
COMS 4995-3: Advanced Algorithms March 1, 2017

Lecture 12 – Max Flow Algorithms (continued)

Instructor: Alex Andoni Scribes: Serena Liu, Lusa Zhan

1 Introduction

Today’s lecture is a continuation on the maximum flow problem. After discussing the maximum bottleneck

algorithm introduced in the previous lecture, we continue to discuss to other algorithms for the maximum

flow problem: a scaling algorithm and a strongly polynomial-time algorithm.

2 Last Time

2.1 Residual graph Gf

uf (v, w) = u(v, w)− f(v, w), if (v, w) ∈ E

uf (w, v) = f(v, w) > 0, if (w, v) ∈ E

2.2 s-t cut

S, S̄, s ∈ S, t ∈ S̄
uf (S) =

∑
(v,w)∈E

v∈S
w∈S̄

uf (v, w)

2.3 Augmenting Path

P in Gf (s - t path)

uf (P) = δf (P) = min
e∈P

uf (e) > 0

residual capacity / bottleneck

3 Maximum Bottleneck Algorithm

Recall from last lecture that we always aim to:

(1) find an augmenting path with maximum bottleneck capacity in Gf .

(2) The runtime for the algorithm is O(m lgU) per augmenting path.

Main Question: How many augmenting paths are there?

Claim 1. The number of augmenting paths is bound by m ln(2nU)

1

Proof. Fix the current flow f . We start out with the following:

• Let g be the maximum flow in Gf . In particular, this means

|f |+ |g| = max flow in G

• By the decomposition theorem, we can write

g = sum of ≤ m paths P1, . . . , Pm

• ∃i s.t. |Pi| ≥ |g|m

• If P ′ is the maximum bottleneck path in Gf , then

uf (P ′) ≥ uf (Pi) ≥ |Pi| ≥
|g|
m

where |Pi| is the value of Pi in the decomposition.

• Then the value of the remaining flow is at most |g| − uf (P ′) ≤ |g|(1− 1
m)

• After k augmenting paths, the value of the remaining maximum flow≤ (1− 1
m)k[total max flow in G].

• We know total max-flow ≤ nU

• Since we are working with integers, we are done when

(1− 1

m
)knU < 1

• Set k = m ln(2nU), then

(1− 1

m
)knU ≤ e−

1
m
knU ≤ 1

2

• So number of augmenting paths: k ≤ m ln(2nU)

Therefore, the total time will be O(m lgU ·m ln(2nU)) = O(m2 lg2(nU))

4 Scaling Algorithm

The idea behind the scaling algorithm is to reduce the algorithm so that the maximum flow is bounded.

The goal is to improve the runtime.

There will be b = lgU scaling stages. Each stage i computes max flow in a graph Gi starting from

some flow fi−1 (the flow constructed in the previous stage), and where the remaining flow ≤ m.

2

If we solve each scaling stage in O(m2) time (using FF), then the total time is O(m2 lgU).

Let Gi denote the graph that we get by replacing the capacities of G with ui(e), the first i bits of

u(e).

• Suppose we have a max flow f i for Gi.

• Gi+1 has capacities ui+1(e) = 2ui(e) + vi+1(e), where vi+1(e) ∈ {0, 1} and represent the last bits

added. In other words, vi+1(e) = (i+ 1)th most significant bit of u(e).

• Note that 2f i is still a valid flow in Gi+1, but 2f i might not be the max flow in Gi+1

• Question: How much remaining flow is there in Gi+1?

Since f i is maximal in Gi ⇒ exists cut S s.t. all edges S → S̄ are saturated.

ui+1(S) ≤ 2ui(S) +m

So the remaining flow in Gi+1 is upper bounded by

ui+1
2f i (S) = ui+1(S)− 2f i ≤ 2u(S)m− 2|f i| ≤ m

5 Strongly Polynomial-time Algorithm

We will discuss another algorithm that does not depend on max capacity, a strongly polynomial time

algorithm runs in (n ·m)O(1) time.

In the real world model:

• input capacities are “words”

• can do reasonable operations on these words in O(1) time.

The idea for the new algorithm (Combinatorial algorithm) is as follows:

• Take the augmenting path that minimizes the s− t distance in the residual graph Gf .

• This is done within the FF algorithm framework.

3

• If we push/augment a path s→ t and call it P , at least one edge on P will get saturated.

Definition 2. df (s, v) = min distance s→ v in Gf .

Lemma 3. Fix f,Gf , {d(s, v)}v. Let P be the shortest path s→ t.

Then after augmenting we get flow f ′ and Gf ′ and {d′(s, v)}v

∀v : d′(s, v) ≥ d(s, v)

Proof. We prove the lemma by contradiction.

Let A = {v : d(s, v) > d′(s, v)} 6= ∅
Let v ∈ A with minimal d′(s, v).

Consider the shortest s− v path P ′ after augmenting. Then

d′(s, v) = d′(s, w) + 1

In Figure 1, let w be the previous node before v. w satisfies d′(s, w) ≥ d(s, w) (because of the

minimality of d′(s, v)).

So this means (w, v) in G′f appeared when augmenting path P .

The edge (v, w) ∈ Gf got saturated in P .

But since P was the shortest path before augmentation, we get

d(s, w) = d(s, v) + 1

> d′(s, v) + 1

= d′(s, w) + 2

≥ d(s, w) + 2

which is a contradiction.

4

Figure 1: P ′ in G′f (after augmenting)

Figure 2: P in Gf (before augmenting)

Figure 3: P in Gf

5

