
COMS 4995-3: Advanced Algorithms April 5, 2017

Lecture 19 – Strong Duality

Instructor: Alex Andoni Scribes: Flora Park, Avinash N Bukkittu

1 Introduction

Last time in class, we proved that a weak relation between Primal and Dual, namely that v∗ ≥ w∗.

Today, we will show that Dual of the Dual is Primal and also prove the Strong Duality, i.e. v∗ = w∗.

1.1 Last time

Duality:

Primal :

v∗ = min cTx

Ax = b

x ≥ 0

Dual :

w∗ = max bT y

AT y ≤ c
u ∈ Rm

Claim: v∗ ≥ w∗

1.2 Strong Duality

We would like to prove strong duality, i.e. v∗ = w∗. The intuition is that the dual of dual will give us

primal again.

Claim 1. Dual(Dual) = Primal

Proof.

Dual :

−min(−bT )y

AT y ≤ c
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define y = y+ − y−, where y+, y− ≥ 0. This allows us to say AT y + δ = c where δ ≥ 0 as well.

Dual :

−min(−bT ) · (y+ − y−)

AT (y+ − y−) + δ = c with y+, y−, δ ≥ 0,where y+, y− ∈ Rm, δ ∈ Rn

Dual(Dual) :

−max(−cT )x

s.t. −Ax ≤ −b
Ax ≤ b
x ≤ 0 which is the exact conditionals for Primal

Intuition: Flip the signs of y and c ⇔ Dual: min bT y, AT y ≥ c

Consider this as a ball being dropped into a convex bowl and it is pulled down by gravity. We know

that the corner point of the convex bowl is always the optimal solution, and that the ball will be stuck

at the point in which potential energy is minimized (and not move further down due to normal force

pushing it back up). Here specifically in the picture, we note that N1 = A3, N2 = A1.

Thus, at equilibrium ∃xi (fraction of forces) s.t.

• b = ΣiAi · xi = Ax, where Ai corresponds to the columns of A

• xi ≥ 0 (all normal forces have to push upwards)
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Here let’s analyze the optimality. If Aiy
∗ > ci, this means xi = 0 (the particular constraint does not

contribute as a corner to the solution). i.e. (ci −Aiy
∗) · xi = 0

∴ −v∗ = cT · x = Σicixi = Σixiaiy
∗ = −bT · y∗ = −bT · y∗ = −w∗

1.3 Proof for Strong Duality

In this section, we will prove the strong duality i.e v∗ = w∗.

Claim 2. v∗ = w∗

Proof. We will flip the signs of y and c, so our objective function becomes

min
AT y≥c

bT y

Let y∗ = arg minAT y≤c b
T y. Let us define a set S as the following,

S , {The set of constraints which are tight and linearly independent}

Note that |S| < m. Also, let As, cs, xs denote the elements of A, c and x restricted to set S. We have the

following,

AT
s y
∗ = csBy definition of set S

bT y∗ = min{bT y|AT
s y
∗ ≥ cs}

We will prove that ∃ x∗ which satisfies the following

1. Asx
∗
s = b

2. x∗ ≥ 0

3. cTs x
∗
s = bT y∗

Claim 3. ∃ x∗ such that Asx
∗
s = b

Proof. We will prove this by contradiction. Suppose that @ x∗ such that Asx
∗
s = b.

This implies ∃ z ∈ Rm such that (1) AT
s z = 0 (2) bT z < 0.

Now, consider y′ = y∗ + z. y′ is feasible in the dual because AT
s y
′ = AT

s +AT
s z = AT

s y
∗.

Also, y′ has better objective value

bT y = bT y∗ + bT z < bT y∗

This is a contradiction because y∗ is an optimal value. Hence, ∃ x∗ such that Asx
∗
s = b

Claim 4. bT y∗ = cTx∗

Proof.

bT y∗ = (Asx
∗
s)

T y∗

= (x∗s)
TAT

s y
∗

= (x∗s)
T cs
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Hence proved.

Claim 5. x∗s ≥ 0

Proof. We will prove this contradiction.

Assume that x∗i < 0 ∀i ∈ S. Let c′ be the new constraint defined as

c′ = c+ ei where ei is vector with ε > 0 in ith position and zero elsewhere

From above we get c′ = cs + ei.

The equation AT
s y
′ = c′s is solvable because it has |S| linearly independent rows. Since Asy

′ = c′s ≥ cs,
y′ is feasible. The objective value at y′ is

bT y′ = (Asx
∗
s)

T y′

= (x∗s)
T c′s

= (x∗s)
T (cs + ei)

= (x∗s)
T cs + (x∗s)

T ei

< (x∗s)
T cs = bT y∗ ( Because x∗sei is negative)

This is a contradiction because y∗ is an optimal value. Hence, x∗s ≥ 0

This completes the proof for strong duality.
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