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Lecture 17 – Introduction to Linear Programming

Instructor: Alex Andoni Scribes: Ji Xu, Xuecheng Sun

1 Introduction

Today’s lecture is about introduction to Linear Programming (Optimization). In general, optimization

problem is considered as the following:

Obj : min f(x)

s.t. x ∈ Rn, some constraints on x (e.g. x ∈ {0, 1}n)

Here is an example of the optimization problem:

Example 1. The min conductance problem in the graph G = (V,E) we discussed before is the following:

min
|∂S|∑
i∈S di

s.t. S 6= ∅,
∑
i∈S

di ≤
1

2

∑
i∈V

di,

where di is the degree of node i. We can regard this problem as:

unknown variables: xi, i = 1, 2 · · · , n

xi ∈ {0, 1}

(
⇔

{
xi ∈ R
xi(1− xi) = 0

)

min f(x) =
xTLx∑
i∈V dixi

s.t.
∑
i∈V

xi > 0,
∑
i∈V

dixi ≤
1

2

∑
i∈V

di.

In general, optimization problem is possible to formulate. But solving a problem with f(x) and all

constraints = degree-2 polynomials is NP-hard.

2 Linear Programming:

Definition 2. LP: f(x) is linear in x and all constraints are also linear (i.e, ax R b):

Obj : min f(x) = c · x
s.t. Ax ≥ b
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Note that for maximization problems, we can convert the objective max f(x) into min−f(x) = −c · x.

For equality constraints Ax = b, we can convert it into Ax ≥ b,−Ax ≥ −b. For constraints Ax ≤ b, we

can convert it into −Ax ≥ −b.

Example 3. Convert max-flows into a Linear Programming problem: Given G = (V,E), (i, j) ∈ E, cij >
0, we solve the following LP problem:

unknown variables: fi,j , ∀(i, j) ∈ E
max

∑
(s,j)∈E

fs,j −
∑

(j,s)∈E

fj,s

s.t. ∀(i, j) ∈ E, 0 ≤ fi,j ≤ cij
∀i ∈ V \{s, t}

∑
j:(j,i)∈E

fj,i︸ ︷︷ ︸
flow in

=
∑

j:(i,j)∈E

fi,j︸ ︷︷ ︸
flow out

The main goal of this module will be: How to solve a general LP?

2.1 General form to Standard form:

Definition 4. Any LP can be equivalently written in the following “standard form”:

min c · x
s.t. Ax = b

xi ≥ 0 ∀i.

For any LP problem, we can convert it into the “standard form” by doing the following two steps:

• For ∀xi ∈ R, we replace xi with x+i − x
−
i , where x+i ≥ 0, x−i ≥ 0 are the new unknown variables.

• Any constraint Aix ≥ bi is replaced with the constraint ξi = Aix − bi, where ξi ≥ 0 is a new

unknown. We call ξi as slack variables.

2.2 Structure of Solutions to Linear Programming:

Definition 5. Define x is a feasible solution if it satisfies all constraints. Define x is optimal if it satisfies

all constraints and there is no better solution for the objective.

Note that each constraint can be considered as separating the space by a hyperplane. In other words,

P = set of feasible solutions

= intersection of half-spaces (space on a side of a half-space)

= polytope/ polyhedron

We call P is bounded if it is inside a box and P is unbounded if otherwise. See Figure 1 for an illustration

of P .
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Figure 1: The red area is the polytope P defined by constraints x1 ≤ 2, x2 ≥ 0, x1 + x2 ≥ 1 and
x1 − x2 ≥ −1.

2.3 Finding the solution for LP:

Let the optimal solution be x∗, then we know the optimal value of the objective will be on the line

c · x = cx∗ which represents a hyperplane as well. Therefore one strategy of finding the solution for LP

is the following: Assume we are finding minimum of x1 + 2x2 over P represented in Figure 1. We do the

following:

• test if the optimal value of objective can be -1000 ⇒ no feasible solution s.t. c · x = −1000.

• test if the optimal value of objective can be -1000 + ε · · ·

...

See Figure 2 for illustration.

2.4 cases for solutions:

In general, the solution of LP falls into one of the following three options:

• There is a solution

• No solution P = ∅ (e.g. Having constraints x1 ≥ 2 and x1 ≤ 1)

• Unbounded (e.g. minx1, x1 ≤ 1)

3 Simpler case: solving system of linear equations

For simple case that there is no inequalities i.e, Ax = b and A is a square matrix, we can use Gaussian

Elimination process to solve the solution for Ax = b. The Gaussian Elimination eliminates one variable

3



Figure 2: There is no feasible solution for c · x = x1 + 2x2 = 1− ε. For c · x = x1 + 2x2 = 1, we can find
one.

at a time like the following example. 

2x1 + x3 = 6

x1 − x2 + x3 = 2

2x1 − x4 = 0

...

Eliminate x1 using x1 = 3− x3/2, we have previous constraints become
3− x3/2− x2 + x3 = 2

6− x3 − x4 = 0

...

Here, we review some facts about linear algebra.

Fact 6. The following statements are equivalent:

• A is invertible

• det(A) 6= 0

• A has linearly independent columns

• A has linearly independent rows

• Ax = b has a unique solution for ∀b.

Now we wonder what’s the size of the solution for Ax = b if there is a solution.

Fact 7. The solution for Ax = b has polynomial description.
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We’ll starting proving this now (and finish in the next lecture). First assume that A is a square

matrix.

• If all entries of A are integers, then xi = multiple of 1
det(A) , furthermore these multiples are deter-

minates of minors of A.

• If an entry Aij requires at most b bits to represent, then det(A) can be represented with O(n log n+

bn) bits. (since det(A) ≤ n! · 2bn)

If A is not square, then with some changes, we can turn it into a square matrix.

In the next lecture, we will consider the cases when matrix is non-square, det(A) = 0, and when there

is no solution.
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