Lecture 17 - Introduction to Linear Programming

Instructor: Alex Andoni
Scribes: Ji Xu, Xuecheng Sun

1 Introduction

Today's lecture is about introduction to Linear Programming (Optimization). In general, optimization problem is considered as the following:

$$
\begin{aligned}
\text { Obj : } & \min f(x) \\
\text { s.t. } & x \in \mathbb{R}^{n}, \text { some constraints on } x\left(\text { e.g. } x \in\{0,1\}^{n}\right)
\end{aligned}
$$

Here is an example of the optimization problem:
Example 1. The min conductance problem in the graph $G=(V, E)$ we discussed before is the following:

$$
\begin{array}{ll}
\min & \frac{|\partial S|}{\sum_{i \in S} d_{i}} \\
\text { s.t. } & S \neq \emptyset, \quad \sum_{i \in S} d_{i} \leq \frac{1}{2} \sum_{i \in V} d_{i},
\end{array}
$$

where d_{i} is the degree of node i. We can regard this problem as:

$$
\begin{aligned}
\text { unknown variables: } & x_{i}, \quad i=1,2 \cdots, n \\
& x_{i} \in\{0,1\}\left(\Leftrightarrow\left\{\begin{array}{l}
x_{i} \in \mathbb{R} \\
x_{i}\left(1-x_{i}\right)=0
\end{array}\right)\right. \\
\min & f(x)=\frac{x^{T} L x}{\sum_{i \in V} d_{i} x_{i}} \\
\text { s.t. } & \sum_{i \in V} x_{i}>0, \quad \sum_{i \in V} d_{i} x_{i} \leq \frac{1}{2} \sum_{i \in V} d_{i} .
\end{aligned}
$$

In general, optimization problem is possible to formulate. But solving a problem with $f(x)$ and all constraints $=$ degree- 2 polynomials is NP-hard.

2 Linear Programming:

Definition 2. LP: $f(x)$ is linear in x and all constraints are also linear (i.e, ax $\gtreqless b$):

$$
\begin{aligned}
\text { Obj : } & \min f(x)=c \cdot x \\
\text { s.t. } & A x \geq b
\end{aligned}
$$

Note that for maximization problems, we can convert the objective $\max f(x)$ into $\min -f(x)=-c \cdot x$. For equality constraints $A x=b$, we can convert it into $A x \geq b,-A x \geq-b$. For constraints $A x \leq b$, we can convert it into $-A x \geq-b$.

Example 3. Convert max-flows into a Linear Programming problem: Given $G=(V, E),(i, j) \in E, c_{i j}>$ 0 , we solve the following LP problem:

$$
\begin{aligned}
\text { unknown variables: } & f_{i, j}, \forall(i, j) \in E \\
\max & \sum_{(s, j) \in E} f_{s, j}-\sum_{(j, s) \in E} f_{j, s} \\
\text { s.t. } & \forall(i, j) \in E, 0 \leq f_{i, j} \leq c_{i j} \\
& \forall i \in V \backslash\{s, t\} \underbrace{\sum_{j:(j, i) \in E} f_{j, i}}_{\text {flow in }}=\underbrace{\sum_{j:(i, j) \in E} f_{i, j}}_{\text {flow out }}
\end{aligned}
$$

The main goal of this module will be: How to solve a general LP?

2.1 General form to Standard form:

Definition 4. Any LP can be equivalently written in the following "standard form":

$$
\begin{aligned}
\min & c \cdot x \\
\text { s.t. } & A x=b \\
& x_{i} \geq 0 \forall i .
\end{aligned}
$$

For any LP problem, we can convert it into the "standard form" by doing the following two steps:

- For $\forall x_{i} \in \mathbb{R}$, we replace x_{i} with $x_{i}^{+}-x_{i}^{-}$, where $x_{i}^{+} \geq 0, x_{i}^{-} \geq 0$ are the new unknown variables.
- Any constraint $A_{i} x \geq b_{i}$ is replaced with the constraint $\xi_{i}=A_{i} x-b_{i}$, where $\xi_{i} \geq 0$ is a new unknown. We call ξ_{i} as slack variables.

