
COMS 4995-3: Advanced Algorithms Mar 8, 2017

Lecture 14 – Spectral Graph Theory

Instructor: Alex Andoni Scribes: Kailash Meiyappan, Srikar Varadaraj

1 Introduction

In the last lecture, we introduced Spectral Graph Theory and the idea to examine the eigenvalues and

their corresponding eigenvectors to deduce combinatorial properties of a graph. We looked at the diffusion

operation and we defined the Rayleigh Quotient. In this lecture, we show that properties of the first and

second eigenvalues of an adjacency matrix tell us about the connectivity properties of the corresponding

undirected graph.

2 Symmetric Matrix Transformation

Let X0 be the initial distribution of weights in the graph. We saw last lecture that

X1 = AD−1X0

and

Xt = (AD−1)tX0

Note that (AD−1) here is no longer a symmetric matrix. We would like to make this expression cleaner

by writing it as a power of a symmetric matrix.

Definition 1. Â := D−1/2AD1/2

We have that Xt+1 = AD−1Xt, so D
−1/2Xt+1 = D−1/2AD−1Xt = D−1/2Xt+1 = (D−1/2AD−1/2)(D−1/2Xt).

Definition 2. Yt = D−1/2Xt

Definition 3. Âi,j =
Ai,j√
di
√

dj

From the definitions above, we have:

Yt+1 = ÂYt = ÂtY0

Claim 4. If λ1 ≥ λ2 ≥ . . . λn are the eigenvalues of Â, then λt1, λ
t
2, . . . , λ

t
n are the eigenvalues of Ât

Proof. Suppose the claim is true for t = 1, ..., k − 1 (inductive hypothesis). The base cases are easy to

show. Then,

Âkvi = Âk−1Âvi = Âk−1λivi = λki vi

Hence, our induction is complete and the claim holds ∀t ∈ N.
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3 Properties of the graph based on Eigenvalues

Suppose we fix Y0 = Σαivi, where vi is the i′th orthonormal eigenvector of Â. Note that we can do this

by the Spectral Decomposition Theorem.

Yt = ÂtY0 = (Σλtiviv
T
i )(Σαivi) = Σn

i=1λ
t
iαivi

As t→∞, if λi < 0, λti → 0 and if λi > 0, λti →∞.

|Yt|2 = Σα2
iλ

2t
i , so we intuitively expect that |λi| ≤ 1.

Lemma 5. λ1 = 1

Proof. First let’s prove that λ1 ≥ 1. We assume the ordering λ1 ≥ λ2 ≥ ... ≥ λn. We know that

λ1 = maxx 6=0R(x)

from the previous lecture. If we can show that there exists an x such that R(x) = 1, then we know that

λ1 has to be at least 1. Indeed, this is true for x = v = (
√
d1,
√
d2, . . .

√
dn) where di is the degree of the

ith node.

R(v) =
vT Âv

vT v
=
vTD−1/2AD−1/2v

d1 + d2 + . . .+ dn
=

1
T
nA1n

d1 + . . .+ dn
=

1
T
n [d1, . . . , dn]T

d1 + d2 + . . .+ dn
= 1

And so λ1 = maxv 6=0R(v) ≥ 1.

Now we show λ1 ≤ 1.

R(v) =
vT Âv

vT v
=

∑
(i,j)∈E viÂijvj

||v||22
=

∑
(i,j)∈E

1√
didj

vivj

||v||22

Using Cauchy-Schwartz, we get:∑
(i,j)∈E

1√
didj

vivj

||v||22
≤

(
∑

(i,j)∈E( vi√
di

)2)(
∑

(i,j)∈E(
vj√
dj

)2)

||v||22
=

(
∑

i
v2i di
di

)(
∑

j

v2j dj
dj

)

||v||22
=

(
∑

i v
2
i )(

∑
j v

2
j )

||v||22
= 1

as required. Hence, R(v) ≤ 1∀v. So, λ1 = 1 since we have shown λ1 ≥ 1 before.

Note that if R(v) = 1, then by the condition for equality in the inequality, we must have vi√
di

= α
vj√
dj

for

some constant α.

Note that we can rearrange the sums in the product of the inequality such that the vi term is matched

with the vi term instead of an arbitrary vj . This forces vi√
di

= α vi√
di

=⇒ α = 1. Hence, if R(v) = 1,

then vi√
di

=
vj√
dj
∀i, j such that i, j are vertices of some edge.

Lemma 6. λ2 < 1 ⇐⇒ G is connected.

Proof. Suppose G is disconnected and has two components. Then, its vertex set can be separated into

parts {1, 2, ..., k} and {k + 1, ..., n} such that vertices with the respective indices in these two sets are

disjoint and not connected by an edge. Now, consider the vectors:

v1 = (
√
d1, ...,

√
dk, 0, ..., 0), v2 = (0, ..., 0,

√
dk+1, ...,

√
dn)
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The corresponding matrix Â for the disconnected graph looks like:

Note that:

R(v1) = R(v2) = 1 =⇒ λ1 = λ2 = 1

Note that v1 and v2 are orthogonal to each other, which implies that λ2 = 1, by the proof of Lemma 1.

Now, we show that G is connected =⇒ λ2 < 1.

• Let v2 = argmax R(x), where x 6= 0, x ⊥ v1, where v1 is the vector associated with λ1.

• Let v be such that R(v) = 1.

• From the proof of Lemma 1, we know that for vector v, all its elements satisfy:

vi√
di

=
vj√
dj

.

• Hence, all vectors satisfying R(v) = 1 satisfy the property vi√
di

= β∀i ∈ [n], where β is some

constant.

• All such vectors belong to the same one-dimensional space and cannot be orthogonal to each other

(unless they are all the zero vector).

• So, there do not exist two distinct orthogonal vectors such that R(v) = 1 =⇒ R(v2) 6= 1.

• We have already shown that λ1 = 1, so λ2 ≤ 1 =⇒ λ2 < 1, as required.
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• Hence, G is connected ⇐⇒ λ2 < 1! Note that the proof generalizes in an obvious way for the case

when G has an arbitrary number of components (instead of just two).

4 Next Time

• So far: |λi| ≤ 1.

• λn = −1 ⇐⇒ G is bipartite. Proof sketch: Consider v = (
√
d1, ...,

√
dk,−

√
dk+1, ...,−

√
dn).

• We define the Laplacian of a Graph LG = DG −AG.

• Taking L̂G = D−1/2LGD
−1/2 = I − Â, with eigenvalues λ1 ≤ ... ≤ λn → Â, we will identify

properties of the eigenvalues of L̂ and identify their connections to the original graph G.
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