
President’s Day Lecture:

Advanced Nearest Neighbor

Search

[Advanced Algorithms, Spring’17]

Announcements

2

 Evaluation on CourseWorks

 If you think homework is too easy (or too hard):

 mark “appropriateness of workload”

Time-Space Trade-offs (Euclidean)

𝜎 = 𝑂(1/𝑐2) [AI’06]

𝑛4/𝜖
2 𝑂(𝑑 log 𝑛) 𝑐 = 1 + 𝜖 [KOR’98, IM’98, Pan’06]

≈ 𝑛 𝑛𝜎 𝜎 = 2.09/𝑐 [Ind’01, Pan’06]

Space Time Comment Reference

𝜌 = 1/𝑐2 [AI’06]

𝑛1+𝜌 𝑛𝜌 𝜌 = 1/𝑐 [IM’98, DIIM’04]

query

time
space

medium medium

lowhigh

highlow

𝑛𝑜(1/𝜖
2) ω(1) memory lookups [AIP’06]

𝑛1+𝑜(1/𝑐
2) ω(1) memory lookups [PTW’08, PTW’10]

𝜌 ≥ 1/𝑐2 [MNP’06, OWZ’11]

Near-linear Space for 0,1 𝑑

 Setting:

 Close: 𝑟 =
𝑑

2𝑐
⇒ 𝑃1 = 1 −

1

2𝑐

 Far: 𝑐𝑟 =
𝑑

2
⇒ 𝑃2 =

1

2

 Algorithm:

 Use one hash table with 𝑘 =
log 𝑛

log 1/𝑃2
= 𝛼 ⋅ ln 𝑛

 On query 𝑞:
 compute 𝑤 = 𝑔 𝑞 ∈ 0,1 𝑘

 Repeat 𝑅 = 𝑛𝜎 times:
 𝑤′: flip each 𝑤𝑗 with probability 1 − 𝑃1
 look up bucket 𝑤′ and compute distance to all points there

 If found an approximate near neighbor, stop

4

[Indyk’01, Panigrahy’06]

Sample a few buckets in the

same hash table!

Near-linear Space

 Theorem: for 𝜎 = Θ
log 𝑐

𝑐
, we have:

 Pr[find an approx near neighbor]≥ 0.1

 Expected runtime: 𝑂(𝑛𝜎)

 Proof:

 Let 𝑝∗ be the near neighbor: ||𝑞 − 𝑝∗|| ≤ 𝑟

 𝑤 = 𝑔(𝑞), 𝑡 = ||𝑤 − 𝑔 𝑝∗ ||1

 Claim 1: Pr
𝑔

𝑡 ≤
𝑘

𝑐
≥

1

2

 Claim 2: Pr
𝑔,𝑤′

𝑤′ = 𝑔 𝑝 ||𝑞 − 𝑝||1 ≥
𝑑

2
≤

1

𝑛

 Claim 3: Pr[𝑤′ = 𝑔 𝑝∗ ∣ 𝐶𝑙𝑎𝑖𝑚 1] ≥ 2𝑛−𝜎

 If 𝑤′ = 𝑔(𝑝∗) at least for one 𝑤′, we are guaranteed to output either
𝑝∗ or an approx. near neighbor

5

Beyond LSH

Space Time Exponent 𝒄 = 𝟐 Reference

𝑛1+𝜌 𝑛𝜌 𝜌 = 1/𝑐 𝜌 = 𝟏/𝟐 [IM’98]

𝑛1+𝜌 𝑛𝜌 𝜌 ≈ 1/𝑐2 𝜌 = 𝟏/𝟒 [AI’06]

Hamming

space

Euclidean

space

𝜌 ≥ 1/𝑐 [MNP’06, OWZ’11]

𝜌 ≥ 1/𝑐2 [MNP’06, OWZ’11]

𝑛1+𝜌 𝑛𝜌
𝜌 ≈

1

2𝑐 − 1

𝜌 = 𝟏/𝟑 [AINR’14, AR’15]

𝑛1+𝜌 𝑛𝜌
𝜌 ≈

1

2𝑐2 − 1

𝜌 = 𝟏/𝟕 [AINR’14, AR’15]

LSH

LSH

6

New approach?

