COMS W4995-3: Advanced Algorithms April 12, 2017

Lecture 22— Newton’s Method and Interior Point Algorithms

Instructor: Alex Andoni Scribes: Elahe Vahdani, Luca Wehrstedt

In the previous lecture, in order to find mingecrn f(z), assuming that f(x) has continuous first and second
derivatives, we used Taylor approximation.

fx+6) = flx)+ Vf(x)T6 +6TV2f(y)d  where y € [x,x + 0]

We assumed that we have query access to f(z) and Vf(z). We also considered the following bound
assumptions on V2 f:

1. 6TV2f(y)6 < B||6]|? or, equivalently, Apmaz(V?) < B, which implies that the progress is at least
%HVf(av)H2 at every step;

2. f is convex, which means that 67 V2f(y)é > 0 and that if Vf = 0 we have reached optimality;
3. 6TV2f(y)3 > al|9]?

Convergence occurs in O (glog M) where ( is the biggest eigenvalue and « is the smallest

eigenvalue of V2f, and z* is the optimal solution. We are looking for 27 such that:
fa) = fla*) <e

Define the condition number k = g

1 Newton’s Method
Define Q = 67 V2f(y)é. Using linear changes of variables, we have:

z := Ax where A is a full rank n x n matrix
A=A = 6=A"1A
Q=ATA) V2 f(y)AT'A
We want to set A such that:
(AN f(yAT =1

since then @ = 1. Therefore,
man

V2f(y) = ATA = A= (V2f(y))?



Now, fix A. We look for a step which is:
. T 1 2
argmin = Vf(z) 0+ - ||Al
§:A=AS, | All=e 2

= argmin  Vf(z)TA7IA
0:A=AS, ||All=e

= —nATH(AT)TVf(2)
—1
=1 (V*f(y) V()
Because the minimum is achieved for A oc — (Vf(x)TA_l)T = —(A YTV f(x). Therefore, the mini-
mization occurs at step 6 = —n(V2f(y)) "1V f(x).
Note 1. We need query access to V2 £(y), which is why this is called a second-order method.

Note 2. We need to invert a matrix, or equivalently a linear system of equations: V2f(y)6 = —nV f(x).

Note 3. We don’t have y, which is why Newton’s method uses § = —n(V2f(x))"'V f(x). But in general,
V3 (@) # V2 (y).
Note 4. Assuming that V2 f(z) = V2 f(y), convergence takes O(log M)

€

1.1 Alternative view on Newton’s method

fla+0) = f(z) + V()76 + 0"V f(2)5 +O(||8]])

¢ is minimizer of

Theorem 1. Suppose there exists r > 0 such that for all x,y at distance < r from z* we have:
1 Apin(V2f(2)) >
2. IV2f(x) = V2 f(y)ll < Lllz — y]|

0

Then ||zt — 2*|| < %on — 2*||2, where 2° is at distance < r from x* and ' is 20 plus a Newton’s step.

The norm we use for matrices is the spectral norm, i.e., || X || = A\paz(X).
Hro—w*\l)

Intuition: under the right conditions, it converges in O(loglog =

2 Back to linear programming

2.1 The interior point method
Consider a linear programming problem of the following form:

minc!

s.t. Az <b

on n coordinates with m constraints. Call K the feasible region, i.e., K = {x € R" | Az < b}.
We have already seen one way to turn this into an unconstrained problem, by replacing the objective
function with one that evaluates to ¢’z for # € K and to +o0o otherwise. But such a function isn’t



continuous and doesn’t work well with the gradient descent method or Newton’s method. We need a
smoother function.

We will instead replace the objective function with f,(z) = ncla + F(x), for n > 0, where F(x) is
called a barrier function and has the following properties:

F(z) < +ooforz e K
F(z) = 400 for z — 0K

One possible barrier function is:

m

F(z) =log <H b—1A:13> =— Zlog (b; — A;x)
! ! i=1

=1

Call z; = argmin nelx + F(x). Tt is a continuous function of 7. When 1 = 0 we have that zj) is
independent of ¢, and this point is called analytic center.

¢ o K

In the above drawing we see the polytope K with ¢ pointing from left to right. The optimal point z* is
therefore the leftmost vertex of K. The point z(, is the analytic center. The path connecting the two is
the central path, i.e., {zj,n > 0}. This means that z* is lim;— o0 ;.

This reformulation of linear programming leads to a few algorithm ideas:

Idea 1
e start from a point z°;
e compute x; for a “very large” n using Newton’s method or gradient descent starting at 20,

The problem with gradient descent is that it depends on the condition number, which depends on

F(x) and may be very large, whereas Newton’s method requires 2° to be “close” to z; in order for the

theorem we saw earlier to apply.



Let s; be b; — A;x, and call these slack variables. We can use them to express V f,(z) and V2f,(z):

Vfo(x) =nc+ Z AZ
=1 Sz(l‘)
m T
Vo) = VEF() = 30 ST
=1

This means that close to the boundary of K the coefficients of the Hessian of the barrier function will
increase rapidly and this may affect negatively the condition number.
Remark: we assume K has > 0 volume.

Idea 2
e start at 20 = x,, for some 19 > 0;
e “walk the central path”, meaning that at time ¢ + 1:

— increase n: 41 = (1 + o) (we will decide the value of « later);

— run Newton’s method to find z7,  starting at a7, (which works correctly and efficiently as

* is “close” to x*

long as @y, | )

Idea 3 This idea is just a performance improvement of idea 2, based on the observation that when

running Newton’s method to find z7,

early. In particular stopping it after just one iteration yields the following algorithm:

we don’t need to run it until it reaches optimality, we can stop it

Algorithm
e start at xo ~ zj, for some 7y > 0;

e at step t + 1 define 1,41 as m:(1 + «) and find x;4; by performing one step of Newton’s method for
fress starting at ay;

e once at time ¢t =T such that nr is “large enough” run Newton’s method to optimality and obtain

*
an’
e output z; .

Lemma 2. For all n we have ch;“] —cl'w* < m/y, which implies that ny has to be larger than ™/e if we

want CTx,’;T — cT'z* < €. This means that the number of steps is
1 m/e m/e
Tz(’)(log) :(9<10g )
o 1o e o
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