Lecture 13 - Spectral Graph Algorithms

1 Introduction

Today's topics:

- Finish proof from last lecture
- Example of random walk, stationary distributions
- Linear Algebra overview - Spectral theorem
- Define Rayleigh quotient, prove a property

2 Shortest Augmenting Path Algorithm - Max Flow

- To Recap, the shortest augmenting path algorithm always chose the shortest remaining augmenting path in the residual graph G_{f}. We want to bound its running time.
- Every iteration takes time $O(m)$ by BFS
- We need to answer: How many iterations do we need?

Definition 1. Fix the current flow f. The residual graph is denoted as G_{f}. We define $d_{f}(s, v)=$ distance from sto v in G_{f}.

Claim 2. Let P be the shortest $s \rightarrow t$ augmenting path in G_{f}. Let f^{\prime} be f after augmenting with the path P. Let $d^{\prime}(s, v)=d_{f^{\prime}}(s, v)$.
Then, we claim that $d^{\prime}(s, v) \geq d(s, v) \forall v$.
Proof. If $d_{f}(s, t) \geq n$ then we are done trivially.
We would like to prove that $d_{f}(s, t)$ increases by 1 every time we augment by the shortest path. However, we will not be able to show this. Instead, we assert and prove the following lemma:

Lemma 3. We use $\leq \frac{n m}{2}$ augmenting paths until we are done, and every edge is saturated.

- We want to find out how many times an edge $(v-w)$ in the graph can be saturated.

- Let $d(s, v)=$ distance to v from s before saturation.
- Before augmentation, $d(s, w)=d(s, v)+1$.
- Note that before any edge $v-w$ is saturated again, the following situation must occur:

- Now consider distances $d^{\prime}(s, w)$ and $d^{\prime}(s, v)$.
- Then, $d^{\prime}(s, v) \geq d^{\prime}(s, w)+1=d(s, v)+2$ because P^{\prime} is saturated.
- So, distance increases by 2 through any augmenting path.
- Therefore, every edge $v-w$ can be saturated $\leq \frac{n}{2}$ times. Since there are m total edges, the total number of augmenting paths is upper bounded by $\frac{m n}{2}$. After these many augmenting paths, all the edges must be completely saturated.

The above procedure must be repeated for every edge, so the running time is $O\left(m * \frac{m n}{2}\right)=O\left(m^{2} n\right)$, as required.

- If we do "more work" per iteration of the algorithm, we can decrease the number of iterations. The best known current algorithm is: $\tilde{O}(m \sqrt{n})$, where $\tilde{O}(n)=n(\log n)^{O(1)}$.
- For capacity $U=O(1)$, the best known algorithm is $\tilde{O}\left(m^{10 / 7}\right)$.

3 Spectral Graph Theory

Observation 4. The adjacency matrix of an undirected graph G, denoted by A_{G}, has $A_{i j}=1$ iff \exists edge $i \rightarrow j$. The adjacency matrix of an undirected graph is symmetric.

We only consider undirected graphs in this lecture since the theory we develop works well for them. Note that for directed matrices, the adjacency matrix is not symmetric.

3.1 Motivation

We begin the discussion on adjacency matrices and spectral graph theory with a few definitions and a motivating example.

Definition 5. The Diffusion operation D is defined on a graph to have the following properties:

- Fix a mass vector $x \in \mathbb{R}^{n}$, which assigns a weight or mass, to every vertex in a graph G at time $t=0$.
- Time discrete step.
- $\forall i \in[n], x_{i}$ is distributed equally amongst its neighbors. So, if vertices with indices a_{1}, \ldots, a_{k} are adjacent to the vertex with index i, then $x_{a_{j}} \rightarrow x_{a_{j}}+\frac{x_{i}}{k}$, where $x_{a_{j}}$ denotes the mass at vertex with index a_{j}.
- Note that we assume no vertex has an edge to itself.

Definition 6. Matrix D_{G} is defined for a graph G as:

$$
\left[\begin{array}{ccccc}
d_{1} & 0 & 0 & \ldots & 0 \\
0 & d_{2} & 0 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & d_{n}
\end{array}\right]
$$

Here d_{i} is the degree of node x_{i}.

Example 7. Consider the graph $G: 1-2-3-4-5$.
$A_{G} i s$:

$$
\left[\begin{array}{lllll}
0 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 0
\end{array}\right]
$$

$D_{G} i s:$

$$
\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 & 0 \\
0 & 0 & 2 & 0 & 0 \\
0 & 0 & 0 & 2 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

Let $x=(0,1,0,0,0)^{T}$ at time $t=0$. We apply the diffusion operator D repeatedly.
At time $t=1, x_{1}=\left(\frac{1}{2}, 0, \frac{1}{2}, 0,0\right)$. Now, note that $A_{G} D_{G}^{-1} x=x_{1}$.
Also, time $t=2, x_{2}=\left(0, \frac{1}{2}+\frac{1}{4}, 0, \frac{1}{4}, 0\right)=\left(0, \frac{3}{4}, 0, \frac{1}{4}, 0\right)$.
$D_{G}^{-1} x_{1}=$

$$
\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & \frac{1}{2} & 0 & 0 & 0 \\
0 & 0 & \frac{1}{2} & 0 & 0 \\
0 & 0 & 0 & \frac{1}{2} & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
\frac{1}{2} \\
0 \\
\frac{1}{2} \\
0 \\
0
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{2} \\
0 \\
\frac{1}{4} \\
0 \\
0
\end{array}\right]
$$