7

 A random hash function,

chosen after seeing the given

dataset

 Efficiently computable

Data-dependent hashing

Construction of hash function

8

 Two components:

 Nice geometric structure

 Reduction to such structure

has better LSH

data-dependent

[A.-Indyk-Nguyen-Razenshteyn’14, A.-Razenshteyn’15]

Nice geometric structure

9

 Points on a unit sphere, where

 𝑐𝑟 ≈ 2, i.e., far pair is (near) orthogonal

 this would be distance if the dataset were random on sphere

 Close pair: 𝑟 = 2/𝑐

 Query:

 at angle 45’ from near-neighbor
𝑐𝑟 ≈ 2

𝑟 = 2/𝑐

Alg 1: Hyperplanes

 Sample unit 𝑟 uniformly, hash 𝑝 into

𝑠𝑔𝑛〈𝑟, 𝑝〉

 Pr[ℎ(𝑝) = ℎ(𝑞)] ?

= 1 – 𝛼 / 𝜋

 where 𝛼 is the angle between 𝑝 and 𝑞

 𝑃1 = 3/4

 𝑃2 = 1/2

 𝜌 ≈ 0.42

10

[Charikar’02]

Alg 2: Voronoi

 Sample 𝑇 i.i.d. standard 𝑑-

dimensional Gaussians

𝑔1, 𝑔2, … , 𝑔𝑇
 Hash 𝑝 into

ℎ 𝑝 = 𝑎𝑟𝑔𝑚𝑎𝑥1≤𝑖≤𝑇〈𝑝, 𝑔𝑖〉

 𝑇 = 2 is simply Hyperplane LSH

11

[A.-Indyk-Nguyen-Razenshteyn’14] based on [Karger-Motwani-Sudan’94]

Hyperplane vs Voronoi

 Hyperplane with 𝑘 = 6 hyperplanes

 Means we partition space into 26 = 64 pieces

 Voronoi with 𝑇 = 2𝑘 = 64 vectors

 𝜌 = 0.18

 grids vs spheres

12

Reduction to nice structure (very HL)

13

 Idea:

iteratively decrease the radius of
minimum enclosing ball OR make
more isotopic

 Algorithm:

 find dense clusters

 with smaller radius

 large fraction of points

 recurse on dense clusters

 apply VoronoiLSH on the rest

 recurse on each “cap”

 eg, dense clusters might reappear
radius = 99𝑐𝑟

*picture not to scale & dimension

radius = 100𝑐𝑟

Why ok?Why ok?

• no dense clusters

• like “random dataset”

with radius=100𝑐𝑟

• even better!

Hash function

14

 Described by a tree (like a hash table)

radius = 100𝑐𝑟

*picture not to scale&dimension

Dense clusters

 Current dataset: radius 𝑅

 A dense cluster:

 Contains 𝑛1−𝛿 points

 Smaller radius: 1 − Ω 𝜖2 𝑅

 After we remove all clusters:

 For any point on the surface, there are at most 𝑛1−𝛿 points

within distance 2 − 𝜖 𝑅

 The other points are essentially orthogonal !

 When applying Cap Carving with parameters (𝑃1, 𝑃2):
 Empirical number of far pts colliding with query: 𝑛𝑃2 + 𝑛1−𝛿

 As long as 𝑛𝑃2 ≫ 𝑛1−𝛿, the “impurity” doesn’t matter!

2 − 𝜖 𝑅

𝜖 trade-off

𝛿 trade-off

?

Tree recap

16

 During query:
 Recurse in all clusters

 Just in one bucket in VoronoiLSH

 Will look in >1 leaf!

 How much branching?

 Claim: at most 𝑛𝛿 + 1
𝑂(1/𝜖2)

 Each time we branch
 at most 𝑛𝛿 clusters (+1)

 a cluster reduces radius by Ω(𝜖2)

 cluster-depth at most 100/Ω 𝜖2

 Progress in 2 ways:
 Clusters reduce radius

 CapCarving nodes reduce the # of far points (empirical 𝑃2)

 A tree succeeds with probability ≥ 𝑛
−

1

2𝑐2−1
−𝑜(1)

𝛿 trade-off

NNS: conclusion

 1. Via sketches

 2. Locality Sensitive Hashing

 Random space partitions

 Better space bound

 Even near-linear!

 3. Data-dependent hashing even better

 Used in practice a lot these days

17

