COMS W4995-3: Advanced AlgorithmsApril 12, 2017Lecture 22- Newton's Method and Interior Point AlgorithmsInstructor: Alex AndoniScribes: Elahe Vahdani, Luca Wehrstedt

In the previous lecture, in order to find $\min_{x \in \mathbb{R}^n} f(x)$, assuming that f(x) has continuous first and second derivatives, we used Taylor approximation.

$$f(x+\delta) = f(x) + \nabla f(x)^T \delta + \delta^T \nabla^2 f(y) \delta$$
 where $y \in [x, x+\delta]$

We assumed that we have query access to f(x) and $\nabla f(x)$. We also considered the following bound assumptions on $\nabla^2 f$:

- 1. $\delta^T \nabla^2 f(y) \delta \leq \beta \|\delta\|^2$ or, equivalently, $\lambda_{max}(\nabla^2) \leq \beta$, which implies that the progress is at least $\frac{1}{2\beta} \|\nabla f(x)\|^2$ at every step;
- 2. f is convex, which means that $\delta^T \nabla^2 f(y) \delta \ge 0$ and that if $\nabla f = 0$ we have reached optimality;

3.
$$\delta^T \nabla^2 f(y) \delta \ge \alpha ||\delta||^2$$

Convergence occurs in $\mathcal{O}\left(\frac{\beta}{\alpha}\log\frac{f(x^0)-f(x^*)}{\epsilon}\right)$ where β is the biggest eigenvalue and α is the smallest eigenvalue of $\nabla^2 f$, and x^* is the optimal solution. We are looking for x^T such that:

$$f(x^T) - f(x^\star) \le \epsilon$$

Define the condition number $k = \frac{\beta}{\alpha}$.

1 Newton's Method

Define $Q = \delta^T \nabla^2 f(y) \delta$. Using linear changes of variables, we have:

$$\begin{aligned} z &:= Ax \text{ where } A \text{ is a full rank } n \times n \text{ matrix} \\ \Delta &:= A\delta \Longrightarrow \delta = A^{-1}\Delta \\ Q &= \Delta^T (A^{-1})^T \nabla^2 f(y) A^{-1}\Delta \end{aligned}$$

We want to set A such that:

$$(A^{-1})^T \nabla^2 f(y) A^{-1} = I$$

since then $\frac{\lambda_{max}}{\lambda_{min}} = 1$. Therefore,

$$\nabla^2 f(y) = A^T A \Longrightarrow A = (\nabla^2 f(y))^{\frac{1}{2}}$$

Now, fix A. We look for a step which is:

$$\arg \min_{\delta:\Delta = A\delta, \|\Delta\| = \epsilon} \nabla f(x)^T \delta + \frac{1}{2} \|\Delta\|^2$$
$$= \arg \min_{\delta:\Delta = A\delta, \|\Delta\| = \epsilon} \nabla f(x)^T A^{-1} \Delta$$
$$= -\eta A^{-1} (A^{-1})^T \nabla f(x)$$
$$= -\eta \left(\nabla^2 f(y) \right)^{-1} \nabla f(x)$$

Because the minimum is achieved for $\Delta \propto -(\nabla f(x)^T A^{-1})^T = -(A^{-1})^T \nabla f(x)$. Therefore, the minimization occurs at step $\delta = -\eta (\nabla^2 f(y))^{-1} \nabla f(x)$.

Note 1. We need query access to $\nabla^2 f(y)$, which is why this is called a *second-order* method.

Note 2. We need to invert a matrix, or equivalently a linear system of equations: $\nabla^2 f(y)\delta = -\eta \nabla f(x)$. Note 3. We don't have y, which is why Newton's method uses $\delta = -\eta (\nabla^2 f(x))^{-1} \nabla f(x)$. But in general, $\nabla^2 f(x) \neq \nabla^2 f(y)$.

Note 4. Assuming that $\nabla^2 f(x) = \nabla^2 f(y)$, convergence takes $\mathcal{O}(\log \frac{f(x^0) - f(x^*)}{\epsilon})$.

1.1 Alternative view on Newton's method

$$f(x+\delta) = \underbrace{f(x) + \nabla f(x)^T \delta + \delta^T \nabla^2 f(x) \delta}_{\delta \text{ is minimizer of}} + \mathcal{O}(\|\delta\|^3)$$

Theorem 1. Suppose there exists r > 0 such that for all x, y at distance $\leq r$ from x^* we have:

- 1. $\lambda_{min}(\nabla^2 f(x)) \ge \mu$
- 2. $\|\nabla^2 f(x) \nabla^2 f(y)\| \le L \|x y\|$

Then $||x^1 - x^*|| \leq \frac{L}{2\mu} ||x^0 - x^*||^2$, where x^0 is at distance $\leq r$ from x^* and x^1 is x^0 plus a Newton's step.

