COMS 4995-3: Advanced Algorithms March 1, 2017
Lecture 12 — Max Flow Algorithms (continued)

Instructor: Alex Andoni Scribes: Serena Liu, Lusa Zhan

1 Introduction

Today’s lecture is a continuation on the maximum flow problem. After discussing the maximum bottleneck
algorithm introduced in the previous lecture, we continue to discuss to other algorithms for the maximum
flow problem: a scaling algorithm and a strongly polynomial-time algorithm.

2 Last Time

2.1 Residual graph Gy
uf(v,w) = u(v,w) — f(v,w),if (v,w) € ¥

up(w,v) = f(v,w) > 0,if (w,v) € E

2.2 s-t cut
S,S,seS,tefS
up(S) =Y us(v,w)
(v,w)eEE
ves
weS

2.3 Augmenting Path
P in Gy (s - t path)

up(P) =6¢(P) = IgleiIIDIUf(e) >0

residual capacity / bottleneck

3 Maximum Bottleneck Algorithm

Recall from last lecture that we always aim to:
(1) find an augmenting path with maximum bottleneck capacity in G.
(2) The runtime for the algorithm is O(mlgU) per augmenting path.

Main Question: How many augmenting paths are there?

Claim 1. The number of augmenting paths is bound by mIn(2nU)

Proof. Fix the current flow f. We start out with the following:
e Let g be the maximum flow in Gy. In particular, this means

|f] + |g] = max flow in G

e By the decomposition theorem, we can write

g = sum of < m paths Py,..., P,

o Jist. [P >

‘m
e If P’ is the maximum bottleneck path in G, then

up(P') > up(P) > |Pi| > ‘i‘

where | P;| is the value of P; in the decomposition.
e Then the value of the remaining flow is at most [g] — us(P') < |g|(1 — 1)
e After k augmenting paths, the value of the remaining maximum flow < (1—-1)*[total max flow in G].
e We know total max-flow < nU

e Since we are working with integers, we are done when
Lk
(1-——)"nU <1
m

e Set k =mlIn(2nU), then

1
(1— E)an < e~ mhnl <

N | —

e So number of augmenting paths: k& < mIn(2nU)

Therefore, the total time will be O(mlgU - mIn(2nU)) = O(m?1g%(nU))

4 Scaling Algorithm

The idea behind the scaling algorithm is to reduce the algorithm so that the maximum flow is bounded.
The goal is to improve the runtime.

There will be b = lgU scaling stages. Each stage i computes max flow in a graph G’ starting from
some flow f;_; (the flow constructed in the previous stage), and where the remaining flow < m.

u(e;) = ||1j00

uley) = 000

Wil

ule,) =/0[10

If we solve each scaling stage in O(m?) time (using FF), then the total time is O(m?1gU).

Let G* denote the graph that we get by replacing the capacities of G' with u‘(e), the first i bits of

u(e).
e Suppose we have a max flow f? for G*.

e Gt has capacities u'tl(e) = 2ui(e) + viTl(e), where v'*1(e) € {0,1} and represent the last bits
added. In other words, v**!(e) = (i + 1)"* most significant bit of u(e).

e Note that 2 is still a valid flow in G**!, but 2f% might not be the max flow in G**!

e Question: How much remaining flow is there in G*+1?

Since f! is maximal in G* = exists cut S s.t. all edges S — S are saturated.

u'TH(S) < 2u'(S) +m
So the remaining flow in G**! is upper bounded by

uH(S) = uH(S) — 2/ < 2u(S)m —2|fi| < m

5 Strongly Polynomial-time Algorithm

We will discuss another algorithm that does not depend on max capacity, a strongly polynomial time
algorithm runs in (n - m)°M time.
In the real world model:

e input capacities are “words”

e can do reasonable operations on these words in O(1) time.

The idea for the new algorithm (Combinatorial algorithm) is as follows:

e Take the augmenting path that minimizes the s — ¢ distance in the residual graph G/.

e This is done within the FF algorithm framework.

e If we push/augment a path s — ¢ and call it P, at least one edge on P will get saturated.
Definition 2. ds(s,v) = min distance s — v in Gy.

Lemma 3. Fiz f,Gf,{d(s,v)},. Let P be the shortest path s — t.
Then after augmenting we get flow f' and Gy and {d'(s,v)},

Vo : d(s,v) > d(s,v)
Proof. We prove the lemma by contradiction.
Let A={v:d(s,v) >d(s,v)} #0
Let v € A with minimal d'(s,v).
Consider the shortest s — v path P’ after augmenting. Then

d'(s,v) =d'(s,w) +1

In Figure 1, let w be the previous node before v. w satisfies d'(s,w) > d(s,w) (because of the
minimality of d'(s,v)).

So this means (w,v) in G’f appeared when augmenting path P.

The edge (v,w) € G got saturated in P.

But since P was the shortest path before augmentation, we get

d(s,w) =d(s,v) +1
>d'(s,v) + 1
=d(s,w) + 2
> d(s,w) + 2

which is a contradiction. O

Figure 1: P’ in G’ (after augmenting)

w

V'

Figure 2: P in Gy (before augmenting)

w

Figure 3: P in G

