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Lecture 16 – Cheeger’s Inequality

Instructor: Alex Andoni Scribes: Sandip Sinha, Tsung-Yi Huang

Today’s lecture is about proving Cheeger’s Inequality. Given a graph G = {V,E}, we can define the

following:

Definition 1. Given a set of vertices S ⊆ V , we define the set of edges connecting S with rest of the

graph (boundary of S) to be ∂S = {(i, j) ∈ E|i ∈ S, j ∈ S̄} and the volume of S to be vol(S) =
∑

i∈S di,

where di is the degree of vertex i.

Definition 2. Given a set of vertices φ ( S ( V , we define the conductance of S to be φ(S) :=
|∂S|

min(vol(S),vol(S̄))
, and the conductance of the graph to be φ(G) = minφ(S(V φ(S).

Let 0 = µ1 ≤ µ2 ≤ . . . ≤ µn be the eigenvalues of the normalized Laplacian matrix L̂.

Theorem 3 (Cheeger’s Inequality). µ2
2 ≤ φ(G) ≤

√
2µ2.

1 Lower Bound: The Proof of µ2

2 ≤ φ(G)

Fix any set S ⊂ V and let s = vol(S)
vol(V ) . We will prove the lower bound by proving that φ(S) ≥ (1− s)µ2.

We already know that

µ2 = min
x6=0
x⊥v1

xT L̂x

xTx
= min

x6=0
x⊥v1

xTD−1/2LD−1/2x

||x||22

where v1 is the eigenvector of the smallest eigenvalue (0) of L̂. We have found one in the last lecture

which is (
√
d1,
√
d2, . . . ,

√
dn) so we can use it as v1.

Let y = D−1/2x (assume that there is no isolated vertex). By changing x into y, we get

µ2 = min
y 6=0
y⊥d

yTLy

yTDy

where d = (d1, d2, . . . , dn).

Since µ2 is the smallest value of the Rayleigh quotient for all vectors satisfying the above constraints,

we will construct a vector y below that satisfies these constraints and use the fact that µ2 is no more

than y’s Rayleigh quotient to prove the bound.

Let y′ = 1S (y′i = 1 if vertex i ∈ S and 0 otherwise). We have

y′TLy′ =
∑

(i,j)∈E

(y′i − y′j)2 = |∂S|

We then set y = y′ − s1. Note that L1 = 0, so

yTLy = y′TLy′ = |∂S|
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We also have

yTDy =
∑
i∈V

y2
i di

=
∑
i∈S

(1− s)2di +
∑
i/∈S

(−s)2di

= (1− s)2vol(S) + s2(vol(V )− vol(S))

= (1− s)vol(S)

Further, y is orthogonal to d because

yTd =
∑
i∈S

(1− s)di +
∑
i/∈S

(−s)di = vol(S)− s
∑
i∈V

di = 0

So,

µ2 ≤
|∂S|

(1− s)vol(S)
=
|∂S| · vol(V )

vol(S) · vol(S̄)
≤ 2φ(S).

for any set S. The last inequality holds because max(vol(S), vol(S̄))/vol(V ) ≥ 1/2.

This implies that µ2/2 ≤ minφ 6=S 6=V φ(S) = φ(G).

2 Upper Bound: The Proof of φ(G) ≤
√
2µ2

Let y be the eigenvector corresponding to µ2. By re-indexing vertices in the graph we can assume

y1 ≤ y2 ≤ . . . ≤ yn.

Let k ∈ [n] be the minimum index such that
∑k

i=1 di ≥ vol(V )/2. We define z := y − yk1. Then we

rescale z such that z2
1 + z2

n = 1. Note that z1 ≤ zk = 0 ≤ zn.

We claim that we still have zTLz
zTDz

≤ yTLy
yTDy

. We prove this by calculating zTLz
zTDz

.

zTDz = (y − yk1)TD(y − yk1)

= yTDy − 2yk1
TDy + y2

k1
TD1

≥ yTDy

The last inequality holds because in the second term 1TDy = dT y = 0 as y⊥d, and the third term is

non-negative.

zTLz = (y − yk1)TL(y − yk1) = yTLy

This is because L1 = 0 so the second term and the third term are both 0. zTLz
zTDz

has a bigger denominator

while the numerator is the same, so it is smaller.

For t ∈ R, define St := {i ∈ V |zi ≤ t}. We are going to prove that there exists a number t ∈ R
such that φ(St) ≤

√
2µ2. Then we will get φ(G) ≤ φ(St) ≤

√
2µ2. As the choice of t is not obvious, we

randomly pick t from a distribution given by the pdf p, where p(t) = 2|t| if t ∈ [z1, zn], and p(t) = 0

otherwise. We verify that p is a pdf, as follows:∫ zn

z1

p(t)dt =

∫ 0

z1

−2tdt+

∫ zn

0
2tdt = z2

1 + z2
n = 1
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So this is a valid distribution. If we can prove that 0 ≤ E[
√

2µ2 min(vol(S), vol(S̄))− |∂St|], then we

know there must be some t for which the expression inside the expectation is non-negative. This implies

that for that t, φ(St) = |∂St|
min(vol(St),vol(S̄t))

≤
√

2µ2, and hence completes the proof of the upper bound.

