Lecture 16 - Cheeger's Inequality

Instructor: Alex Andoni
Scribes: Sandip Sinha, Tsung-Yi Huang

Today's lecture is about proving Cheeger's Inequality. Given a graph $G=\{V, E\}$, we can define the following:

Definition 1. Given a set of vertices $S \subseteq V$, we define the set of edges connecting S with rest of the graph (boundary of S) to be $\partial S=\{(i, j) \in E \mid i \in S, j \in S\}$ and the volume of S to be $\operatorname{vol}(S)=\sum_{i \in S} d_{i}$, where d_{i} is the degree of vertex i.

Definition 2. Given a set of vertices $\phi \subsetneq S \subsetneq V$, we define the conductance of S to be $\phi(S):=$ $\frac{|\partial S|}{\min (v o l(S), \text { vol }(S))}$, and the conductance of the graph to be $\phi(G)=\min _{\phi \subsetneq S \subsetneq V} \phi(S)$.

Let $0=\mu_{1} \leq \mu_{2} \leq \ldots \leq \mu_{n}$ be the eigenvalues of the normalized Laplacian matrix \hat{L}.
Theorem 3 (Cheeger's Inequality). $\frac{\mu_{2}}{2} \leq \phi(G) \leq \sqrt{2 \mu_{2}}$.

1 Lower Bound: The Proof of $\frac{\mu_{2}}{2} \leq \phi(G)$

Fix any set $S \subset V$ and let $s=\frac{\operatorname{vol}(S)}{\operatorname{vol}(V)}$. We will prove the lower bound by proving that $\phi(S) \geq(1-s) \mu_{2}$. We already know that

$$
\mu_{2}=\min _{\substack{x \neq 0 \\ x \perp v_{1}}} \frac{x^{T} \hat{L} x}{x^{T} x}=\min _{\substack{x \neq 0 \\ x \perp v_{1}}} \frac{x^{T} D^{-1 / 2} L D^{-1 / 2} x}{\|x\|_{2}^{2}}
$$

where v_{1} is the eigenvector of the smallest eigenvalue (0) of \hat{L}. We have found one in the last lecture which is $\left(\sqrt{d_{1}}, \sqrt{d_{2}}, \ldots, \sqrt{d_{n}}\right)$ so we can use it as v_{1}.

Let $y=D^{-1 / 2} x$ (assume that there is no isolated vertex). By changing x into y, we get

$$
\mu_{2}=\min _{\substack{y \neq \mathbf{0} \\ y \perp \boldsymbol{d}}} \frac{y^{T} L y}{y^{T} D y}
$$

where $\boldsymbol{d}=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$.
Since μ_{2} is the smallest value of the Rayleigh quotient for all vectors satisfying the above constraints, we will construct a vector y below that satisfies these constraints and use the fact that μ_{2} is no more than y 's Rayleigh quotient to prove the bound.

Let $y^{\prime}=\mathbb{1}_{S}\left(y_{i}^{\prime}=1\right.$ if vertex $i \in S$ and 0 otherwise). We have

$$
y^{\prime T} L y^{\prime}=\sum_{(i, j) \in E}\left(y_{i}^{\prime}-y_{j}^{\prime}\right)^{2}=|\partial S|
$$

We then set $y=y^{\prime}-s \mathbb{1}$. Note that $L \mathbb{1}=0$, so

$$
y^{T} L y=y^{\prime T} L y^{\prime}=|\partial S|
$$

We also have

$$
\begin{aligned}
y^{T} D y & =\sum_{i \in V} y_{i}^{2} d_{i} \\
& =\sum_{i \in S}(1-s)^{2} d_{i}+\sum_{i \notin S}(-s)^{2} d_{i} \\
& =(1-s)^{2} \operatorname{vol}(S)+s^{2}(\operatorname{vol}(V)-\operatorname{vol}(S)) \\
& =(1-s) \operatorname{vol}(S)
\end{aligned}
$$

Further, y is orthogonal to d because

$$
y^{T} d=\sum_{i \in S}(1-s) d_{i}+\sum_{i \notin S}(-s) d_{i}=\operatorname{vol}(S)-s \sum_{i \in V} d_{i}=0
$$

So,

$$
\mu_{2} \leq \frac{|\partial S|}{(1-s) \operatorname{vol}(S)}=\frac{|\partial S| \cdot \operatorname{vol}(V)}{\operatorname{vol}(S) \cdot \operatorname{vol}(\bar{S})} \leq 2 \phi(S) .
$$

for any set S. The last inequality holds because $\max (\operatorname{vol}(S), \operatorname{vol}(\bar{S})) / \operatorname{vol}(V) \geq 1 / 2$.
This implies that $\mu_{2} / 2 \leq \min _{\phi \neq S \neq V} \phi(S)=\phi(G)$.

