President's Day Lecture: Advanced Nearest Neighbor Search

[Advanced Algorithms, Spring'17]

Announcements

- Evaluation on CourseWorks
- If you think homework is too easy (or too hard):
" mark "appropriateness of workload"

Time-Space Trade-offs (Euclidean)

space	query	Space	Time	Comment	Reference
low	high	$\approx n$	n^{σ}	$\sigma=2.09 / c$	[Ind'01, Par'06]
				$\sigma=O\left(1 / c^{2}\right)$	[A100]
medium	medium	${ }^{n^{1+\rho}}$	n^{ρ}	$\rho=1 / c$	[IM 98 , DIIM $\left.{ }^{\prime} 04\right]$
				$\rho=1 / c^{2}$	[A106]
				$\rho \geq 1 / c^{2}$	[MNP'06, OWZ'11]
		$n^{1+o\left(1 / c^{2}\right.}$	$\omega(1) \mathrm{m}$	bry lookups	[PTW ${ }^{\text {'08, PTW' }}$ '10]
high	low	mem lookup			
		$n^{4 / \epsilon^{2}}$	Ofog	$c=1+\epsilon$	[KOR'98, IM'98, Pan'06]
		$n^{0\left(1 / \epsilon^{2}\right)}$	$\omega(1) \mathrm{m}$	ry lookups	[AIP'06]

Near-linear Space for $\{0,1\}^{d}$

[Indyk'OI, Panigrahy'06]

Sample a few buckets in the same hash table!

- Setting:
, Close: $r=\frac{d}{2 c} \Rightarrow P_{1}=1-\frac{1}{2 c}$
(Far: $c r=\frac{d}{2} \Rightarrow P_{2}=\frac{1}{2}$
- Algorithm:
, Use one hash table with $k=\frac{\log n}{\log 1 / P_{2}}=\alpha \cdot \ln n$
, On query q :
, compute $w=g(q) \in\{0,1\}^{k}$
- Repeat $R=n^{\sigma}$ times:
$\square w^{\prime}$: flip each w_{j} with probability $1-P_{1}$
\square look up bucket w^{\prime} and compute distance to all points there
- If found an approximate near neighbor, stop

Near-linear Space

- Theorem: for $\sigma=\Theta\left(\frac{\log c}{c}\right)$, we have:
- $\operatorname{Pr[find~an~approx~near~neighbor]~} \geq 0.1$
- Expected runtime: $O\left(n^{\sigma}\right)$
- Proof:
- Let p^{*} be the near neighbor: $\left\|q-p^{*}\right\| \leq r$
, $w=g(q), t=\left\|w-g\left(p^{*}\right)\right\|_{1}$
- Claim I: $\operatorname{Pr}\left[t \leq \frac{k}{c}\right] \geq \frac{1}{2}$
, Claim 2: $\underset{g, w^{\prime}}{\operatorname{Pr}}\left[w^{\prime}=g(p) \left\lvert\,\|q-p\|_{1} \geq \frac{d}{2}\right.\right] \leq \frac{1}{n}$
- Claim 3: $\operatorname{Pr}\left[w^{\prime}=g\left(p^{*}\right) \mid \operatorname{Claim} 1\right] \geq 2 n^{-\sigma}$
- If $w^{\prime}=g\left(p^{*}\right)$ at least for one w^{\prime}, we are guaranteed to output either p^{*} or an approx. near neighbor

Beyond LSH

Space \quad Time Exponent $\quad c=2$ Reference

Hamming space	$n^{1+\rho}$	n^{ρ}	$\rho=1 / c$	$\rho=\mathbf{1} / \mathbf{2}$	$\left[\mathrm{IM}^{\prime} 98\right]$
			$\rho \geq 1 / c$		$\left[\mathrm{MNP}^{\prime} 06\right.$, OWZ'।I]
	$n^{1+\rho}$	n^{ρ}	$\rho \approx \frac{1}{2 c-1}$	$\rho=\mathbf{1} / \mathbf{3}$	$[$ [AINR'।4, AR'।5]

Euclidean space	$n^{1+\rho}$	n^{ρ}	$\rho \approx 1 / c^{2}$	$\rho=\mathbf{1} / 4$	[Al'06]
			$\rho \geq 1 / c^{2}$		[MNP'06, OWZ'II]
	$n^{1+\rho}$	n^{ρ}	$\rho \approx \frac{1}{2 c^{2}-1}$	$\rho=1 / 7$	[AINR'I4,AR'I5]

New approach?