2.2 Structure of Solutions to Linear Programming:

Definition 5. Define x is a feasible solution if it satisfies all constraints. Define x is optimal if it satisfies all constraints and there is no better solution for the objective.

Note that each constraint can be considered as separating the space by a hyperplane. In other words,

$$
\begin{aligned}
P & =\text { set of feasible solutions } \\
& =\text { intersection of half-spaces (space on a side of a half-space) } \\
& =\text { polytope/ polyhedron }
\end{aligned}
$$

We call P is bounded if it is inside a box and P is unbounded if otherwise. See Figure 1 for an illustration of P.

Figure 1: The red area is the polytope P defined by constraints $x_{1} \leq 2, x_{2} \geq 0, x_{1}+x_{2} \geq 1$ and $x_{1}-x_{2} \geq-1$.

2.3 Finding the solution for LP:

Let the optimal solution be x^{*}, then we know the optimal value of the objective will be on the line $c \cdot x=c x^{*}$ which represents a hyperplane as well. Therefore one strategy of finding the solution for LP is the following: Assume we are finding minimum of $x_{1}+2 x_{2}$ over P represented in Figure 1. We do the following:

- test if the optimal value of objective can be $-1000 \Rightarrow$ no feasible solution s.t. $c \cdot x=-1000$.
- test if the optimal value of objective can be $-1000+\epsilon \cdots$
\vdots

See Figure 2 for illustration.

2.4 cases for solutions:

In general, the solution of LP falls into one of the following three options:

- There is a solution
- No solution $P=\emptyset$ (e.g. Having constraints $x_{1} \geq 2$ and $x_{1} \leq 1$)
- Unbounded (e.g. $\left.\min x_{1}, x_{1} \leq 1\right)$

3 Simpler case: solving system of linear equations

For simple case that there is no inequalities i.e, $A x=b$ and A is a square matrix, we can use Gaussian Elimination process to solve the solution for $A x=b$. The Gaussian Elimination eliminates one variable

Figure 2: There is no feasible solution for $c \cdot x=x_{1}+2 x_{2}=1-\epsilon$. For $c \cdot x=x_{1}+2 x_{2}=1$, we can find one.
at a time like the following example.

$$
\left\{\begin{array}{l}
2 x_{1}+x_{3}=6 \\
x_{1}-x_{2}+x_{3}=2 \\
2 x_{1}-x_{4}=0 \\
\vdots
\end{array}\right.
$$

Eliminate x_{1} using $x_{1}=3-x_{3} / 2$, we have previous constraints become

$$
\left\{\begin{array}{l}
3-x_{3} / 2-x_{2}+x_{3}=2 \\
6-x_{3}-x_{4}=0 \\
\vdots
\end{array}\right.
$$

Here, we review some facts about linear algebra.
Fact 6. The following statements are equivalent:

- A is invertible
- $\operatorname{det}(\mathrm{A}) \neq 0$
- A has linearly independent columns
- A has linearly independent rows
- $A x=b$ has a unique solution for $\forall b$.

Now we wonder what's the size of the solution for $A x=b$ if there is a solution.
Fact 7. The solution for $A x=b$ has polynomial description.

We'll starting proving this now (and finish in the next lecture). First assume that A is a square matrix.

- If all entries of A are integers, then $x_{i}=$ multiple of $\frac{1}{\operatorname{det}(\mathrm{~A})}$, furthermore these multiples are determinates of minors of A.
- If an entry $A_{i j}$ requires at most b bits to represent, then $\operatorname{det}(A)$ can be represented with $O(n \log n+$ $b n)$ bits. (since $\operatorname{det}(A) \leq n!\cdot 2^{b n}$)

If A is not square, then with some changes, we can turn it into a square matrix.
In the next lecture, we will consider the cases when matrix is non-square, $\operatorname{det}(A)=0$, and when there is no solution.

