President’s Day Lecture:

Advanced Nearest Neighbor
Search

|[Advanced Algorithms, Spring’17]

Announcements

» Evaluation on CourseWorks

» If you think homework is too easy (or too hard):

mark “appropriateness of workload”

Time-Space Trade-offs (

space query
time
low high

medium [| medium

high low

Luclidean)

Space |Time Comment Reference

~n no o = 2_()9/(; [Ind’01, Pan’006]
o=0(1/c?) |[AIrog]

nl+p nP p=1/c [IM'98, DIIM’04]
p=1/c? [AI'06]
p=>1/c? [IMNP’06, OWZ’11]

nlto(1/c?) w(1) memﬂxlookups [PTW’08, PTW’10]

ymem 100K

nt/€® | OkdAoE)

c=1+c¢€

[KOR'98, IM'98, Pan’06]

70 (1/€%)

w(1) memory lookups

[AIP’06]

Near-linear Space for {0,1}¢
[Indyk’O1, Panigrahy’06]

Sample a few buckets in the
same hash table!

» Setting:
d 1
Closeer=—=>P, =1——
d2c 2C
Far:cr === P, = -
2 2
» Algorithm:
. logn
Use one hash table with k = =a-lnn
log1/P,

On query q:
compute w = g(q) € {0,1}*
Repeat R = n? times:
w': flip each w; with probability 1 — P;
look up bucket w' and compute distance to all points there
If found an approximate near neighbor, stop

Near-linear Space

» Theorem:foro =0 (lof’c

), we have:

Pr[find an approx near neighbor]> 0.1
Expected runtime: O (n?)

» Proof:
Let p* be the near neighbor: ||g — p*|| < r
w=g(q)t=|lw-g@)lh
Claim I:l?gr[t < %] 2%

A r_ _ al.1
Claim Z-Q?vg,lw =g | llq p”lZZ]Sn

Claim 3:Pr[w’ = g(p*) | Claim 1] = 2n™°
If w' = g(p*) at least for one w’, we are guaranteed to output either
p* or an approx. near neighbor

Beyond LSH

Hamming
space

Euclidean
space

=)

Space | Time | Exponent |c =2 Reference
nttP |nf p=1/c p=1/2|[IM98]
p=1/c [MNP’06,OWZ'I 1]
n'tP |nP 1 p = 1/3 [[AINR’14, AR'I5]
P = oc—1
nittP |nP p=1/c> |p=1/4|[Ar0¢]
p=>1/c? [MNP'06, OWZ’| I]
nttP | nP 1 |p=1/7 |[AINRI4AR]5]
P

~ 202 —1

} LSH
} LSH

New approach?

‘ Data-dependent hashing |

» A random hash function, |
chosen after seeing the given .. .
dataset N ’4’

» Efficiently computable .

Construction of hash function
[A.-Indyk-Nguyen-Razenshteyn’ |4, A.-Razenshteyn’|5]

» Two components:
Nice geometric structure == has better LSH
Reduction to such structure ¢mmmm data-dependent

Nice geometric structure

» Points on a unit sphere, where
cr =~ +/2,i.e., far pair is (near) orthogonal
this would be distance if the dataset were random on sphere
Close pair:r =/2/c

» Query:

at angle 45’ from near-neighbor

cr 22

250
200
150 r=v2/c
100

50

9 0

0 45 90 135 180

Alg 1: Hyperplanes

[Charikar’02]

» Sample unit r uniformly, hash p into

sgn(r, p)
Prla(p) = h(q)]?
=1l-a/m
where « is the angle between p and g 1.00
» P =3/4 .
» P, =1/2

0.50

b p o~ 0.42

0.25

0 45 90 135 180

Alg 2: Voronoi

[A.-Indyk-Nguyen-Razenshteyn’|4] based on [Karger-Motwani-Sudan’94]

» Sample T i.i.d. standard d-
dimensional Gaussians

91,92, - 9dr
» Hash p into

h(p) = argmax,<i<r(p, 9:)

» T = 2 is simply Hyperplane LSH

Hyperplane vs Voronoi

» Hyperplane with k = 6 hyperplanes

Means we partition space into 2° = 64 pieces

» Voronoi with T = 2% = 64 vectors

p=0.18 K=6vs.T=64

. 1.00
grids vs spheres

0.75

0.50

0.25

query near far
point neighbor points

Reduction to nice structure (very HL)

» ldea:

iteratively decrease the radius of
minimum enclosing ball OR make
more isotopic

Why ok?
» Algorithm: * no dense clusters
find dense clusters / ‘
with smaller radius e like “random dataset”
large fraction of points | with radius=100c¢r
recurse on dense clusters ‘ Ver
apply VoronoilLSH on the rest k even better! /

recurse on each “cap”

eg, dense clusters might reappear
radius = 99cr

*picture not to scale & dimension

Hash function

» Described by a tree (like a hash table)

ius = 100cr

*picture not to scale&dimension

Dense clusters

» Current dataset: radius R

» A dense cluster:

Contains n'~9 points
Smaller radius: (1 — Q(€2))R
» After we remove all clusters:

For any point on the surface, there arey € trade-off] points
within distance (\/E — E)R
The other points are essentially orthogonal !
» When applying Cap Carving with para

Empirical number of far pts c

As long as nP, » n'~9, the “impurity” doesn’t matter! !

Tree recap
» During query:

Recurse in all clusters
Just in one bucket in VoronoilLSH

» Will look in >1 leaf!
» How much branching?

Claim: at most (n5 + 1)0(1/

Each time we branch
at most n9 clusters (+1)
a cluster reduces radius by Q(e?)

cluster-depth at most 100/Q(e?)
» Progress in 2 ways:
Clusters reduce radius
CapCarving nodes reduce the # of far points (empirical P,)
1

» A tree succeeds with probability > n"ze7—1 °")

5 trade-off |

NNS: conclusion

» |.Via sketches

» 2. Locality Sensitive Hashing
Random space partitions
Better space bound

Even near-linear!

» 3. Data-dependent hashing even better

Used in practice a lot these days