Lemma 4. Et[|∂St|] ≤
√

2µ2 Et[min{vol(St), vol(S̄t}].

Before proving the lemma, we show that Lemma 4 implies Theorem 3.

0 ≤
√

2µ2 · Et[min{vol(St), vol(S̄t)}]− Et[|∂St|]

= Et[
√

2µ2 ·min{vol(St), vol(S̄t)} − |∂St|]

Now, by the probabilistic method, there exists t ∈ [z1, zn] such that

0 ≤
√

2µ2 ·min{vol(St), vol(S̄t)} − |∂St|

So,
|∂St|

min{vol(St), vol(S̄t)}
≤
√

2µ2

Now, we prove the lemma. To do that, we prove two claims that separately bound the left and right sides

of the inequality.

Claim 5. Et[|∂St|] ≤
(
zTLz

)1/2 · √2zTDz ≤
√

2µ2 · zTDz.

Proof. The second inequality is immediate since

(
zTLz

)1/2 · √2zTDz =

(
zTLz

zTDz

)1/2

·
√

2zTDz ≤
√

2µ2 · zTDz

Now, we prove the first inequality. Define the sign function

sgn(x) :=


+1, x > 0

−1, x < 0

0, x = 0

Fix an edge (i, j) ∈ E. We assume zi ≤ zj w.l.o.g, as we can interchange i and j if this does not

hold. Then it can be shown, by considering various cases depending on the signs of zi and zj , that

Pr[zi ≤ t ≤ zj ] = |sgn(zj)z
2
j − sgn(zi)z

2
i |. So, we have

Pr[(i, j) ∈ Cut] = Pr[zi ≤ t ≤ zj ]
= |sgn(zj)z

2
j − sgn(zi)z

2
i |

=

{
|z2
i − z2

j |, sgn(zi) = sgn(zj)

z2
i + z2

j , sgn(zi) 6= sgn(zj)

≤

{
|zi − zj |(|zi|+ |zj |), sgn(zi) = sgn(zj)

(zi − zj)2, sgn(zi) 6= sgn(zj)

≤ |zi − zj |(|zi|+ |zj |)
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We have used triangle inequality twice. To get the last inequality when sgn(zi) 6= sgn(zj), we upper

bound one of the terms (zi − zj) by (|zi| + |zj |). Now, writing the random variable |∂St| as a sum over

indicator random variables denoting whether each edge is in the cut, we observe that

Et[|∂St|] =
∑

(i,j)∈E

Pr[(i, j) ∈ Cut]

≤
∑

(i,j)∈E

|zi − zj |(|zi|+ |zj |)

≤
√ ∑

(i,j)∈E

(zi − zj)2 ·
√ ∑

(i,j)∈E

(|zi|+ |zj |)2 (Cauchy-Schwarz)

≤ (zTLz)1/2 ·

2
∑

(i,j)∈E

(z2
i + z2

j )

1/2

((a+ b)2 ≤ 2(a2 + b2))

= (zTLz)1/2 ·

(
2
∑
i∈V

z2
i di

)1/2

= (zTLz)1/2 ·
√

2zTDz

There are two important parts in the above derivation that deserve further explanation. First, to see the

application of Cauchy-Schwarz inequality, let m = |E| be the number of edges in the graph. Fix some

ordering of the edges. Define a, b ∈ Rm by ak = |zi − zj | and bk = |zi|+ |zj | for k ∈ [m], where ek = (i, j)

is the kth edge in the order. Then Cauchy-Schwarz inequality gives∑
(i,j)∈E

|zi − zj |(|zi|+ |zj |) = |a · b| ≤ ‖a‖2 · ‖b‖2 =

√ ∑
(i,j)∈E

(zi − zj)2 ·
√ ∑

(i,j)∈E

(|zi|+ |zj |)2.

The second last equality is derived by changing the sum over edges to a sum over vertices. For each edge

(i, j), we assumed that zi ≤ zj . This implies that we consider each edge only once in the sum. Now, fix

a vertex i ∈ V . For each edge incident on i, the term z2
i appears exactly once. Hence, the total number

of times that this term appears is the number of edges that are incident on it, or its degree.

Claim 6. Et[min{vol(St), vol(S̄t)}] = zTDz.

Proof. This claim will be proved in the next lecture.

Now, combining Claims 5 and 6, we can prove the lemma as follows:

Et[|∂St|] ≤
√

2µ2 · zTDz =
√

2µ2 · Et[min{vol(St), vol(S̄t)}].

This proves Theorem 3. However, just it shows the existence of t ∈ R such that the set St has low

conductance. We now give an efficient algorithm to compute such a set. Observe that for fixed i ∈ [n],

Szi = Sα for zi ≤ α < zi+1, where we define zn+1 =∞ for convenience. So, although there are infinitely

many values of t, there are effectively only n values of t that we need to check, namely z1, · · · , zn. In

other words, we know that there exists t ∈ {z1, · · · , zn} such that φ(St) ≤
√

2µ2.
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Spectral Partitioning Algorithm:

• Compute φ(St) for t = z1, · · · , zn.

• Return the set St with minimum value of φ(St).

Clearly, this algorithm can be implemented in time O(nm), where n = |V |,m = |E|. By the discussion

preceding the algorithm, the set Ŝ returned by the algorithm satisfies φ(Ŝ) ≤
√

2µ2.
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