2 Upper Bound: The Proof of $\phi(G) \leq \sqrt{2 \mu_{2}}$

Let y be the eigenvector corresponding to μ_{2}. By re-indexing vertices in the graph we can assume $y_{1} \leq y_{2} \leq \ldots \leq y_{n}$.

Let $k \in[n]$ be the minimum index such that $\sum_{i=1}^{k} d_{i} \geq \operatorname{vol}(V) / 2$. We define $z:=y-y_{k} \mathbb{1}$. Then we rescale z such that $z_{1}^{2}+z_{n}^{2}=1$. Note that $z_{1} \leq z_{k}=0 \leq z_{n}$.

We claim that we still have $\frac{z^{T} L z}{z^{T} D z} \leq \frac{y^{T} L y}{y^{T} D y}$. We prove this by calculating $\frac{z^{T} L z}{z^{T} D z}$.

$$
\begin{aligned}
z^{T} D z & =\left(y-y_{k} \mathbb{1}\right)^{T} D\left(y-y_{k} \mathbb{1}\right) \\
& =y^{T} D y-2 y_{k} \mathbb{1}^{T} D y+y_{k}^{2} \mathbb{1}^{T} D \mathbb{1} \\
& \geq y^{T} D y
\end{aligned}
$$

The last inequality holds because in the second term $\mathbb{1}^{T} D y=\boldsymbol{d}^{T} y=0$ as $y \perp \boldsymbol{d}$, and the third term is non-negative.

$$
z^{T} L z=\left(y-y_{k} \mathbb{1}\right)^{T} L\left(y-y_{k} \mathbb{1}\right)=y^{T} L y
$$

This is because $L \mathbb{1}=\mathbf{0}$ so the second term and the third term are both $0 . \frac{z^{T} L z}{z^{T} D z}$ has a bigger denominator while the numerator is the same, so it is smaller.

For $t \in \mathbb{R}$, define $S_{t}:=\left\{i \in V \mid z_{i} \leq t\right\}$. We are going to prove that there exists a number $t \in \mathbb{R}$ such that $\phi\left(S_{t}\right) \leq \sqrt{2 \mu_{2}}$. Then we will get $\phi(G) \leq \phi\left(S_{t}\right) \leq \sqrt{2 \mu_{2}}$. As the choice of t is not obvious, we randomly pick t from a distribution given by the pdf p, where $p(t)=2|t|$ if $t \in\left[z_{1}, z_{n}\right]$, and $p(t)=0$ otherwise. We verify that p is a pdf, as follows:

$$
\int_{z_{1}}^{z_{n}} p(t) d t=\int_{z_{1}}^{0}-2 t d t+\int_{0}^{z_{n}} 2 t d t=z_{1}^{2}+z_{n}^{2}=1
$$

So this is a valid distribution. If we can prove that $0 \leq \mathbb{E}\left[\sqrt{2 \mu_{2}} \min (\operatorname{vol}(S), \operatorname{vol}(\bar{S}))-\left|\partial S_{t}\right|\right]$, then we know there must be some t for which the expression inside the expectation is non-negative. This implies that for that $t, \phi\left(S_{t}\right)=\frac{\left|\partial S_{t}\right|}{\min \left(\operatorname{vol}\left(S_{t}\right), v o l\left(\bar{S}_{t}\right)\right)} \leq \sqrt{2 \mu_{2}}$, and hence completes the proof of the upper bound.

Lemma 4. $\mathbb{E}_{t}\left[\left|\partial S_{t}\right|\right] \leq \sqrt{2 \mu_{2}} \mathbb{E}_{t}\left[\min \left\{\operatorname{vol}\left(S_{t}\right), \operatorname{vol}\left(\bar{S}_{t}\right\}\right]\right.$.
Before proving the lemma, we show that Lemma 4 implies Theorem 3 .

$$
\begin{aligned}
0 & \leq \sqrt{2 \mu_{2}} \cdot \mathbb{E}_{t}\left[\min \left\{\operatorname{vol}\left(S_{t}\right), \operatorname{vol}\left(\bar{S}_{t}\right)\right\}\right]-\mathbb{E}_{t}\left[\left|\partial S_{t}\right|\right] \\
& =\mathbb{E}_{t}\left[\sqrt{2 \mu_{2}} \cdot \min \left\{\operatorname{vol}\left(S_{t}\right), \operatorname{vol}\left(\bar{S}_{t}\right)\right\}-\left|\partial S_{t}\right|\right]
\end{aligned}
$$

