Lecture 3 - Hashing: Power of 2 Choices
Instructor: Alex Andoni

1 Hashing Continued

The hashing problem was introduced last time. In short, the problem is to design $h:[U] \rightarrow[n]$ that solves the dictionary problem:

- given set S of size m
- query: given $x \in[U]$, output if $x \in S$

Parameters:

- space $=? \quad(O(|S| \log U)$ for a fully random hash function)
- time $=? \quad(O(1)$ for a fully random hash function $)$
h : fully random \rightarrow takes too much space
h : Universal Hash Function \rightarrow Cheaper and atleast as good as fully random (mostly)
Runtime: $\left|\left[h^{-1}[h(x)]\right] \cap S\right| \xlongequal{\triangleq} L_{x}$
$C=\#$ collisions $=\#$ pairs x,y $\in \mathrm{S}$ that fall in the same bucket i.e. $h(x)=h(y)$
Claim 1. $\mathbb{E}[C]=\left[\frac{{ }^{m} C_{2}}{n}\right]=\frac{m(m-1)}{2 n}$
Proof. Proved last time

Want \# collisions $=0$?
Fix $\mathrm{n}=\frac{4 m(m-1)}{2}=O\left(m^{2}\right)$

$$
\Rightarrow \mathbb{E}[C] \leq \frac{1}{4}
$$

By Markov:
$\operatorname{Pr}[C>3 \mathbb{E}[\mathbb{C}]] \leq \frac{1}{3}$
$\Rightarrow \operatorname{Pr}\left[C>\frac{3}{4}\right] \leq \frac{1}{3}$

With probability $\geq \frac{2}{3}$, we have $C \leq \frac{3}{4}$

$$
\Rightarrow C=0
$$

Conclusion:
fix $n=\frac{4 m(m-1)}{2}=O\left(m^{2}\right)$
Then no collisions with probability $\frac{3}{4}$
To provide a different probability value,
$n=\frac{11 m(m-1)}{2}$
$\Rightarrow \mathbb{E}[C] \leq \frac{1}{11}$
$P[C>10 \mathbb{E}[C]] \leq \frac{1}{10}$
\Rightarrow With prob $\frac{9}{10}, C \leq \frac{10}{11}$, implies $C=0$
If we set $n=O\left(m^{2}\right)$, suffices for no collisions
space $=O(n)=O\left(m^{2}\right)=O\left(|S|^{2}\right)$
Better Space = ?
Fix $\mathrm{n}=\mathrm{m}$
Claim 2. For fixed $x, \mathbb{E}\left[L_{x}\right] \leq\left[1+\frac{m-1}{n}\right]$ where L_{x} is the size of the bucket containing x if $n=m, \Rightarrow \mathbb{E}\left[L_{x}\right] \leq O(1)$

Proof.

$$
\begin{aligned}
\mathbb{E}\left[L_{x}\right] & =1+\mathbb{E}\left[\sum_{y \neq x, y \in S} \mathbb{1}_{h(y)=h(x)}\right] \\
& =1+\sum_{y \in S} \mathbb{E}\left[\mathbb{1}_{h(y)=h(x)}\right] \\
& =1+\frac{m-1}{n}
\end{aligned}
$$

2 Perfect Hashing

The goal of perfect hashing is to have zero collisions. A 2-level hashing scheme is used.
First level: $h:[U] \rightarrow[n]$
Second level: for each $i \in[n], h_{i}:[U] \rightarrow\left[n_{i}\right]$
Fix $n=m=|S|$ and

$$
n_{i}=4 * \frac{S_{i}\left(S_{i}-1\right)}{2}
$$

where $S_{i}=\#$ items from S that map to bucket i.
Assuming no collisions in second level hash lookup, the time taken to run query is $O(1)$. The space taken can be computed as follows:

$$
\begin{aligned}
\text { space } & =\text { first level }+ \text { second level } \\
& =O(n)+\sum_{i=1}^{n} n_{i} \\
& =O(n)+O(1) *\left(n+\sum_{i=1}^{n} S_{i}^{2}\right) \\
& =O(n)+O(1) *(n+O(n))
\end{aligned}
$$

Claim 3. $\mathbb{E}\left[\sum_{i=1}^{n} S_{i}^{2}\right]=2 m$
Proof.

$$
\begin{aligned}
\sum_{i=1}^{n} S_{i}^{2} & =\mathbb{E}\left[\sum_{i=1}^{n} S_{i} *\left(S_{i}-1\right)\right]+\mathbb{E}\left[\sum_{i=1}^{n} S_{i}\right] \\
& \left(\text { where }\left[\sum_{i=1}^{n} S_{i} *\left(S_{i}-1\right)\right]=2 * \# \text { collisions in bucket } i\right) \\
& =2 * \frac{m(m-1)}{2} * \frac{1}{n}+m \\
& \leq m+\frac{m^{2}}{n} \\
& =2 m
\end{aligned}
$$

Hence it can be said that space required is $O(m)$ in expectation. For $\mathbb{E}[$ space $] \leq 6 m$, from Markov bound, we have $\operatorname{Pr}[$ space $>10 \cdot 6 \mathrm{~m}] \leq \frac{1}{10}$.

Full Algorithm:
sample h and check if space $\leq 60 \mathrm{~m}$
if not, then resample h
for each i, sample h_{i}
check that there are no collisions (probability $\geq \frac{2}{3}$
if collision in h_{i}, resample it
Time complexity $=O(m)+O(m)+\sum_{i=1}^{n} S_{i}=O(m)$.

3 Power of 2 choices

Using one hash function: $\mathbb{E}[$ query time $]=\mathbb{E}[$ bucket size $]=O(1)$ if $n=m$.
Claim 4. Max load in any bucket is $\Theta(\log n / \log \log n)$ with probability 50%.
Proof. For proving the upper bound, fix the bucket size as S_{i} for the $i^{\text {th }}$ bucket.

$$
\begin{aligned}
\operatorname{Pr}\left[S_{i} \geq k\right] & \leq \sum_{T \subset S,|T|=k} \operatorname{Pr}[\text { all } x \in \text { Tin bucket } i] \\
& ={ }^{n} C_{k} \cdot \frac{1}{n^{k}} \\
& \leq\left(\frac{e n}{k}\right)^{k} \cdot \frac{1}{n^{k}} \\
& =\left(\frac{e}{k}\right)^{k}
\end{aligned}
$$

We want

$$
\operatorname{Pr}\left[S_{i} \geq k\right] \leq \frac{1}{4 n}
$$

so that

$$
\begin{array}{rlr}
\mathbb{E}[\# \text { buckets of size } \geq k] & \leq n \cdot \operatorname{Pr}[\text { bucket size } \geq k] \\
& \leq \frac{1}{4} \\
& \leq 1 \text { with prob } \geq 1 / 2 \quad \text { from Markov bound }
\end{array}
$$

Hence we can infer about k

$$
\left(\frac{e}{k}\right)^{k}<\frac{1}{4 n}
$$

hence for a large enough constant c,

$$
k=c \cdot \frac{\log n}{\log \log n}
$$

Using two hash functions: Consider $h_{1}, h_{2}:[U] \rightarrow[n]$. For any x, compute $h_{1}(x)$ and $h_{2}(x)$ and put x into the lesser loaded bucket. Such load balancing ensures max load for any bucket is $O(\log \log n)$ with probability $\geq 50 \%$.

