
COMS 4995-3: Advanced Algorithms April 5, 2017

Lecture 20 – Linear Programming: Simplex and Ellipsoid Algorithms

Instructor: Alex Andoni Scribes: Andrew Aday

1 Introduction

In today’s lecture we go over the intuition behind the Simplex and Ellipsoid algorithms. To recap, recall

that we are trying to minimize c · x under the constraint Ax ≥ b.

2 Simplex [Dantzig, 1949]

The simplex algorithm is actually an entire class of algorithms which follow a certain procedure. Each

step in this procedure has many possible algorithmic approaches, and thus the simplex algorithm has

many variants. It remains an open question whether there exists a variant which can find the optimal

solution for an arbitrary polytope in polynomial time. Some definitions are necessary to explain the

algorithm:

Definition 1. A vertex is a feasible point (i.e. a point contained within the feasible region) that is

defined by n tight, linearly-independent constraints.

Definition 2. An edge is a straight segment connecting 2 vertices that share n − 1 tight contraints in

common. An edge must also be defined by n− 1 tight constraints.

Definition 3. A neighbor of some vertex x is another vertex y such that ∃ an edge of P connecting x

and y. Let N(x) , {neighbors of x}.

2.1 Algorithm Steps

We assume that the feasible region exists and is bounded.

1. Select any vertex in the feasible region. We call this starting point x0. Note that in the general

case, this step is nontrivial. In many real-world problems however, there exists an intuitive starting

point that requires no calculation, e.g. a graph with 0 flow for the Min-Max flow problem.

Note: one way to accomplish this for, say, an LP Ax ≤ b is to setup the following LP: min t where

Ax ≤ b+ t · 1.

2. Move to any neighboring vertex along the direction of −c. More formally, at step t, select a y ∈
N(xt−1) such that c · y < c · xt−1. This xt = y becomes our next point. Note that the greedy

solution is not optimal for any given polytope (to see why, think of shortest paths in a weighted

graph).

1

3. Repeat step 2 until we cannot find a neighbor that further minimizes c · x. At this point we have

found an optimal solution, and the algorithm terminates. The algorithm must always converge to

an optimal solution because the feasible region is both convex and bounded.

To calculate N(x) in step 2, we use a brute-force method. Recall that x ∈ Rm is subject to exactly n

tight constraints, and m−n ”loose” constraints (≥ or ≤). Furthermore, all of its neighbors share precisely

n− 1 of these tight constraints. Then to find the neighbors of a point x, we drop one of n possible tight

constraints, tighten one of m − n possible ”loose” constraints, solve the corresponding linear system,

and see if the solution is feasible. More formally, given a starting point x with tight constraints, say,

A1x = b1, A2x = b2, ..., Anx = bn, we can calculate ∀j ∈ {1, ..., n}, ∀i ∈ {n+1, ...,m} a potential neighbor

vertex y with tight constraints A1y = b1, ..., Aj−1y = bj−1, Aj+1y = bj+1, ..., Any = bn, Aiy = bi. After

finding y using any method, say Gaussian elimination, we then need to verify Ay ≥ b and calculate c · y.

Step 2 therefore takes time:

n(m− n) · [time to do gaussian elimimation + nm︸︷︷︸
check Ay ≥ b and c · y

]

The question arises: how do we choose our pivot? That is, how do we choose which neighbor to travel

to? Again, the greedy choice may not always be optimal.

2.2 Performance

Simplex is used widely in practice. Spielman and Teng have shown that the smoothed time complexity

of the algorithm is polynomial 1. But to prove a polynomial running time in all cases, it is necessary to

at least prove the following conjecture (which is a major open question):

Conjecture 4 (Hirsch conjecture). Let G be the graph where each vertex represents a vertex of the

feasible region. Two vertexes are connected in G iff they are neighbors in the feasible region. Then for

any such G, for all vertices x, y, ∃ a path x→ y of length nO(1). I.e. the diameter of G is polynomial.