Now, by the probabilistic method, there exists $t \in\left[z_{1}, z_{n}\right]$ such that

$$
\begin{aligned}
& \quad 0 \leq \sqrt{2 \mu_{2}} \cdot \min \left\{\operatorname{vol}\left(S_{t}\right), \operatorname{vol}\left(\bar{S}_{t}\right)\right\}-\left|\partial S_{t}\right| \\
& \text { So, } \frac{\left|\partial S_{t}\right|}{\min \left\{\operatorname{vol}\left(S_{t}\right), \operatorname{vol}\left(\bar{S}_{t}\right)\right\}} \leq \sqrt{2 \mu_{2}}
\end{aligned}
$$

Now, we prove the lemma. To do that, we prove two claims that separately bound the left and right sides of the inequality.

Claim 5. $\mathbb{E}_{t}\left[\left|\partial S_{t}\right|\right] \leq\left(z^{T} L z\right)^{1 / 2} \cdot \sqrt{2 z^{T} D z} \leq \sqrt{2 \mu_{2}} \cdot z^{T} D z$.
Proof. The second inequality is immediate since

$$
\left(z^{T} L z\right)^{1 / 2} \cdot \sqrt{2 z^{T} D z}=\left(\frac{z^{T} L z}{z^{T} D z}\right)^{1 / 2} \cdot \sqrt{2} z^{T} D z \leq \sqrt{2 \mu_{2}} \cdot z^{T} D z
$$

Now, we prove the first inequality. Define the sign function

$$
\operatorname{sgn}(x):= \begin{cases}+1, & x>0 \\ -1, & x<0 \\ 0, & x=0\end{cases}
$$

Fix an edge $(i, j) \in E$. We assume $z_{i} \leq z_{j}$ w.l.o.g, as we can interchange i and j if this does not hold. Then it can be shown, by considering various cases depending on the signs of z_{i} and z_{j}, that $\operatorname{Pr}\left[z_{i} \leq t \leq z_{j}\right]=\left|\operatorname{sgn}\left(z_{j}\right) z_{j}^{2}-\operatorname{sgn}\left(z_{i}\right) z_{i}^{2}\right|$. So, we have

$$
\begin{aligned}
\operatorname{Pr}[(i, j) \in C u t] & =\operatorname{Pr}\left[z_{i} \leq t \leq z_{j}\right] \\
& =\left|\operatorname{sgn}\left(z_{j}\right) z_{j}^{2}-\operatorname{sgn}\left(z_{i}\right) z_{i}^{2}\right| \\
& = \begin{cases}\left|z_{i}^{2}-z_{j}^{2}\right|, & \operatorname{sgn}\left(z_{i}\right)=\operatorname{sgn}\left(z_{j}\right) \\
z_{i}^{2}+z_{j}^{2}, & \operatorname{sgn}\left(z_{i}\right) \neq \operatorname{sgn}\left(z_{j}\right)\end{cases} \\
& \leq \begin{cases}\left|z_{i}-z_{j}\right|\left(\left|z_{i}\right|+\left|z_{j}\right|\right), & \operatorname{sgn}\left(z_{i}\right)=\operatorname{sgn}\left(z_{j}\right) \\
\left(z_{i}-z_{j}\right)^{2}, & \operatorname{sgn}\left(z_{i}\right) \neq \operatorname{sgn}\left(z_{j}\right)\end{cases} \\
& \leq\left|z_{i}-z_{j}\right|\left(\left|z_{i}\right|+\left|z_{j}\right|\right)
\end{aligned}
$$

We have used triangle inequality twice. To get the last inequality when $\operatorname{sgn}\left(z_{i}\right) \neq \operatorname{sgn}\left(z_{j}\right)$, we upper bound one of the terms $\left(z_{i}-z_{j}\right)$ by $\left(\left|z_{i}\right|+\left|z_{j}\right|\right)$. Now, writing the random variable $\left|\partial S_{t}\right|$ as a sum over indicator random variables denoting whether each edge is in the cut, we observe that