Data-dependent hashing

- A random hash function, chosen after seeing the given dataset
- Efficiently computable

Construction of hash function

[A.-Indyk-Nguyen-Razenshteyn'।4, A.-Razenshteyn'I5]
, Two components:

- Nice geometric structure
- Reduction to such structure

Nice geometric structure

- Points on a unit sphere, where
- $c r \approx \sqrt{2}$, i.e., far pair is (near) orthogonal
b this would be distance if the dataset were random on sphere
, Close pair: $r=\sqrt{2} / c$
, Query:
, at angle 45' from near-neighbor

Alg 1: Hyperplanes

[Charikar'02]

- Sample unit r uniformly, hash p into $\operatorname{sgn}\langle r, p\rangle$
- $\begin{aligned} \operatorname{Pr}[h(p)= & h(q)] ? \\ & =1-\alpha / \pi\end{aligned}$
- where α is the angle between p and q
- $P_{1}=3 / 4$
- $P_{2}=1 / 2$
- $\rho \approx 0.42$

Alg 2: Voronoi

[A.-Indyk-Nguyen-Razenshteyn'14] based on [Karger-Motwani-Sudan'94]

- Sample T i.i.d. standard d dimensional Gaussians

$$
g_{1}, g_{2}, \ldots, g_{T}
$$

- Hash p into

$$
h(p)=\operatorname{argmax}_{1 \leq i \leq T}\left\langle p, g_{i}\right\rangle
$$

- $T=2$ is simply Hyperplane LSH

Hyperplane vs Voronoi

- Hyperplane with $k=6$ hyperplanes
- Means we partition space into $2^{6}=64$ pieces
- Voronoi with $T=2^{k}=64$ vectors
- $\rho=0.18$
b grids vs spheres

Reduction to nice structure (very HL)

- Idea: iteratively decrease the radius of minimum enclosing ball OR make more isotopic
- Algorithm:
- find dense clusters
with smaller radius large fraction of points
- recurse on dense clusters
> apply VoronoiLSH on the rest
- recurse on each "cap"
- eg, dense clusters might reappear

Why ok?

- no dense clusters
- like "random dataset" with radius $=100 \mathrm{cr}$
- even better!

$$
\text { radius }=99 \mathrm{cr}
$$

Hash function

- Described by a tree (like a hash table)

Dense clusters

- Current dataset: radius R
- A dense cluster:
- Contains $n^{1-\delta}$ points
- Smaller radius: $\left(1-\Omega\left(\epsilon^{2}\right)\right) R$
- After we remove all clusters:
- For any point on the surface, there are ϵ trade-off points within distance $(\sqrt{2}-\epsilon) R$
, The other points are essentially orthogonal !
- When applying Cap Carving with parameters $\frac{\&}{2}$ - Empirical number of far pts collifling with query: $n P_{2}+n n^{1-\delta}$ - As long as $n P_{2} \gg n^{1-\delta}$, the "impurity" doesn't matter!

Tree recap

- During query:
- Recurse in all clusters
- Just in one bucket in VoronoiLSH
- Will look in >I leaf!
- How much branching?
- Claim: at most $\left(n^{\delta}+1\right)^{O\left(1 / \epsilon^{2}\right)}$
- Each time we branch
- at most n^{δ} clusters (+1)
- a cluster reduces radius by $\Omega\left(\epsilon^{2}\right)$
> cluster-depth at most $100 / \Omega\left(\epsilon^{2}\right)$
- Progress in 2 ways:
- Clusters reduce radius

- CapCarving nodes reduce the \# of far points (empirical P_{2})
- A tree succeeds with probability $\geq n^{-\frac{1}{2 c^{2}-1}-o(1)}$

NNS: conclusion

- I.Via sketches
- 2. Locality Sensitive Hashing
- Random space partitions
- Better space bound
, Even near-linear!

3. Data-dependent hashing even better

- Used in practice a lot these days