The norm we use for matrices is the spectral norm, i.e., $||X|| = \lambda_{max}(X)$. Intuition: under the right conditions, it converges in $\mathcal{O}(\log \log \frac{||x^0 - x^*||}{\epsilon})$.

2 Back to linear programming

2.1 The interior point method

Consider a linear programming problem of the following form:

$$\min c^T x$$

s.t. $Ax \le b$

on n coordinates with m constraints. Call K the feasible region, i.e., $K = \{x \in \mathbb{R}^n \mid Ax \leq b\}.$

We have already seen one way to turn this into an unconstrained problem, by replacing the objective function with one that evaluates to $c^T x$ for $x \in K$ and to $+\infty$ otherwise. But such a function isn't

continuous and doesn't work well with the gradient descent method or Newton's method. We need a smoother function.

We will instead replace the objective function with $f_{\eta}(x) = \eta c^T x + F(x)$, for $\eta \ge 0$, where F(x) is called a *barrier function* and has the following properties:

$$F(x) < +\infty$$
 for $x \in K$
 $F(x) \to +\infty$ for $x \to \partial K$

One possible barrier function is:

$$F(x) = \log\left(\prod_{i=1}^{m} \frac{1}{b_i - A_i x}\right) = -\sum_{i=1}^{m} \log(b_i - A_i x)$$

Call $x_{\eta}^* = \arg \min \eta c^T x + F(x)$. It is a continuous function of η . When $\eta = 0$ we have that x_0^* is independent of c, and this point is called *analytic center*.

In the above drawing we see the polytope K with c pointing from left to right. The optimal point x^* is therefore the leftmost vertex of K. The point x_0^* is the analytic center. The path connecting the two is the *central path*, i.e., $\{x_{\eta}^*, \eta \ge 0\}$. This means that x^* is $\lim_{\eta \to +\infty} x_{\eta}^*$.

This reformulation of linear programming leads to a few algorithm ideas:

Idea 1

- start from a point x^0 ;
- compute x_{η}^* for a "very large" η using Newton's method or gradient descent starting at x^0 .

The problem with gradient descent is that it depends on the condition number, which depends on F(x) and may be very large, whereas Newton's method requires x^0 to be "close" to x^*_{η} in order for the theorem we saw earlier to apply.

Let s_i be $b_i - A_i x$, and call these slack variables. We can use them to express $\nabla f_{\eta}(x)$ and $\nabla^2 f_{\eta}(x)$:

$$\nabla f_{\eta}(x) = \eta c + \sum_{i=1}^{m} \frac{A_i}{s_i(x)}$$
$$\nabla^2 f_{\eta}(x) = \nabla^2 F(x) = \sum_{i=1}^{m} \frac{A_i A_i^T}{s_i^2(x)}$$

This means that close to the boundary of K the coefficients of the Hessian of the barrier function will increase rapidly and this may affect negatively the condition number.

Remark: we assume K has > 0 volume.

Idea 2

- start at $x^0 = x^*_{\eta_0}$ for some $\eta_0 > 0$;
- "walk the central path", meaning that at time t + 1:
 - increase η : $\eta_{t+1} = \eta_t(1+\alpha)$ (we will decide the value of α later);
 - run Newton's method to find $x_{\eta_{t+1}}^*$ starting at $x_{\eta_t}^*$ (which works correctly and efficiently as long as $x_{\eta_{t+1}}^*$ is "close" to $x_{\eta_t}^*$).

Idea 3 This idea is just a performance improvement of idea 2, based on the observation that when running Newton's method to find $x_{\eta_{t+1}}^*$ we don't need to run it until it reaches optimality, we can stop it early. In particular stopping it after just one iteration yields the following algorithm:

Algorithm

- start at $x_0 \approx x_{\eta_0}^*$ for some $\eta_0 > 0$;
- at step t + 1 define η_{t+1} as $\eta_t(1 + \alpha)$ and find x_{t+1} by performing one step of Newton's method for $f_{\eta_{t+1}}$ starting at x_t ;
- once at time t = T such that η_T is "large enough" run Newton's method to optimality and obtain $x^*_{\eta_T}$;
- output $x_{\eta_T}^*$.

Lemma 2. For all η we have $c^T x_{\eta}^* - c^T x^* \leq m/\eta$, which implies that η_T has to be larger than m/ϵ if we want $c^T x_{\eta_T}^* - c^T x^* \leq \epsilon$. This means that the number of steps is

$$T = \mathcal{O}\left(\frac{1}{\alpha}\log\frac{m/\epsilon}{\eta_0}\right) = \mathcal{O}\left(\log_{1+\alpha}\frac{m/\epsilon}{\eta_0}\right)$$