$$
\begin{aligned}
\mathbb{E}_{t}\left[\left|\partial S_{t}\right|\right] & =\sum_{(i, j) \in E} \operatorname{Pr}[(i, j) \in C u t] \\
& \leq \sum_{(i, j) \in E}\left|z_{i}-z_{j}\right|\left(\left|z_{i}\right|+\left|z_{j}\right|\right) \\
& \leq \sqrt{\sum_{(i, j) \in E}\left(z_{i}-z_{j}\right)^{2}} \cdot \sqrt{\sum_{(i, j) \in E}\left(\left|z_{i}\right|+\left|z_{j}\right|\right)^{2}} \\
& \leq\left(z^{T} L z\right)^{1 / 2} \cdot\left(2 \sum_{(i, j) \in E}\left(z_{i}^{2}+z_{j}^{2}\right)\right)^{1 / 2} \\
& =\left(z^{T} L z\right)^{1 / 2} \cdot\left(2 \sum_{i \in V} z_{i}^{2} d_{i}\right)^{1 / 2} \\
& =\left(z^{T} L z\right)^{1 / 2} \cdot \sqrt{2 z^{T} D z}
\end{aligned}
$$

(Cauchy-Schwarz)

$$
\leq\left(z^{T} L z\right)^{1 / 2} \cdot\left(2 \sum_{(i, j) \in E}\left(z_{i}^{2}+z_{j}^{2}\right)\right)^{1 / 2} \quad\left((a+b)^{2} \leq 2\left(a^{2}+b^{2}\right)\right)
$$

There are two important parts in the above derivation that deserve further explanation. First, to see the application of Cauchy-Schwarz inequality, let $m=|E|$ be the number of edges in the graph. Fix some ordering of the edges. Define $a, b \in \mathbb{R}^{m}$ by $a_{k}=\left|z_{i}-z_{j}\right|$ and $b_{k}=\left|z_{i}\right|+\left|z_{j}\right|$ for $k \in[m]$, where $e_{k}=(i, j)$ is the $k^{\text {th }}$ edge in the order. Then Cauchy-Schwarz inequality gives

$$
\sum_{(i, j) \in E}\left|z_{i}-z_{j}\right|\left(\left|z_{i}\right|+\left|z_{j}\right|\right)=|a \cdot b| \leq\|a\|_{2} \cdot\|b\|_{2}=\sqrt{\sum_{(i, j) \in E}\left(z_{i}-z_{j}\right)^{2}} \cdot \sqrt{\sum_{(i, j) \in E}\left(\left|z_{i}\right|+\left|z_{j}\right|\right)^{2}} .
$$

The second last equality is derived by changing the sum over edges to a sum over vertices. For each edge (i, j), we assumed that $z_{i} \leq z_{j}$. This implies that we consider each edge only once in the sum. Now, fix a vertex $i \in V$. For each edge incident on i, the term z_{i}^{2} appears exactly once. Hence, the total number of times that this term appears is the number of edges that are incident on it, or its degree.

Claim 6. $\mathbb{E}_{t}\left[\min \left\{\operatorname{vol}\left(S_{t}\right), \operatorname{vol}\left(\bar{S}_{t}\right)\right\}\right]=z^{T} D z$.
Proof. This claim will be proved in the next lecture.
Now, combining Claims 5 and 6, we can prove the lemma as follows:

$$
\mathbb{E}_{t}\left[\left|\partial S_{t}\right|\right] \leq \sqrt{2 \mu_{2}} \cdot z^{T} D z=\sqrt{2 \mu_{2}} \cdot \mathbb{E}_{t}\left[\min \left\{\operatorname{vol}\left(S_{t}\right), \operatorname{vol}\left(\bar{S}_{t}\right)\right\}\right] .
$$

This proves Theorem 3. However, just it shows the existence of $t \in \mathbb{R}$ such that the set S_{t} has low conductance. We now give an efficient algorithm to compute such a set. Observe that for fixed $i \in[n]$, $S_{z_{i}}=S_{\alpha}$ for $z_{i} \leq \alpha<z_{i+1}$, where we define $z_{n+1}=\infty$ for convenience. So, although there are infinitely many values of t, there are effectively only n values of t that we need to check, namely z_{1}, \cdots, z_{n}. In other words, we know that there exists $t \in\left\{z_{1}, \cdots, z_{n}\right\}$ such that $\phi\left(S_{t}\right) \leq \sqrt{2 \mu_{2}}$.

Spectral Partitioning Algorithm:

- Compute $\phi\left(S_{t}\right)$ for $t=z_{1}, \cdots, z_{n}$.
- Return the set S_{t} with minimum value of $\phi\left(S_{t}\right)$.

Clearly, this algorithm can be implemented in time $O(n m)$, where $n=|V|, m=|E|$. By the discussion preceding the algorithm, the set \hat{S} returned by the algorithm satisfies $\phi(\hat{S}) \leq \sqrt{2 \mu_{2}}$.

