COMS 4995-3: Advanced Algorithms Mar 22, 2017

Lecture 16 — Cheeger’s Inequality

Instructor: Alex Andoni Scribes: Sandip Sinha, Tsung-Yi Huang

Today’s lecture is about proving Cheeger’s Inequality. Given a graph G = {V, E'}, we can define the
following:

Definition 1. Given a set of vertices S C V, we define the set of edges connecting S with rest of the
graph (boundary of S) to be S = {(i,j) € Eli € S,j € S} and the volume of S to be vol(S) = Y,cq di,
where d; is the degree of vertex i.
Definition 2. Given a set of vertices ¢ C S C V, we define the conductance of S to be ¢(S) =
0 .
W, and the conductance of the graph to be ¢(G) = mingcscy ¢(9).
Let 0 = 1 < po < ... < up be the eigenvalues of the normalized Laplacian matrix L.

Theorem 3 (Cheeger’s Inequality). &2 < ¢(G) < /2ps.

1 Lower Bound: The Proof of & < ¢(G)

Fix any set S C V and let s = SZIZ((‘*S;)) We will prove the lower bound by proving that ¢(S) > (1 — s)pue.
We already know that
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where v; is the eigenvector of the smallest eigenvalue (0) of L. We have found one in the last lecture

which is (v/d1,Vda,...,\/d,) so we can use it as vj.
Let y = D™1/2y (assume that there is no isolated vertex). By changing x into y, we get
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where d = (dy,ds, ..., d,).

Since 9 is the smallest value of the Rayleigh quotient for all vectors satisfying the above constraints,
we will construct a vector y below that satisfies these constraints and use the fact that ps is no more
than y’s Rayleigh quotient to prove the bound.

Let y' = 1g (y, = 1 if vertex ¢ € S and 0 otherwise). We have

vy = > (i —v))? =105
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We then set y = 3/ — s1. Note that L1 =0, so
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We also have

y'Dy =Y yid;
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= (1 — 5)%vol(S) + s*(vol(V') — vol(S))
= (1 — s)vol(S)

Further, y is orthogonal to d because

yld = Z(l —s)d; + Z(—S)di = vol(S) — SZdi =0
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So,
- 0S| 0S| -wol(V)
H2 = (1 —s)vol(S)  wol(S) - vol(S)

for any set S. The last inequality holds because max(vol(S),vol(S))/vol(V') > 1/2.
This implies that p2/2 < ming.g2y ¢(S5) = ¢(G).

< 2¢(S).

2 Upper Bound: The Proof of ¢(G) < +/2us

Let y be the eigenvector corresponding to po. By re-indexing vertices in the graph we can assume
Y1 <yY2<...< Yn.
Let k € [n] be the minimum index such that Zle d; > vol(V)/2. We define z := y — y;1. Then we

rescale z such that z% + z?l = 1. Note that z1 <z, =0 < z,.
2Lz < yT Ly
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We claim that we still have

. We prove this by calculating

"Dz = (y— yel)"D(y — yil)
=y Dy — 29,17 Dy + 4217 D1
>y Dy
The last inequality holds because in the second term 17Dy = d’y = 0 as y_Ld, and the third term is

non-negative.
'Lz = (y—yd) Ly —yel) =y" Ly

This is because L1 = 0 so the second term and the third term are both 0. ZZ;F ézz has a bigger denominator
while the numerator is the same, so it is smaller.

For t € R, define S; := {i € Vl]z; < t}. We are going to prove that there exists a number ¢ € R
such that ¢(S;) < /2p2. Then we will get ¢(G) < ¢(St) < /2p2. As the choice of ¢ is not obvious, we
randomly pick ¢ from a distribution given by the pdf p, where p(t) = 2|t| if t € [21, 2], and p(t) = 0

otherwise. We verify that p is a pdf, as follows:
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So this is a valid distribution. If we can prove that 0 < E[/2ug min(vol(S),vol(S)) — |0S:|], then we
know there must be some ¢ for which the expression inside the expectation is non-negative. This implies

that for that ¢, ¢(S;) = mm(voll(%%‘wl 0 St)) 212, and hence completes the proof of the upper bound.

