Lecture 18 - Linear Programming, Duality

Instructor: Alex Andoni
Scribes: Peilin Zhong, Ruiqi Zhong

1 Last Class

In the last class, we began to introduce linear programming. We now discuss about Linear system of equalities.

1.1 Linear system of equalities

Given $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}$ if A is a square matrix i.e., $m=n$ and $\operatorname{det}(A) \neq 0 \Leftrightarrow$ We can use Gaussian elimination to find a unique $x^{*} \in \mathbb{R}^{n}$ such that $A x^{*}=b$.

2 Equivalency of "No Solution" and "Exists Solution"

In this scribe, all the inequalities between vectors mean pairwise inequalities between entries.

Definition 1. $\operatorname{Span}(\operatorname{col}(A))=\left\{\sum_{i=1}^{n} \alpha_{i} A_{i}, \alpha_{i} \in \mathbb{R}, A_{i}\right.$ is the $i^{\text {th }}$ column of $\left.A\right\}$
Now we extract the maximum number of linearly independent columns of A, and let S be the set of indexes of these column vectors in A. Then we have $\operatorname{span}(\operatorname{col}(A))=\operatorname{span}\left(\operatorname{col}\left(A_{S}\right)\right)$. Suppose that $\exists x$ s.t. $A x=b$, then $b \in \operatorname{span}(\operatorname{col}(A))=\operatorname{span}\left(\operatorname{col}\left(A_{S}\right)\right)$. Let $C=\left[\begin{array}{ll}A_{S} & B\end{array}\right]$ where B is a set of $m-|S|$ linearly independent vectors outside $\operatorname{span}(\operatorname{col}(A))$. Now we solve for $C\left[\begin{array}{c}x_{S} \\ y\end{array}\right]=b$, and we must find the solution to be $x_{i}= \begin{cases}x_{S_{i}} & i \in S \\ 0 & \text { otherwise }\end{cases}$

2.1 What if there is no solution?

Claim 2. There is no solution $\Leftrightarrow \exists y$ s.t. $y^{\top} A=0, y^{\top} b \neq 0$
Proof. " \Leftarrow " direction:
By contradiction, if $\exists x$ s.t. $A x=b$, then $0 \neq y^{\top} b=y^{\top} A x=0^{\top} x=0$
Intuition: y^{\top} is a linear combination of $\operatorname{col}(A)$ is 0 , but b disagrees.
Proof. " \Rightarrow " direction: there is such a y being a "certificate of no solution" no solution $\Rightarrow b \notin \operatorname{span}(\operatorname{col}(A))$
Let $\operatorname{proj}_{A}(b)$ be a projection of b on $\operatorname{span}(\operatorname{col}(A))$, let $y=b-\operatorname{proj}_{A}(b)$. Then we have that $b^{\top} y \neq$ $0, A^{\top} y=0$. Also we $\exists y$ s.t. $b^{\top} y=1$ (by normalization)

2.2 How to find y quickly?

Solve the system: $\left[\begin{array}{c}A^{\top} \\ b^{\top}\end{array}\right] y=\left[\begin{array}{c}0_{n} \\ 1\end{array}\right]$
Note also that Gaussian elimination can also give a certificate of "no solution".

3 Back to the Linear Programming

We have a standard form of linear programming:

$$
\begin{array}{ll}
& \min c^{\top} x \\
\text { s.t. } & A x=b \\
& x \geq 0
\end{array}
$$

Let $P=\{x \mid A x=b, x \geq 0\}$. If $P \neq \emptyset$ and P is bounded, then we call P as a polytope.

3.1 Basic Feasible Solution and Vertex

Definition 3. An inequality (equality) constraint is tight if the equality holds. Point $x \in \mathbb{R}^{n}$ is basic if it is a solution to n linearly independent tight constraints. A basic feasible solution (bfs, for short) x is both feasible and basic.

Definition 4. A point $x \in P$ is a vertex if and only if it is not a convex combination of other points in P, namely:

$$
\nexists y^{1}, \cdots, y^{n+1} \in P \text { and } \alpha_{1}, \cdots, \alpha_{n+1} \geq 0 \text { s.t. } x=\sum_{i=1}^{n+1} \alpha_{i} y^{i}, \sum_{i=1}^{n+1} \alpha_{i}=1, \forall i \in[n+1], y^{i} \neq x
$$

Claim 5. A bfs is equivalent to a vertex.
Claim 6. If an LP is feasible and bounded $\Rightarrow A$ bfs is an optimal solution.
Proof. Consider a solution x^{*} that is not basic but optimal. \Rightarrow it satisfies at most $n-1$ linearly independent tight constraints. (Let's name the set of the such tight constraints T.) Tight constraints T defines a linear subspace \Rightarrow contains a line, let \vec{d} be the direction of the line.

$$
\exists \epsilon>0 \text { s.t. both } x^{*} \pm \epsilon \vec{d}
$$

are feasible. Since x^{*} is optimal, $x^{*} \pm \epsilon \vec{d}$ are feasible $\Rightarrow \vec{d}^{\top} c=0$ (Otherwise one of $\left.c^{\top}(x \pm \epsilon \vec{d})>c^{\top} x^{*}\right) \Rightarrow$ We can change x^{*} in the direction of \vec{d} s.t. one of its coordinate decreases. How much can we decrease? Until something else becomes tight, which is a coordinate becoming 0 . In particular, $x_{i}=0$. Then we have added one constraints, $x_{i} \geq 0$. Therefore, we can repeatedly add in linearly independent constraints, until the point is basic.

A naive algorithm Now we have a first algorithm for Linear Programming:

1. We can brutally try all $\mathrm{bfs} \Rightarrow$ iterate through all the $\binom{n+m}{n}$ subsets of constraints. We let the set of constraints be T.
2. Solve as if constrains in T are tight.
3. Check whether the solution is feasible.
4. Choose the optimal bfs.

3.2 Duality

- It is easy to show that optimal solution $\leq v^{*}$ (just give the right $x^{*} \in P \& c^{\top} x^{\top} \leq v^{*}$)
- How to show the optimal solution $\geq v^{*}$?

Suppose v^{*} is the optimal solution, and suppose (just suppose for now) we can find a $y \in \mathbb{R}^{m}, y^{\top} A=$ $c^{\top} \Rightarrow y^{\top} A x=c^{\top} x=y^{\top} b \Rightarrow y^{\top} b=c^{\top} x \forall x$. However, this is too good to be true. Let's be less ambitious:

If we can find a $y^{\top} A \leq c^{\top}$, then we have $y^{\top} A x \leq y^{\top} b$ (since $\left.x \geq 0 \Rightarrow\left(y^{\top} A\right) x \leq c^{\top} x \Rightarrow y^{\top} b \leq c^{\top} x\right)$
How to find a best lower bound based on $b^{\top} y$ (the same as $y^{\top} b$.) Now we have another Linear Programming problem, namely: we have an unknown $y \in \mathbb{R}^{m}$, and we want to maximize $c^{\top} y$ given the constraint $y^{\top} A \leq c^{\top}$. This linear programming problem we name it Dual Program and the original problem we name is Primal Program.

4 Next Class...

Let $w^{*}=$ optimal solution of Dual Program $=\max _{A y \leq c} b^{\top} y$. We have already proved the weak duality: $w^{*} \leq v^{*}$. Next class we will prove strong duality, which is $w^{*}=v^{*}$ if both solutions are feasible. Also, we will demonstrate the fact that $\operatorname{Dual}($ Dual $)=$ Primal.