And so, $A_{G} D_{G}^{-1} x$:

$$
\left[\begin{array}{c}
0 \\
\frac{3}{4} \\
0 \\
\frac{1}{4} \\
0
\end{array}\right]
$$

which is simply x_{2}.
Hence, we see that $A_{G} D_{G}^{-1} x_{t}=x_{t+1}$
Also note that the distribution $x^{*}=\left(\frac{1}{8}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{8}\right)$ is a "stationary" distribution in the sense that $x^{*}=$ $A_{G} D_{G}^{-1} x^{*}$.

The example above motivates our discussion on spectral graph theory, since knowing properties of the matrices A_{G} and D_{G}^{-1} easily gives us the value of x_{t}, as well as properties of stationary distributions (which we did not discuss in depth). We begin with a review of the basic linear algebra required.

3.2 Spectral Theorem and Spectral Decomposition

Definition 8. v is an eigenvector of the matrix $M_{n \cdot n}$ if $M v=\lambda v$ for some $\lambda \in \mathbb{R}$. λ is referred to an eigenvalue of the matrix M.

Observation 9. $M v=\lambda v \Longleftrightarrow(M-\lambda I) v=0 \Longleftrightarrow \operatorname{det}(M-\lambda I)=0$. Hence, all the eigenvalues of M satisfy the equation $|M-\lambda I|=0$.

- $|M-\lambda I|=0$ is a polynomial of degree n.
- This implies that there are n eigenvalues counted with multiplicity.

The following theorem gives us a special property of symmetric matrices, which is especially relevant to adjacency matrices of undirected graphs.

Theorem 10. Spectral Theorem
For symmetric matrix $M, \exists n$ orthonormal eigenvectors v_{1}, \ldots, v_{n} such that $\left\|v_{i}\right\|=1$ and $v_{i}^{T} v_{j}=0 \forall i \neq j$. The eigenvector v_{i} has corresponding eigenvalue λ_{i}.

Some observations:

- If $\lambda_{i}=\lambda_{i+1}$, then $\frac{v_{i}+v_{i+1}}{\sqrt{2}}$ is also an eigenvector with eigenvalue λ_{i}.
- The Spectral Theorem implies that there exists a Spectral decomposition:

$$
\begin{equation*}
M=\sum_{i=1}^{n} \lambda_{i} v_{i} v_{i}^{T} \tag{1}
\end{equation*}
$$

3.3 Rayleigh quotient and properties

Definition 11. The Rayleigh quotient is defined as $R(x)=\frac{x^{t} M x}{\|x\|^{2}}$
Observation 12. Notice that \forall eigenvectors v_{i},

$$
\begin{equation*}
R\left(v_{i}\right)=\frac{v_{i}^{T} M v_{i}}{1}=v_{i}^{T} \lambda_{i} v_{i}=\lambda_{i} v_{i}^{T} v_{i}=\lambda_{i}\left\|v_{i}\right\|=\lambda_{i} \tag{2}
\end{equation*}
$$

Let $x^{*}=\operatorname{argmax} R(x)$, or a vector that maximizes the Rayleigh quotient.
Theorem 13. Let the eigenvalues be ordered as: $\lambda_{n} \geq \lambda_{n-1} \geq \lambda_{n-2} \ldots \geq \lambda_{1}$. Then, $R\left(x^{*}\right)=\lambda_{n}$.
Proof. Every vector $v=\sum_{i=1}^{n} a_{i} v_{i}$, since $\left\{v_{i}\right\}$ forms a basis. Then,
$R(v)=\frac{\left(v^{T}\right) M(v)}{\left\|v_{i}\right\|}=\frac{\left(\sum_{i=1}^{n} a_{i} v_{i}\right)^{T} M\left(\sum_{i=1}^{n} a_{i} v_{i}\right)}{a_{1}^{2}+\ldots+a_{n}^{2}}=\frac{\left(\sum_{i=1}^{n} a_{i} v_{i}\right)^{T}\left(\sum_{i=1}^{n} a_{i} \lambda_{i} v_{i}\right)}{a_{1}^{2}+\ldots+a_{n}^{2}}=\frac{\sum_{i=1}^{n} \lambda_{i} a_{i}^{2}}{a_{1}^{2}+\ldots+a_{n}^{2}} \leq \frac{\sum_{i=1}^{n} \lambda_{n} a_{i}^{2}}{a_{1}^{2}+\ldots+a_{n}^{2}}=\lambda_{n}$
Hence, $R(v) \leq \lambda_{n}$. Similarly, we can also conclude that $R(v) \geq \lambda_{1}$.
Hence, the eigenvalues of the matrix M give us deep properties regarding the Rayleigh quotient. We will see in later lectures how the Rayleigh Quotient is useful and relate it to properties of graphs.

