## 1 Introduction

Today's lecture is a continuation on the maximum flow problem. After discussing the maximum bottleneck algorithm introduced in the previous lecture, we continue to discuss to other algorithms for the maximum flow problem: a scaling algorithm and a strongly polynomial-time algorithm.

## 2 Last Time

### 2.1 Residual graph $G_{f}$

$$
\begin{gathered}
u_{f}(v, w)=u(v, w)-f(v, w), \text { if }(v, w) \in E \\
u_{f}(w, v)=f(v, w)>0, \text { if }(w, v) \in E
\end{gathered}
$$

## 2.2 s-t cut

$S, \bar{S}, s \in S, t \in \bar{S}$

$$
u_{f}(S)=\sum_{\substack{(v, w) \in E \\ v \in S \\ w \in \bar{S}}} u_{f}(v, w)
$$

### 2.3 Augmenting Path

$P$ in $G_{f}(\mathrm{~s}-\mathrm{t}$ path)

$$
u_{f}(P)=\delta_{f}(P)=\min _{e \in P} u_{f}(e)>0
$$

residual capacity / bottleneck

## 3 Maximum Bottleneck Algorithm

Recall from last lecture that we always aim to:
(1) find an augmenting path with maximum bottleneck capacity in $G_{f}$.
(2) The runtime for the algorithm is $O(m \lg U)$ per augmenting path.

Main Question: How many augmenting paths are there?
Claim 1. The number of augmenting paths is bound by $m \ln (2 n U)$

Proof. Fix the current flow $f$. We start out with the following:

- Let $g$ be the maximum flow in $G_{f}$. In particular, this means

$$
|f|+|g|=\max \text { flow in } G
$$

- By the decomposition theorem, we can write

$$
g=\text { sum of } \leq m \text { paths } P_{1}, \ldots, P_{m}
$$

- $\exists i$ s.t. $\left|P_{i}\right| \geq \frac{|g|}{m}$
- If $P^{\prime}$ is the maximum bottleneck path in $G_{f}$, then

$$
u_{f}\left(P^{\prime}\right) \geq u_{f}\left(P_{i}\right) \geq\left|P_{i}\right| \geq \frac{|g|}{m}
$$

where $\left|P_{i}\right|$ is the value of $P_{i}$ in the decomposition.

- Then the value of the remaining flow is at most $|g|-u_{f}\left(P^{\prime}\right) \leq|g|\left(1-\frac{1}{m}\right)$
- After $k$ augmenting paths, the value of the remaining maximum flow $\leq\left(1-\frac{1}{m}\right)^{k}[$ total max flow in $G]$.
- We know total max-flow $\leq n U$
- Since we are working with integers, we are done when

$$
\left(1-\frac{1}{m}\right)^{k} n U<1
$$

- Set $k=m \ln (2 n U)$, then

$$
\left(1-\frac{1}{m}\right)^{k} n U \leq e^{-\frac{1}{m} k} n U \leq \frac{1}{2}
$$

- So number of augmenting paths: $k \leq m \ln (2 n U)$

Therefore, the total time will be $O(m \lg U \cdot m \ln (2 n U))=O\left(m^{2} \lg ^{2}(n U)\right)$

## 4 Scaling Algorithm

The idea behind the scaling algorithm is to reduce the algorithm so that the maximum flow is bounded. The goal is to improve the runtime.

There will be $b=\lg U$ scaling stages. Each stage $i$ computes max flow in a graph $G^{i}$ starting from some flow $f_{i-1}$ (the flow constructed in the previous stage), and where the remaining flow $\leq m$.


If we solve each scaling stage in $O\left(m^{2}\right)$ time (using FF), then the total time is $O\left(m^{2} \lg U\right)$.
Let $G^{i}$ denote the graph that we get by replacing the capacities of $G$ with $u^{i}(e)$, the first $i$ bits of $u(e)$.

- Suppose we have a max flow $f^{i}$ for $G^{i}$.
- $G^{i+1}$ has capacities $u^{i+1}(e)=2 u^{i}(e)+v^{i+1}(e)$, where $v^{i+1}(e) \in\{0,1\}$ and represent the last bits added. In other words, $v^{i+1}(e)=(i+1)^{\text {th }}$ most significant bit of $u(e)$.
- Note that $2 f^{i}$ is still a valid flow in $G^{i+1}$, but $2 f^{i}$ might not be the max flow in $G^{i+1}$
- Question: How much remaining flow is there in $G^{i+1}$ ?

Since $f^{i}$ is maximal in $G^{i} \Rightarrow$ exists cut $S$ s.t. all edges $S \rightarrow \bar{S}$ are saturated.

$$
u^{i+1}(S) \leq 2 u^{i}(S)+m
$$

So the remaining flow in $G^{i+1}$ is upper bounded by

$$
u_{2 f^{i}}^{i+1}(S)=u^{i+1}(S)-2 f^{i} \leq 2 u(S) m-2\left|f^{i}\right| \leq m
$$

## 5 Strongly Polynomial-time Algorithm

We will discuss another algorithm that does not depend on max capacity, a strongly polynomial time algorithm runs in $(n \cdot m)^{O(1)}$ time.

In the real world model:

- input capacities are "words"
- can do reasonable operations on these words in $O(1)$ time.

The idea for the new algorithm (Combinatorial algorithm) is as follows:

- Take the augmenting path that minimizes the $s-t$ distance in the residual graph $G_{f}$.
- This is done within the FF algorithm framework.
- If we push/augment a path $s \rightarrow t$ and call it $P$, at least one edge on $P$ will get saturated.

Definition 2. $d_{f}(s, v)=\min$ distance $s \rightarrow v$ in $G_{f}$.
Lemma 3. Fix $f, G_{f},\{d(s, v)\}_{v}$. Let $P$ be the shortest path $s \rightarrow t$.
Then after augmenting we get flow $f^{\prime}$ and $G_{f^{\prime}}$ and $\left\{d^{\prime}(s, v)\right\}_{v}$

$$
\forall v: d^{\prime}(s, v) \geq d(s, v)
$$

Proof. We prove the lemma by contradiction.
Let $A=\left\{v: d(s, v)>d^{\prime}(s, v)\right\} \neq \emptyset$
Let $v \in A$ with minimal $d^{\prime}(s, v)$.
Consider the shortest $s-v$ path $P^{\prime}$ after augmenting. Then

$$
d^{\prime}(s, v)=d^{\prime}(s, w)+1
$$

In Figure 1, let $w$ be the previous node before $v$. w satisfies $d^{\prime}(s, w) \geq d(s, w)$ (because of the minimality of $\left.d^{\prime}(s, v)\right)$.

So this means $(w, v)$ in $G_{f}^{\prime}$ appeared when augmenting path $P$.
The edge $(v, w) \in G_{f}$ got saturated in $P$.
But since $P$ was the shortest path before augmentation, we get

$$
\begin{aligned}
d(s, w) & =d(s, v)+1 \\
& >d^{\prime}(s, v)+1 \\
& =d^{\prime}(s, w)+2 \\
& \geq d(s, w)+2
\end{aligned}
$$

which is a contradiction.


Figure 1: $P^{\prime}$ in $G_{f}^{\prime}$ (after augmenting)


Figure 2: $P$ in $G_{f}$ (before augmenting)


Figure 3: $P$ in $G_{f}$

