)-\varphi(y)=\varphi(x-y)
\end{aligned}
$$

Estimator:

$$
\begin{gathered}
\varphi(x) \rightarrow\|\varphi(x)\|^{2}=\frac{1}{k} \Sigma_{j=1} z_{j}^{2} \\
\varphi(x)=\frac{1}{\sqrt{k}}\left(z_{i}, z_{2}, \ldots z_{k}\right)
\end{gathered}
$$

Given sketches $\varphi(x)$ and $\varphi(y)$: we can compute

$$
\|\varphi(x)-\varphi(y)\|_{2}^{2}=\|\varphi(x-y)\|_{2}^{2}=(1 \pm \epsilon)\|x-y\|_{2}^{2}=(1 \pm \epsilon) \sum_{i=1}^{n}\left(x_{i}-y_{i}\right)^{2}
$$

3.1 Johnson-Lindenstrauss Lemma

Lemma 3 (Distributional Johnson-Lindenstrauss 1984).

$$
\forall \epsilon>0 \text {, there is a randomized } \varphi:(R)^{n} \rightarrow(R)^{k} \text { such that } \forall x, y \in(R)^{n}
$$

we have

$$
P\left[\|\varphi(x)-\varphi(y)\| \in(1 \pm \epsilon)\|x-y\|_{2}\right] \geq 1-e^{\frac{\epsilon^{2} k}{9}}
$$

($e^{\frac{\epsilon^{2} k}{9}}$ is the failure probability.)
In original Johnson-Lindenstrauss lemma: φ : a random k-dimensional subspace.
Proof.

Take

$$
\varphi(x)=\left(\sum_{i=1}^{n} g_{1 i} x_{i}, \sum_{i=1}^{n} g_{2 i} x_{i}, \ldots . ., \sum_{i=1}^{n} g_{k i} x_{i}\right) \frac{1}{\sqrt{k}}
$$

Each $g_{j i}$ is a Gaussian/normal $\mathrm{N}(0,1)$:

$$
p d f(g)=\frac{1}{2 \pi} e^{-\frac{g^{2}}{2}}
$$

Recall: What did we use to prove the correctness of Tug-of-War?
(1) $E\left[\sigma_{i}\right]=0$
(2) $E\left[\sigma_{i}{ }^{2}\right]=1$
(3) $E\left[\sigma_{i}^{4}\right]=1$

This is satisfied by $\sigma_{i} \in\{ \pm 1\}$, but also by the Gaussian/normal random variable.
Consider $k=1$:

$$
\varphi(x)=\sum g_{i} x_{i}
$$

Definition 4 (Stability Property).

$$
\sum_{i=1}^{k} g_{i} x_{i} \sim\|x\|_{2} \cdot a=\left(\sum x_{i}^{2}\right)^{\frac{1}{2}} \cdot a
$$

a is another Gaussian $N(0,1)$

The probability density distribution for a centrally spherically symmetric vector $\bar{g}=\left(g_{1}, \cdots, g_{n}\right)$

$$
p d f(\bar{g})=\left(\frac{1}{\sqrt{2 \pi}}\right)^{n} \cdot e^{\frac{-g_{1}^{2}}{2}} \cdot e^{\frac{-g_{2}^{2}}{2}} \cdots e^{\frac{-g_{n}^{2}}{2}}=\left(\frac{1}{\sqrt{2 \pi}}\right)^{n} \cdot e^{\frac{-\sum_{i=1}^{n} g_{i}^{2}}{2}}
$$

$\bar{g} \cdot x$ is distributed as $\bar{g}^{\prime} \cdot\left(\|X\|_{x}, 0,0, \cdots, 0\right)=g_{1}^{\prime} \cdot\|x\|_{2}$
General k :

$$
\|\phi(x)-\phi(y)\|=\|\phi(x-y)\| \approx\|x-y\|_{2} \leftarrow\|z\|_{2} \text { where } z=x-y
$$

fix z :

$$
\phi(z)=\frac{1}{\sqrt{k}} \cdot\left(\sum g_{1 i} z_{i}, \cdots \sum g_{k i} z_{i}\right) \sim \frac{1}{\sqrt{k}} \cdot\left(a_{1} \cdot\|z\|, a_{2} \cdot\left\|z \mid, \cdots, a_{k} \cdot\right\| z \|\right)
$$

where each a_{i} is Gaussian distributed

$$
\begin{aligned}
\|\phi(z)\|_{2}^{2} & =\frac{1}{k} \sum_{j=1}^{k} a_{j}^{2} \cdot\|z\|^{2} \\
& =\|z\|^{2} \cdot \frac{\mathbf{1}}{\mathbf{k}} \sum_{\mathbf{j}=\mathbf{1}}^{\mathbf{k}} \mathbf{a}_{\mathbf{j}}^{2} \\
& =\|z\|^{2} \cdot \mathcal{X}_{k}^{2}
\end{aligned}
$$

