## Lecture 22- Newton's Method and Interior Point Algorithms

Instructor: Alex Andoni
Scribes: Elahe Vahdani, Luca Wehrstedt

In the previous lecture, in order to find $\min _{x \in \mathbb{R}^{n}} f(x)$, assuming that $f(x)$ has continuous first and second derivatives, we used Taylor approximation.

$$
f(x+\delta)=f(x)+\nabla f(x)^{T} \delta+\delta^{T} \nabla^{2} f(y) \delta \quad \text { where } y \in[x, x+\delta]
$$

We assumed that we have query access to $f(x)$ and $\nabla f(x)$. We also considered the following bound assumptions on $\nabla^{2} f$ :

1. $\delta^{T} \nabla^{2} f(y) \delta \leq \beta\|\delta\|^{2}$ or, equivalently, $\lambda_{\max }\left(\nabla^{2}\right) \leq \beta$, which implies that the progress is at least $\frac{1}{2 \beta}\|\nabla f(x)\|^{2}$ at every step;
2. $f$ is convex, which means that $\delta^{T} \nabla^{2} f(y) \delta \geq 0$ and that if $\nabla f=0$ we have reached optimality;
3. $\delta^{T} \nabla^{2} f(y) \delta \geq \alpha\|\delta\|^{2}$

Convergence occurs in $\mathcal{O}\left(\frac{\beta}{\alpha} \log \frac{f\left(x^{0}\right)-f\left(x^{\star}\right)}{\epsilon}\right)$ where $\beta$ is the biggest eigenvalue and $\alpha$ is the smallest eigenvalue of $\nabla^{2} f$, and $x^{\star}$ is the optimal solution. We are looking for $x^{T}$ such that:

$$
f\left(x^{T}\right)-f\left(x^{\star}\right) \leq \epsilon
$$

Define the condition number $k=\frac{\beta}{\alpha}$.

## 1 Newton's Method

Define $Q=\delta^{T} \nabla^{2} f(y) \delta$. Using linear changes of variables, we have:

$$
\begin{gathered}
z:=A x \text { where } A \text { is a full rank } n \times n \text { matrix } \\
\Delta:=A \delta \Longrightarrow \delta=A^{-1} \Delta \\
Q=\Delta^{T}\left(A^{-1}\right)^{T} \nabla^{2} f(y) A^{-1} \Delta
\end{gathered}
$$

We want to set $A$ such that:

$$
\left(A^{-1}\right)^{T} \nabla^{2} f(y) A^{-1}=I
$$

since then $\frac{\lambda_{\text {max }}}{\lambda_{\text {min }}}=1$. Therefore,

$$
\nabla^{2} f(y)=A^{T} A \Longrightarrow A=\left(\nabla^{2} f(y)\right)^{\frac{1}{2}}
$$

Now, fix $A$. We look for a step which is:

$$
\begin{aligned}
& \quad \underset{\delta: \Delta=A \delta,\|\Delta\|=\epsilon}{\arg \min } \nabla f(x)^{T} \delta+\frac{1}{2}\|\Delta\|^{2} \\
& \quad=\underset{\delta: \Delta=A \delta,\|\Delta\|=\epsilon}{\arg \min } \nabla f(x)^{T} A^{-1} \Delta \\
& \quad=-\eta A^{-1}\left(A^{-1}\right)^{T} \nabla f(x) \\
& \quad=-\eta\left(\nabla^{2} f(y)\right)^{-1} \nabla f(x)
\end{aligned}
$$

Because the minimum is achieved for $\Delta \propto-\left(\nabla f(x)^{T} A^{-1}\right)^{T}=-\left(A^{-1}\right)^{T} \nabla f(x)$. Therefore, the minimization occurs at step $\delta=-\eta\left(\nabla^{2} f(y)\right)^{-1} \nabla f(x)$.
Note 1 . We need query access to $\nabla^{2} f(y)$, which is why this is called a second-order method.
Note 2. We need to invert a matrix, or equivalently a linear system of equations: $\nabla^{2} f(y) \delta=-\eta \nabla f(x)$.
Note 3. We don't have $y$, which is why Newton's method uses $\delta=-\eta\left(\nabla^{2} f(x)\right)^{-1} \nabla f(x)$. But in general, $\nabla^{2} f(x) \neq \nabla^{2} f(y)$.
Note 4. Assuming that $\nabla^{2} f(x)=\nabla^{2} f(y)$, convergence takes $\mathcal{O}\left(\log \frac{f\left(x^{0}\right)-f\left(x^{\star}\right)}{\epsilon}\right)$.

### 1.1 Alternative view on Newton's method

$$
f(x+\delta)=\underbrace{f(x)+\nabla f(x)^{T} \delta+\delta^{T} \nabla^{2} f(x) \delta}_{\delta \text { is minimizer of }}+\mathcal{O}\left(\|\delta\|^{3}\right)
$$

Theorem 1. Suppose there exists $r>0$ such that for all $x, y$ at distance $\leq r$ from $x^{\star}$ we have:

1. $\lambda_{\text {min }}\left(\nabla^{2} f(x)\right) \geq \mu$
2. $\left\|\nabla^{2} f(x)-\nabla^{2} f(y)\right\| \leq L\|x-y\|$

Then $\left\|x^{1}-x^{\star}\right\| \leq \frac{L}{2 \mu}\left\|x^{0}-x^{\star}\right\|^{2}$, where $x^{0}$ is at distance $\leq r$ from $x^{\star}$ and $x^{1}$ is $x^{0}$ plus a Newton's step.
The norm we use for matrices is the spectral norm, i.e., $\|X\|=\lambda_{\max }(X)$.
Intuition: under the right conditions, it converges in $\mathcal{O}\left(\log \log \frac{\left\|x^{0}-x^{\star}\right\|}{\epsilon}\right)$.

