
COMS 4995-3: Advanced Algorithms Feb 6, 2017

Lecture 6 – Sketching, Frequency moments

Instructor: Alex Andoni Scribes: Saurabh Bondarde, Ying Sheng

1 Last Time

Last time we covered the Count Min Sketch Algorithm and concluded with the following claims.

Given ε, φ > 0, the sketch for finding φ Heavy hitter’s problem

• occupies O(
1

εφ
log n) space (or words)

• takes O(log n) time per update

• takes O(n log n) time to find the actual heavy hitter

– report all i such that f̂i ≥ φ
∑
fi

– do not report any i such that f̂i < (1− ε)φ
∑
fi

2 Introduction

Today’s lecture is about extending the Count Min algorithm for more than one routers. Up till now, we

only analyzed streams going through one router. The approach to get aggregate statistics of streams over

multiple routers will be discussed today.

3 Count Min Linearity

Imagine we have a stream of size n, the stream {x1, x2, ..., xn}, with its corresponding sketch S1, and

another stream of size m, {y1, y2, ..., ym}, with sketch S2. Note that each xi, yi ∈ [n]. Now suppose we

want the statistics on the union of the two streams, for example if we want the φ-heavy hitters of f + g

where f and g are the corresponding frequency estimates. (The + here indicates aggregate or union over

the two streams).

Approach: Composition! If f and g use the same hash function, then the composition of both the

streams is the sketch ‘f + g’.

As we have seen earlier that with a single stream, the algorithm to identify heavy hitters requires enu-

meration over all possible i. This step can take a lot of time especially if you consider aggregate statistics

of compositions. Can we reduce this time? Yes!

1



4 Optimized algorithm

Theorem 1. Without enumerating for all i, we can get the same result as the Count Min Algorithm

using

– O(
log2n

φ
) for finding the heavy hitters

– O(
log2

εφ
) space (words)

Proof. The idea here is to use dyadic intervals i.e. find the heavy hitters using binary search.

Definition 2. Dyadic Interval: A dyadic interval is a bounded interval whose endpoints are
j

2n
and

j + 1

2n
, where j and n are integers.

Imagine a binary search tree structure for elements from 1 to n. The dyadic intervals from the root

to the lower levels are as follows:

Root → [1, n]

Level 1 → [1,
n

2
], [
n

2
+ 1, n]

Level 2 → [1,
n

4
], [
n

4
+ 1,

n

2
], [
n

2
+ 1,

3n

4
], [

3n

4
+ 1, n]

and so on ...

For each level j ∈ {0, ..., log n} (Note that height of the tree is log n),

– it has 2j items which correspond to intervals of length
n

2j

– think of these items as a stream over these intervals with frequencies f j ∈ N2j . f jI is the sum of the

frequencies of items i ∈ I for the particular interval.

– construct count min sketch on these 2j virtual items. Example, at level 2, every item will fall in

frequency of 1st interval (1,
n

2
) or 2nd interval (

n

2
, n)

Thus,
∑

I f
j
I =

∑n
i=1 fi = m.

Space requirements: O(log(n)).O(
log(n)

εφ
) = O(

log2(n)

εφ
)

But question is how do we find heavy hitters faster? We can zoom in on them using the higher levels.

Claim 3. If item i is φ-heavy ⇒ parent is always φ-heavy.

In other words, if interval I1 is φ-heavy, then parent (I = I1
⋃
I2) is also φ-heavy.

f j−1I = f jI1 + f jI2

Note: It is possible that the parent is φ-heavy even if none of its children being φ-heavy.

Final Algorithm

– start from root

– descend into children which are heavy (stop at any point where it is not φ-heavy)

2



Claim 4. Any level can have ≤ 1

φ
heavy items.

Proof. We know fI ≥ φ
∑
fI This means there can be only

1

φ

Total time: O(log(n)).O(
1

φ
).O(log(n)) = O(

log2(n)

φ
)

Note: One open issue is that there is a probability of success associated. Here, Pr[Failure] ≤ 1

n
.

5 Frequency Moments

Definition 5. Fp denotes the p-th(p > 0) moment of function f , which equals:

Fp ,
∑

fpi

Next, we want to estimate F̂2 =
∑
f2i .

Motivation: Why do we calculate this 2nd moment?

- application in databases to estimate size of database-joins

- connected with dimension reduction

- used for notion of error and calculating squares of error

Tug-of-War(ToW) Algorithm

Suppose the items in stream are in [n]

• Pick σi ∈ {±1}, i = 1, ..., n randomly

• Sketching to get: z =
∑n

i=1 σifi

– On item xc = i, update znew = z + σi

• Output estimator: z2

Actually, we can treat σ : [n]→ {−1,+1} as random hash function. Let

z+ =
∑

i:σi=+1

fi, z− =
∑

i:σi=−1
fi

The estimator is equals to (z+ − z−)2.

Next, we’ll show how good is the estimator.

Claim 6. Eσ[z2] = F2

3



Proof.

E[z2] =E[(

n∑
i=1

σifi)
2]

=E[

n∑
i=1

σ2i f
2
i +

∑
i 6=j

σifiσjfj ]

=
n∑
i=1

f2i +
∑
i 6=j

fifjE[σiσj ]

=
n∑
i=1

f2i

=F2

Claim 7. V ar[z2] = O(F 2
2 )

Proof.

V ar[z2] =E[z4]− E[z2]2

=

n∑
i=1

f4i +
∑
i 6=j

f2i f
2
j · 3

≤(

n∑
i=1

f2i )2 + 3(

n∑
i=1

f2i )2

≤4F 2
2

Then, by Chebyshev’s inequality, there is:

Pr

[
z2 within F2 ± 3

√
4F 2

2

]
= Pr

[
z2 within F2 ± 6F2

]
≥ 2

3

We can repeat the ToW algorithm multiple times to improve the accuracy.

ToW+: repeat ToW k times, and take the average of the estimators.

• Suppose zj is the ToW sketch for independent {σji}, i = 1, ..., n

• Output Estimator z =
1

k
(
∑k

i=1 z
2
i )

We can calculate the expectation and variance of the estimator as follows:

E[z] = E[
1

k

∑
j

z2j ] =
1

k

k∑
j=1

F2 = F2

4



V ar[z] = V ar[
1

k

∑
j

z2j ] =
1

k
V ar[z21 ] ≤ 4F 2

2

k

Again, by Chebyshev’s inequality, there is:

Pr

[
z within F2 ±

ε√
k
F2

]
≥ 2

3

Then, we can set k = O(
1

εc
) to get (1 + ε) approximation.

6 Next time

Theorem 8. (Central Limit Theorem). Let X1, X2, ..., Xn be a random sample from a distribu-

tion(any distribution) with (finite) mean µ and (finite) variance σ2. Let Y =
1

k

∑k
i=1Xi, and k suffi-

ciently large. Then,

• The sample mean Y follows an approximate normal distribution.

• E[Y ] = µ

• V ar[Y ] =
σ2

n

Or say,

Y
distribution−−−−−−−→ N (µ,

σ2

n
) as n→∞

5


