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Lecture 1 – Counting, Morris’ Algorithm, Probability

Instructor: Alex Andoni Scribes: Noah Gallant

1 The Counting Problem: count up to n

1.0.1 Normal counting and space

Let n be the number of events or ticks we would like to keep track of, for example the number of suspicious

requests a router receives. We would like to keep track of this number, what is the space required (in

bits)? For an exact count it is necessarily log(n) bits. Can we do any better getting the exact count?

Nope!

1.0.2 Approximate Count

To use less space we can try to compute approximate count. Where if a represents the actual count,

we define the approximate count, â as follows:

Definition 1:

a ≤ â ≤ u · a

Where u is called the approximation factor. Oftentimes, we will think of approximation being u = 1 + ε,

where ε is the “error” (e.g., ε = 0.1 means that the algorithm can overestimate the count, by at most 10%).

Definition 2:

a / l ≤ â ≤ u · a
u, l ≥ 1

Where u · l is our approximation factor. This second definition can be translated to the first:

â′ = l · a→
a ≤ â′ ≤ (u · l) · a

However, even using approximation, the optimal space is still Ω(log(n)).

Hence we can consider a further relaxation to our counting problem: randomized approximate

counting wherein we only require that:

Pr[a ≤ â ≤ u ∗ a] ≥ 90%
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1.0.3 Algorithm for Randomized Approximate Counting

It turns out we can solve the randomized approximate counting with much less space (O(log log n) bits

only). In particular, we will see the Morris’ Randomized Approximate Counting, conceived in

1978, whose underlying idea is as follows. We use a counter X ∈ Z.

1. initialize X = 0

2. at each event X := X + 1 with probability 1
2X

, and leave unchanged with probability 1− 1
2X

.

3. output (the estimate) is â = 2X − 1.

2 Probability

Let X be a random variable.

Definition 1 (Expectation). For a discrete random variable X, the expectation of X, E[X] is

E[X] =
∑
a

aPr[X = a]

For a continuous random variable X, the expectation of X, E[X], is

E[X] =

∫
aφ(a)da

where φ is the probability density function of X.

Lemma 2 (Linearity of Expectation). Let X and Y be two random variables. E[X + Y ] = E[X] +E[Y ].

Lemma 3 (Markov’s inequality). Let X be a non-negative random variable. For all λ > 0,

Pr[X > λ] ≤ E[X]

λ

Definition 4 (Variance). The variance of a random variable X, denoted var[X], is

Var[X] = E[(X − E[X])2] = E[X2]− E[X]2

Lemma 5 (Chebyshev’s Inequality). For all λ > 0,

Pr[|X − E[X]| > λ] ≤ Var[X]

λ2

3 Analysis of Morris’ Algorithm

Claim 6. Define Xn = value of X after n events. Then E[2Xn − 1] = n.
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Proof. The proof is by induction on n. The basis of the induction: for n = 0, X = 0 and therefore

2X0 = 1 = n + 1. So assume for inductive hypothesis that E[2Xn−1 ] = (n − 1) + 1. We now argue the

inductive step. Note that

E[2Xn ] =
∑
i

2i · Pr[Xn = i].

Additionally,

Pr[Xn = i] = Pr[X is incremented ∧Xn−1 = i− 1] + Pr[X is not incremented ∧Xn−1 = i]

=
1

2i−1
· Pr[Xn−1 = i− 1] +

(
1− 1

2i

)
· Pr[Xn−1 = i].

Using the above two facts, we may write:

E[2Xn ] =
∑
i

2i ·
(

1

2i−1
· Pr[Xn−1 = i− 1] +

(
1− 1

2i

)
· Pr[Xn−1 = i]

)
=
∑
i

2 · Pr[Xn−1 = i− 1] +
∑
i

2i · Pr[Xn−1 = i]−
∑
i

Pr[Xn−1 = i]

= E[2Xn−1 ] + 1.

We now apply the inductive hypothesis to conclude:

E[2Xn ] = ((n− 1) + 1) + 1 = n+ 1.
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