3 Ellipsoid Algorithm [Khachiyan 1979]

The ellipsoid algorithm is the first (weakly) polynomial-time algorithm for LP. It really solves the feasi-

bility problem (“is there any feasible point?”). We can use binary search to reduce a general LP to the

feasibility problem as follows. We guess a scalar value for the optimal solution v = c · x∗, and then see if

this guess is feasible, i.e. if ∃x such that Ax ≥ b and c ·x ≤ v. This the feasibility problem. Depending

on the feasibility result, we either increase or decrease v, doing binary search until we land at the optimal

v∗.

More formally, let Qt = P ∩ {x : cTx ≤ t}, where P is the feasible region of the original LP problem.

The ellipsoid algorithm simply uses binary search to find the smallest possible t such that Qt 6= ∅.
Note that the number of feasibility problems we need to solve is polynomial in the bit-size of the

input, so to prove an overall poly-time bound we need only show we can solve the feasibility problem in

polynomial time.

1http://www.cs.yale.edu/homes/spielman/simplex/

2

3.1 Feasibility Problem

Definition 5. An r-ball around x is Br(x) = {y : ||y − x|| ≤ r}

Definition 6. An axis-aligned ellipsoid is E(x) = {y ∈ Rn :
∑n

i=1(yi − xi)2/λ2i ≤ r2} for λi > 0

Definition 7. A general ellipsoid is E(x) = {y ∈ Rn : (y − x)TATA(y − x) ≤ r2}, where A is a

full-rank n-by-n matrix

One can intuitively think of the feasibility problem as an ”oracle” or ”certificate” for the ellipsoid

algorithm: Given a polytope described by input constraints (Ax ≥ b and cTx ≤ v), decide if it is empty.

We consolidate these input constraints into the matrix D and define the corresponding polytope as

Q = {x ∈ Rn : Dx ≥ e}, where eT = [b1, b2, ..., bm,−v]. The algorithm is:

1. At step t = 0, begin with an ellipsoid E0 = BR(y0) with, y0 = 0 and R sufficiently large so that

Q ⊆ BR(0);

2. At step t ≥ 1, check if the center yt−1 of the ellipsoid Et−1 is in Q. If so, return because yt−1 ∈
Q =⇒ Q 6= ∅. Else find a constraint that yt−1 has violated. This violated constraint can be

visualized as a hyperplane Aix ≥ bi. If we consider a parallel hyperplane Aix = Aiyt−1 (i.e., the

hyperplane that passes throught the original of the current ellipsoid): this hyperplane partitions the

ellipsoid Et−1 into two. We then construct a new ellipsoid Et which is the smallest possible ellipsoid

that still encloses the half of Et−1 that contains Q (the right part is easy to identify by just checking

the sign of Aiyt−1 − bi). Et is “tighter” than Et−1 (it contains only half of the latter!). Formally,

one can prove that by considering the volume of the ellipsoids: vol(Et) ≤ vol(Et−1)(1 − 1
2n). See

proof in, say, http://www-math.mit.edu/~goemans/18433S09/ellipsoid.pdf.

3. If repeating step 2 some polynomial number of times still does not yield a yt ∈ Q, we are confident

that Q is empty. Return.

Formally, for the above to work, we need an additional condition:

Claim 8. If the starting ellipsoid E0 has volume V , then in O(n lg V/ε) steps our Et we will have volume

ε (while still containing Q).

In particular, if the feasible region Q contains a ball of volume ε, then the algorithm finds a y ∈ Q in

at most O(n lg V/ε) steps.

A rigorous proof of the claim 8 can be found here: http://www-math.mit.edu/~goemans/18433S09/

ellipsoid.pdf

We conclude by saying that ellipsoid algorithm, while polynomial-time, is rarely used in practice and

is generally slower than simplex on real-world inputs. The ellipsoid algorithm, however, is not limited to

linear programming and may be applied to more general convex optimization problems.

3

