COMS 4995-3: Advanced Algorithms

Mar 29, 2017

Lecture 18 – Linear Programming, Duality

Instructor: Alex Andoni

Scribes: Peilin Zhong, Ruiqi Zhong

1 Last Class

In the last class, we began to introduce linear programming. We now discuss about Linear system of equalities.

1.1 Linear system of equalities

Given $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$ if A is a square matrix i.e., m = n and $det(A) \neq 0 \Leftrightarrow$ We can use Gaussian elimination to find a unique $x^* \in \mathbb{R}^n$ such that $Ax^* = b$.

2 Equivalency of "No Solution" and "Exists Solution"

In this scribe, all the inequalities between vectors mean pairwise inequalities between entries.

Definition 1. $Span(col(A)) = \{\sum_{i=1}^{n} \alpha_i A_i, \alpha_i \in \mathbb{R}, A_i \text{ is the } i^{th} \text{ column of } A\}$

Now we extract the maximum number of linearly independent columns of A, and let S be the set of indexes of these column vectors in A. Then we have $span(col(A)) = span(col(A_S))$. Suppose that $\exists x \ s.t.Ax = b$, then $b \in span(col(A)) = span(col(A_S))$. Let $C = \begin{bmatrix} A_S & B \end{bmatrix}$ where B is a set of m - |S|linearly independent vectors outside span(col(A)). Now we solve for $C\begin{bmatrix} x_S\\ y \end{bmatrix} = b$, and we must find the

solution to be $x_i = \begin{cases} x_{S_i} & i \in S \\ 0 & otherwise \end{cases}$

2.1 What if there is no solution?

Claim 2. There is no solution $\Leftrightarrow \exists y \ s.t. \ y^{\top}A = 0, y^{\top}b \neq 0$

Proof. " \Leftarrow " direction: By contradiction, if $\exists x \text{ s.t. } Ax = b$, then $0 \neq y^{\top}b = y^{\top}Ax = 0^{\top}x = 0$ Intuition: y^{\top} is a linear combination of col(A) is 0, but b disagrees.

Proof. " \Rightarrow " direction: there is such a y being a "certificate of no solution" no solution $\Rightarrow b \notin span(col(A))$ Let $proj_A(b)$ be a projection of b on span(col(A)), let $y = b - proj_A(b)$. Then we have that $b^{\top}y \neq b$

 $0, A^{\top}y = 0$. Also we $\exists y \text{ s.t. } b^{\top}y = 1$ (by normalization)

2.2 How to find y quickly?

Solve the system: $\begin{bmatrix} A^{\top} \\ b^{\top} \end{bmatrix} y = \begin{bmatrix} 0_n \\ 1 \end{bmatrix}$ Note also that Gaussian elimination can also give a certificate of "no solution".

3 Back to the Linear Programming

We have a standard form of linear programming:

$$\min c^{\top} x$$

s.t. $Ax = b$
 $x \ge 0$

Let $P = \{x \mid Ax = b, x \ge 0\}$. If $P \ne \emptyset$ and P is bounded, then we call P as a polytope.

3.1 Basic Feasible Solution and Vertex

Definition 3. An inequality (equality) constraint is tight if the equality holds. Point $x \in \mathbb{R}^n$ is basic if it is a solution to n linearly independent tight constraints. A basic feasible solution (bfs, for short) x is both feasible and basic.

Definition 4. A point $x \in P$ is a vertex if and only if it is not a convex combination of other points in P, namely:

$$\not\exists y^1, \cdots, y^{n+1} \in P \text{ and } \alpha_1, \cdots, \alpha_{n+1} \ge 0 \text{ s.t. } x = \sum_{i=1}^{n+1} \alpha_i y^i, \sum_{i=1}^{n+1} \alpha_i = 1, \forall i \in [n+1], y^i \neq x$$

Claim 5. A bfs is equivalent to a vertex.

Claim 6. If an LP is feasible and bounded \Rightarrow A bfs is an optimal solution.

Proof. Consider a solution x^* that is not basic but optimal. \Rightarrow it satisfies at most n-1 linearly independent tight constraints. (Let's name the set of the such tight constraints T.) Tight constraints T defines a linear subspace \Rightarrow contains a line, let \vec{d} be the direction of the line.

$$\exists \epsilon > 0 \text{ s.t. both } x^* \pm \epsilon \vec{d}$$

are feasible. Since x^* is optimal, $x^* \pm \epsilon \vec{d}$ are feasible $\Rightarrow \vec{d}^\top c = 0$ (Otherwise one of $c^\top (x \pm \epsilon \vec{d}) > c^\top x^*) \Rightarrow$ We can change x^* in the direction of \vec{d} s.t. one of its coordinate decreases. How much can we decrease? Until something else becomes tight, which is a coordinate becoming 0. In particular, $x_i = 0$. Then we have added one constraints, $x_i \ge 0$. Therefore, we can repeatedly add in linearly independent constraints, until the point is basic.

A naive algorithm Now we have a first algorithm for Linear Programming:

1. We can brutally try all bfs \Rightarrow iterate through all the $\binom{n+m}{n}$ subsets of constraints. We let the set of constraints be T.

- 2. Solve as if constrains in T are tight.
- 3. Check whether the solution is feasible.
- 4. Choose the optimal bfs.

3.2 Duality

- It is easy to show that optimal solution $\leq v^*$ (just give the right $x^* \in P \& c^\top x^\top \leq v^*$) - How to show the optimal solution $\geq v^*$?

Suppose v^* is the optimal solution, and suppose (just suppose for now) we can find a $y \in \mathbb{R}^m, y^\top A = c^\top \Rightarrow y^\top A x = c^\top x = y^\top b \Rightarrow y^\top b = c^\top x \ \forall x$. However, this is too good to be true. Let's be less ambitious:

If we can find a $y^{\top}A \leq c^{\top}$, then we have $y^{\top}Ax \leq y^{\top}b$ (since $x \geq 0 \Rightarrow (y^{\top}A)x \leq c^{\top}x \Rightarrow y^{\top}b \leq c^{\top}x$)

How to find a best lower bound based on $b^{\top}y$ (the same as $y^{\top}b$.) Now we have another Linear Programming problem, namely: we have an unknown $y \in \mathbb{R}^m$, and we want to maximize $c^{\top}y$ given the constraint $y^{\top}A \leq c^{\top}$. This linear programming problem we name it **Dual Program** and the original problem we name is **Primal Program**.

4 Next Class...

Let $w^* = \text{optimal solution of Dual Program} = \max_{Ay \leq c} b^\top y$. We have already proved the weak duality: $w^* \leq v^*$. Next class we will prove strong duality, which is $w^* = v^*$ if both solutions are feasible. Also, we will demonstrate the fact that Dual(Dual) = Primal.