This is \mathcal{X}^{2} (Chi-squared) distributed with k degrees of freedom.

Fact:

$$
P\left[\mathcal{X}_{k}^{2} \notin(1 \pm \epsilon)\right] \leq 2 \cdot e^{\frac{-k}{4}\left(\epsilon^{2}-\epsilon^{3}\right)}
$$

for $\epsilon<\frac{1}{2}$ this gives the DJL
Corollary 5. For all N vectors $\left(x_{1}, x_{2}, \cdots, x_{N}\right) \in \mathbb{R}^{d}$ in d-dimension, there exists a random ϕ from DJL such that with $k=O\left(\frac{\log (N)}{\epsilon^{2}}\right)$, for all $i \neq j ; i, j \in[N]$:

$$
P\left[\left\|\phi\left(x_{i}\right)-\phi\left(x_{j}\right)\right\| \in(1 \pm \epsilon)\left\|x_{i}-x_{j}\right\|\right] \geq 1-\frac{1}{N}
$$

Proof. Pick $k=c \cdot \frac{\log (N)}{\epsilon^{2}}$, DJL states:

$$
\forall x, y \quad P[\|\phi(x)-\phi(y)\| \in(1 \pm \epsilon)\|x-y\|] \geq 1-e^{\frac{-\epsilon^{2} k}{9}} \geq 1-\frac{1}{N^{3}}
$$

by union bound:

$$
P\left[\forall i, j:\|\phi(x)-\phi(y)\| \in(1 \pm \epsilon)\|x-y\| \text { for } x=x_{i}, y=x_{j}\right] \geq 1-\binom{N}{2} \cdot \frac{1}{N^{3}} \geq 1-\frac{1}{N}
$$

For $k \times n$ matrix \mathbb{G} and vector \mathbf{x}, where each entry in \mathbb{G} is a Gaussian:

$$
\phi(x)=\frac{1}{\sqrt{k}} \cdot \mathbb{G} \cdot \mathbf{x}
$$

with $1 \pm \epsilon$ approximation,

$$
\phi: l_{2}^{d} \rightarrow l_{2}^{k}
$$

where

$$
l_{2}^{d}=\|x-y\|_{2}=\sum_{j=1}^{d}\left(x_{i} \cdots y_{i}\right)
$$

What about l_{1} ?

$$
\begin{gathered}
l_{1}^{d}: \mathbb{R}^{d} \text { where }\|x-y\|_{1}=\sum_{i=1}^{n}\left|x_{i}-y_{i}\right| \\
l_{p}^{d}: \mathbb{R}^{d} \text { where }\|x-y\|_{1}=\left(\sum_{i=1}^{n}\left|x_{i}-y_{i}\right|^{p}\right)^{\frac{1}{p}}
\end{gathered}
$$

For $l_{1}: N$ vectors into lower dimensional l_{1}

$$
K=N^{\Omega\left(\frac{1}{D}\right)} \text { for D-approximation }
$$

Alternative Sketch:

$$
\phi(x)=\frac{1}{k} \cdot \mathbb{C} \cdot \mathbf{x}
$$

where \mathbb{C} is a matrix with Cauchy distribution. So given $\phi(x), \phi(y)$ we can estimate $\|x-y\|$ as the median $(\|\phi(x)-\phi(y)\|$ of the absolute values of the k coordinates.

It's enough to take

$$
k=O\left(\frac{\log (N)}{\epsilon^{2}}\right)
$$

Cauchy variables are the 1 -stable distribution: $\sum c_{i} x_{i}$, where c_{i} are random Cauchy, is distributed as $\|x\|_{1} \cdot c$ where c is also Cauchy. In general, for $p \in(0,2]$, there exist p-stable distributions satisfying the above with $\|x\|_{1}$ replaced by $\|x\|_{p}$.

