Lecture 1 - Counting, Morris' Algorithm, Probability

Instructor: Alex Andoni
Scribes: Noah Gallant

1 The Counting Problem: count up to n

1.0.1 Normal counting and space

Let n be the number of events or ticks we would like to keep track of, for example the number of suspicious requests a router receives. We would like to keep track of this number, what is the space required (in bits)? For an exact count it is necessarily $\log (n)$ bits. Can we do any better getting the exact count? Nope!

1.0.2 Approximate Count

To use less space we can try to compute approximate count. Where if a represents the actual count, we define the approximate count, \hat{a} as follows:

Definition 1:

$$
a \leq \hat{a} \leq u \cdot a
$$

Where u is called the approximation factor. Oftentimes, we will think of approximation being $u=1+\epsilon$, where ϵ is the "error" (e.g., $\epsilon=0.1$ means that the algorithm can overestimate the count, by at most 10%).

Definition 2:

$$
\begin{gathered}
a / l \leq \hat{a} \leq u \cdot a \\
u, l \geq 1
\end{gathered}
$$

Where $u \cdot l$ is our approximation factor. This second definition can be translated to the first:

$$
\begin{gathered}
\hat{a}^{\prime}=l \cdot a \rightarrow \\
a \leq \hat{a}^{\prime} \leq(u \cdot l) \cdot a
\end{gathered}
$$

However, even using approximation, the optimal space is still $\Omega(\log (n))$.
Hence we can consider a further relaxation to our counting problem: randomized approximate counting wherein we only require that:

$$
\operatorname{Pr}[a \leq \hat{a} \leq u * a] \geq 90 \%
$$

1.0.3 Algorithm for Randomized Approximate Counting

It turns out we can solve the randomized approximate counting with much less space ($O(\log \log n)$ bits only). In particular, we will see the Morris' Randomized Approximate Counting, conceived in 1978, whose underlying idea is as follows. We use a counter $X \in \mathbb{Z}$.

1. initialize $X=0$
2. at each event $X:=X+1$ with probability $\frac{1}{2^{X}}$, and leave unchanged with probability $1-\frac{1}{2^{X}}$.
3. output (the estimate) is $\hat{a}=2^{X}-1$.

2 Probability

Let X be a random variable.
Definition 1 (Expectation). For a discrete random variable X, the expectation of $X, \mathbb{E}[X]$ is

$$
\mathbb{E}[X]=\sum_{a} a \operatorname{Pr}[X=a]
$$

For a continuous random variable X, the expectation of $X, \mathbb{E}[X]$, is

$$
\mathbb{E}[X]=\int a \phi(a) d a
$$

where ϕ is the probability density function of X.
Lemma 2 (Linearity of Expectation). Let X and Y be two random variables. $\mathbb{E}[X+Y]=\mathbb{E}[X]+\mathbb{E}[Y]$.
Lemma 3 (Markov's inequality). Let X be a non-negative random variable. For all $\lambda>0$,

$$
\operatorname{Pr}[X>\lambda] \leq \frac{\mathbb{E}[X]}{\lambda}
$$

Definition 4 (Variance). The variance of a random variable X, denoted var $[X]$, is

$$
\operatorname{Var}[X]=\mathbb{E}\left[(X-\mathbb{E}[X])^{2}\right]=\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}
$$

Lemma 5 (Chebyshev's Inequality). For all $\lambda>0$,

$$
\operatorname{Pr}[|X-\mathbb{E}[X]|>\lambda] \leq \frac{\operatorname{Var}[X]}{\lambda^{2}}
$$

3 Analysis of Morris' Algorithm

Claim 6. Define $X_{n}=$ value of X after n events. Then $\mathbb{E}\left[2^{X_{n}}-1\right]=n$.

Proof. The proof is by induction on n. The basis of the induction: for $n=0, X=0$ and therefore $2^{X_{0}}=1=n+1$. So assume for inductive hypothesis that $\mathbb{E}\left[2^{X_{n-1}}\right]=(n-1)+1$. We now argue the inductive step. Note that

$$
\mathbb{E}\left[2^{X_{n}}\right]=\sum_{i} 2^{i} \cdot \operatorname{Pr}\left[X_{n}=i\right] .
$$

Additionally,

$$
\begin{aligned}
\operatorname{Pr}\left[X_{n}=i\right] & =\operatorname{Pr}\left[X \text { is incremented } \wedge X_{n-1}=i-1\right]+\operatorname{Pr}\left[X \text { is not incremented } \wedge X_{n-1}=i\right] \\
& =\frac{1}{2^{i-1}} \cdot \operatorname{Pr}\left[X_{n-1}=i-1\right]+\left(1-\frac{1}{2^{i}}\right) \cdot \operatorname{Pr}\left[X_{n-1}=i\right] .
\end{aligned}
$$

Using the above two facts, we may write:

$$
\begin{aligned}
\mathbb{E}\left[2^{X_{n}}\right] & =\sum_{i} 2^{i} \cdot\left(\frac{1}{2^{i-1}} \cdot \operatorname{Pr}\left[X_{n-1}=i-1\right]+\left(1-\frac{1}{2^{i}}\right) \cdot \operatorname{Pr}\left[X_{n-1}=i\right]\right) \\
& =\sum_{i} 2 \cdot \operatorname{Pr}\left[X_{n-1}=i-1\right]+\sum_{i} 2^{i} \cdot \operatorname{Pr}\left[X_{n-1}=i\right]-\sum_{i} \operatorname{Pr}\left[X_{n-1}=i\right] \\
& =\mathbb{E}\left[2^{X_{n-1}}\right]+1 .
\end{aligned}
$$

We now apply the inductive hypothesis to conclude:

$$
\mathbb{E}\left[2^{X_{n}}\right]=((n-1)+1)+1=n+1 .
$$

