
COMS W4995-3: Advanced Algorithms April 12, 2017

Lecture 22− Newton’s Method and Interior Point Algorithms

Instructor: Alex Andoni Scribes: Elahe Vahdani, Luca Wehrstedt

In the previous lecture, in order to find minx∈Rn f(x), assuming that f(x) has continuous first and second

derivatives, we used Taylor approximation.

f(x+ δ) = f(x) +∇f(x)T δ + δT∇2f(y)δ where y ∈ [x, x+ δ]

We assumed that we have query access to f(x) and ∇f(x). We also considered the following bound

assumptions on ∇2f :

1. δT∇2f(y)δ ≤ β‖δ‖2 or, equivalently, λmax(∇2) ≤ β, which implies that the progress is at least
1

2β‖∇f(x)‖2 at every step;

2. f is convex, which means that δT∇2f(y)δ ≥ 0 and that if ∇f = 0 we have reached optimality;

3. δT∇2f(y)δ ≥ α||δ||2

Convergence occurs in O
(
β
α log f(x0)−f(x?)

ε

)
where β is the biggest eigenvalue and α is the smallest

eigenvalue of ∇2f , and x? is the optimal solution. We are looking for xT such that:

f(xT )− f(x?) ≤ ε

Define the condition number k = β
α .

1 Newton’s Method

Define Q = δT∇2f(y)δ. Using linear changes of variables, we have:

z := Ax where A is a full rank n× n matrix

∆ := Aδ =⇒ δ = A−1∆

Q = ∆T (A−1)T∇2f(y)A−1∆

We want to set A such that:

(A−1)T∇2f(y)A−1 = I

since then λmax
λmin

= 1. Therefore,

∇2f(y) = ATA =⇒ A = (∇2f(y))
1
2

1



Now, fix A. We look for a step which is:

arg min
δ:∆=Aδ, ‖∆‖=ε

∇f(x)T δ +
1

2
‖∆‖2

= arg min
δ:∆=Aδ, ‖∆‖=ε

∇f(x)TA−1∆

= −ηA−1(A−1)T∇f(x)

= −η
(
∇2f(y)

)−1∇f(x)

Because the minimum is achieved for ∆ ∝ −
(
∇f(x)TA−1

)T
= −(A−1)T∇f(x). Therefore, the mini-

mization occurs at step δ = −η(∇2f(y))−1∇f(x).

Note 1. We need query access to ∇2f(y), which is why this is called a second-order method.

Note 2. We need to invert a matrix, or equivalently a linear system of equations: ∇2f(y)δ = −η∇f(x).

Note 3. We don’t have y, which is why Newton’s method uses δ = −η(∇2f(x))−1∇f(x). But in general,

∇2f(x) 6= ∇2f(y).

Note 4. Assuming that ∇2f(x) = ∇2f(y), convergence takes O(log f(x0)−f(x?)
ε ).

1.1 Alternative view on Newton’s method

f(x+ δ) = f(x) +∇f(x)T δ + δT∇2f(x)δ︸ ︷︷ ︸
δ is minimizer of

+O(‖δ‖3)

Theorem 1. Suppose there exists r > 0 such that for all x, y at distance ≤ r from x? we have:

1. λmin(∇2f(x)) ≥ µ

2. ‖∇2f(x)−∇2f(y)‖ ≤ L‖x− y‖

Then ||x1 − x?|| ≤ L
2µ‖x

0 − x?‖2, where x0 is at distance ≤ r from x? and x1 is x0 plus a Newton’s step.

The norm we use for matrices is the spectral norm, i.e., ‖X‖ = λmax(X).

Intuition: under the right conditions, it converges in O(log log ‖x
0−x?‖
ε ).

2 Back to linear programming

2.1 The interior point method

Consider a linear programming problem of the following form:

min cTx

s.t. Ax ≤ b

on n coordinates with m constraints. Call K the feasible region, i.e., K = {x ∈ Rn | Ax ≤ b}.
We have already seen one way to turn this into an unconstrained problem, by replacing the objective

function with one that evaluates to cTx for x ∈ K and to +∞ otherwise. But such a function isn’t
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continuous and doesn’t work well with the gradient descent method or Newton’s method. We need a

smoother function.

We will instead replace the objective function with fη(x) = ηcTx + F (x), for η ≥ 0, where F (x) is

called a barrier function and has the following properties:

F (x) < +∞ for x ∈ K
F (x)→ +∞ for x→ ∂K

One possible barrier function is:

F (x) = log

(
m∏
i=1

1

bi −Aix

)
= −

m∑
i=1

log (bi −Aix)

Call x∗η = arg min ηcTx + F (x). It is a continuous function of η. When η = 0 we have that x∗0 is

independent of c, and this point is called analytic center.

c
K

x*
x*
0

In the above drawing we see the polytope K with c pointing from left to right. The optimal point x∗ is

therefore the leftmost vertex of K. The point x∗0 is the analytic center. The path connecting the two is

the central path, i.e., {x∗η, η ≥ 0}. This means that x∗ is limη→+∞ x
∗
η.

This reformulation of linear programming leads to a few algorithm ideas:

Idea 1

• start from a point x0;

• compute x∗η for a “very large” η using Newton’s method or gradient descent starting at x0.

The problem with gradient descent is that it depends on the condition number, which depends on

F (x) and may be very large, whereas Newton’s method requires x0 to be “close” to x∗η in order for the

theorem we saw earlier to apply.
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Let si be bi −Aix, and call these slack variables. We can use them to express ∇fη(x) and ∇2fη(x):

∇fη(x) = ηc+

m∑
i=1

Ai
si(x)

∇2fη(x) = ∇2F (x) =

m∑
i=1

AiA
T
i

s2
i (x)

This means that close to the boundary of K the coefficients of the Hessian of the barrier function will

increase rapidly and this may affect negatively the condition number.

Remark: we assume K has > 0 volume.

Idea 2

• start at x0 = x∗η0 for some η0 > 0;

• “walk the central path”, meaning that at time t+ 1:

– increase η: ηt+1 = ηt(1 + α) (we will decide the value of α later);

– run Newton’s method to find x∗ηt+1
starting at x∗ηt (which works correctly and efficiently as

long as x∗ηt+1
is “close” to x∗ηt).

Idea 3 This idea is just a performance improvement of idea 2, based on the observation that when

running Newton’s method to find x∗ηt+1
we don’t need to run it until it reaches optimality, we can stop it

early. In particular stopping it after just one iteration yields the following algorithm:

Algorithm

• start at x0 ≈ x∗η0 for some η0 > 0;

• at step t+ 1 define ηt+1 as ηt(1 + α) and find xt+1 by performing one step of Newton’s method for

fηt+1 starting at xt;

• once at time t = T such that ηT is “large enough” run Newton’s method to optimality and obtain

x∗ηT ;

• output x∗ηT .

Lemma 2. For all η we have cTx∗η − cTx∗ ≤ m/η, which implies that ηT has to be larger than m/ε if we

want cTx∗ηT − c
Tx∗ ≤ ε. This means that the number of steps is

T = O
(

1

α
log

m/ε

η0

)
= O

(
log1+α

m/ε

η0

)
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