## 2 Back to linear programming

### 2.1 The interior point method

Consider a linear programming problem of the following form:

$$
\begin{gathered}
\min c^{T} x \\
\text { s.t. } A x \leq b
\end{gathered}
$$

on $n$ coordinates with $m$ constraints. Call $K$ the feasible region, i.e., $K=\left\{x \in \mathbb{R}^{n} \mid A x \leq b\right\}$.
We have already seen one way to turn this into an unconstrained problem, by replacing the objective function with one that evaluates to $c^{T} x$ for $x \in K$ and to $+\infty$ otherwise. But such a function isn't
continuous and doesn't work well with the gradient descent method or Newton's method. We need a smoother function.

We will instead replace the objective function with $f_{\eta}(x)=\eta c^{T} x+F(x)$, for $\eta \geq 0$, where $F(x)$ is called a barrier function and has the following properties:

$$
\begin{gathered}
F(x)<+\infty \text { for } x \in K \\
F(x) \rightarrow+\infty \text { for } x \rightarrow \partial K
\end{gathered}
$$

One possible barrier function is:

$$
F(x)=\log \left(\prod_{i=1}^{m} \frac{1}{b_{i}-A_{i} x}\right)=-\sum_{i=1}^{m} \log \left(b_{i}-A_{i} x\right)
$$

Call $x_{\eta}^{*}=\arg \min \eta c^{T} x+F(x)$. It is a continuous function of $\eta$. When $\eta=0$ we have that $x_{0}^{*}$ is independent of $c$, and this point is called analytic center.


In the above drawing we see the polytope $K$ with $c$ pointing from left to right. The optimal point $x^{*}$ is therefore the leftmost vertex of $K$. The point $x_{0}^{*}$ is the analytic center. The path connecting the two is the central path, i.e., $\left\{x_{\eta}^{*}, \eta \geq 0\right\}$. This means that $x^{*}$ is $\lim _{\eta \rightarrow+\infty} x_{\eta}^{*}$.

This reformulation of linear programming leads to a few algorithm ideas:

## Idea 1

- start from a point $x^{0}$;
- compute $x_{\eta}^{*}$ for a "very large" $\eta$ using Newton's method or gradient descent starting at $x^{0}$.

The problem with gradient descent is that it depends on the condition number, which depends on $F(x)$ and may be very large, whereas Newton's method requires $x^{0}$ to be "close" to $x_{\eta}^{*}$ in order for the theorem we saw earlier to apply.

Let $s_{i}$ be $b_{i}-A_{i} x$, and call these slack variables. We can use them to express $\nabla f_{\eta}(x)$ and $\nabla^{2} f_{\eta}(x)$ :

$$
\begin{gathered}
\nabla f_{\eta}(x)=\eta c+\sum_{i=1}^{m} \frac{A_{i}}{s_{i}(x)} \\
\nabla^{2} f_{\eta}(x)=\nabla^{2} F(x)=\sum_{i=1}^{m} \frac{A_{i} A_{i}^{T}}{s_{i}^{2}(x)}
\end{gathered}
$$

This means that close to the boundary of $K$ the coefficients of the Hessian of the barrier function will increase rapidly and this may affect negatively the condition number.

Remark: we assume $K$ has $>0$ volume.

## Idea 2

- start at $x^{0}=x_{\eta_{0}}^{*}$ for some $\eta_{0}>0 ;$
- "walk the central path", meaning that at time $t+1$ :
- increase $\eta: \eta_{t+1}=\eta_{t}(1+\alpha)$ (we will decide the value of $\alpha$ later);
- run Newton's method to find $x_{\eta_{t+1}}^{*}$ starting at $x_{\eta_{t}}^{*}$ (which works correctly and efficiently as long as $x_{\eta_{t+1}}^{*}$ is "close" to $x_{\eta_{t}}^{*}$ ).

Idea 3 This idea is just a performance improvement of idea 2, based on the observation that when running Newton's method to find $x_{\eta_{t+1}}^{*}$ we don't need to run it until it reaches optimality, we can stop it early. In particular stopping it after just one iteration yields the following algorithm:

## Algorithm

- start at $x_{0} \approx x_{\eta_{0}}^{*}$ for some $\eta_{0}>0$;
- at step $t+1$ define $\eta_{t+1}$ as $\eta_{t}(1+\alpha)$ and find $x_{t+1}$ by performing one step of Newton's method for $f_{\eta_{t+1}}$ starting at $x_{t}$;
- once at time $t=T$ such that $\eta_{T}$ is "large enough" run Newton's method to optimality and obtain $x_{\eta_{T}}^{*}$;
- output $x_{\eta_{T}}^{*}$.

Lemma 2. For all $\eta$ we have $c^{T} x_{\eta}^{*}-c^{T} x^{*} \leq m / \eta$, which implies that $\eta_{T}$ has to be larger than $m / \epsilon$ if we want $c^{T} x_{\eta_{T}}^{*}-c^{T} x^{*} \leq \epsilon$. This means that the number of steps is

$$
T=\mathcal{O}\left(\frac{1}{\alpha} \log \frac{m / \epsilon}{\eta_{0}}\right)=\mathcal{O}\left(\log _{1+\alpha} \frac{m / \epsilon}{\eta_{0}}\right)
$$