Lemma 4. E;[|0S;|] < v/2u2 E;[min{vol(S;),vol(S:}].

Before proving the lemma, we show that Lemma [4] implies Theorem

0 < v/2p2 - Ey[min{vol(S;), vol () }] — E¢[|0S]]
— Et[\/%- min{vol(S;), vol(S;)} — |0S;|]

Now, by the probabilistic method, there exists t € [z1, 2] such that

0 < \/2us2 - min{vol(S;), vol(S;)} — |0S;]
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Now, we prove the lemma. To do that, we prove two claims that separately bound the left and right sides
of the inequality.

Claim 5. E.[|0S;]] < (ZTLZ)1/2 V22T'Dz < \2puy - 2T Dz.

Proof. The second inequality is immediate since

(z'Lz)"" - vV2:TDz = V2:TDz < \/2uy - 2T Dz
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Now, we prove the first inequality. Define the sign function

+1, >0
sgn(z) =< -1, <0
0, x=0

Fix an edge (i,j) € E. We assume z; < z; w.lo.g, as we can interchange 7 and j if this does not
hold. Then it can be shown, by considering various cases depending on the signs of z; and z;, that

Priz <t <z = |sg7”L(zj)zj2 — sgn(zi)2?|. So, we have

Pr(i,j) € Cut] = Pr{z <t < zj]
]sgn(zj)z2 — sgn(z;)z;

|27 — 23|, sgn(zi)
22 + zj, sgn(z;) # sgn
)



We have used triangle inequality twice. To get the last inequality when sgn(z;) # sgn(z;), we upper
bound one of the terms (z; — z;) by (|zi| + |zj]). Now, writing the random variable |05;| as a sum over
indicator random variables denoting whether each edge is in the cut, we observe that
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There are two important parts in the above derivation that deserve further explanation. First, to see the
application of Cauchy-Schwarz inequality, let m = |E| be the number of edges in the graph. Fix some
ordering of the edges. Define a,b € R™ by aj = |2; — z;| and by, = |z;| + |2;| for k € [m], where e;, = (4, j)
is the k" edge in the order. Then Cauchy-Schwarz inequality gives

Yo lzi= izl + 1z =la-bl < llall2-lblla = [ > (zi =22 | > (=il + |52
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The second last equality is derived by changing the sum over edges to a sum over vertices. For each edge
(4,7), we assumed that z; < z;. This implies that we consider each edge only once in the sum. Now, fix
a vertex ¢ € V. For each edge incident on ¢, the term 21‘2 appears exactly once. Hence, the total number
of times that this term appears is the number of edges that are incident on it, or its degree. ]

Claim 6. E;[min{vol(S;),vol(S;)}] = 2T Dz.
Proof. This claim will be proved in the next lecture. O

Now, combining Claims [f| and [6], we can prove the lemma as follows:

E:[|0S:]] < v/2p2 - 2T Dz = \/2us - Ef[min{vol(S}), vol(S;)}].

This proves Theorem However, just it shows the existence of ¢ € R such that the set S; has low
conductance. We now give an efficient algorithm to compute such a set. Observe that for fixed i € [n],
S, = S for z; < o < z;41, where we define 2,41 = oo for convenience. So, although there are infinitely
many values of ¢, there are effectively only n values of ¢ that we need to check, namely 21, -, 2,. In
other words, we know that there exists t € {z1,--- , z,} such that ¢(S;) < 1/2pus.



Spectral Partitioning Algorithm:
e Compute ¢(Sy) for t = z1,-- -, zp.
e Return the set S; with minimum value of ¢(S;).

Clearly, this algorithm can be implemented in time O(nm), where n = |V|,m = |E|. By the discussion
preceding the algorithm, the set S returned by the algorithm satisfies ¢(.S) < /2pus.
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