President's Day Lecture: Advanced Nearest Neighbor Search

[Advanced Algorithms, Spring'17]

Announcements

- Evaluation on CourseWorks
- If you think homework is too easy (or too hard):
 - mark "appropriateness of workload"

Time-Space Trade-offs (Euclidean)

1	query time									
space		Space	Time	Comment	Reference					
		$\approx n$	n^{σ}	$\sigma = 2.09/c$	[Ind'01, Pan'06]					
low	high			$\sigma = O(1/c^2)$	[Al'06]					
		r		I						
medium	medium	$n^{1+\rho}$	$n^{ ho}$	$\rho = 1/c$	[IM'98, DIIM'04]					
				$\rho = 1/c^2$	[Al'06]					
				$\rho \ge 1/c^2$	[MNP'06, OWZ'11]					
		$n^{1+o(1/c^2)}$	ω(1) memo	ory lookups	[PTW'08, PTW'10]					
	1 mem lookup									
high	low	n^{4/ϵ^2}	$O(d \log n)$	$c = 1 + \epsilon$	[KOR'98, IM'98, Pan'06]					
		$n^{o(1/\epsilon^2)}$	ω(1) memo	ory lookups	[AIP'06]					
	/									

Near-linear Space for $\{0,1\}^d$

[Indyk'01, Panigrahy'06]

Sample a few buckets in the same hash table!

- Setting:
 - Close: $r = \frac{d}{2c} \Rightarrow P_1 = 1 \frac{1}{2c}$ • Far: $cr = \frac{d}{2} \Rightarrow P_2 = \frac{1}{2}$
- Algorithm:
 - Use one hash table with $k = \frac{\log n}{\log 1/P_2} = \alpha \cdot \ln n$
 - On query *q*:
 - compute $w = g(q) \in \{0,1\}^k$
 - Repeat $R = n^{\sigma}$ times:
 - \square w': flip each w_j with probability $1 P_1$
 - \Box look up bucket w' and compute distance to all points there
 - If found an approximate near neighbor, stop

Near-linear Space

- Theorem: for $\sigma = \Theta\left(\frac{\log c}{c}\right)$, we have:
 - Pr[find an approx near neighbor] ≥ 0.1
 - Expected runtime: $O(n^{\sigma})$

Proof:

- Let p^* be the near neighbor: $||q p^*|| \le r$
- $w = g(q), t = ||w g(p^*)||_1$
- Claim I: $\Pr_g \left[t \le \frac{k}{c} \right] \ge \frac{1}{2}$
- Claim 2: $\Pr_{g,w'}\left[w' = g(p) \mid ||q p||_1 \ge \frac{d}{2}\right] \le \frac{1}{n}$
- Claim 3: $\Pr[w' = g(p^*) | Claim 1] \ge 2n^{-\sigma}$
- If $w' = g(p^*)$ at least for one w', we are guaranteed to output either p^* or an approx. near neighbor

Beyond LSH

-					
Space	Time	Exponent	<i>c</i> = 2	Reference	
$n^{1+ ho}$	$n^{ ho}$	$\rho = 1/c$	$\rho = 1/2$	[IM'98]	
		$\rho \ge 1/c$		[MNP'06, OWZ'11]	
$n^{1+ ho}$	$n^{ ho}$	1	$\rho = 1/3$	[AINR'14, AR'15]	
		$\rho \approx \frac{1}{2c-1}$			
$n^{1+ ho}$	$n^{ ho}$	$\rho \approx 1/c^2$	$\rho = 1/4$	[Al'06]	
		$\rho \ge 1/c^2$		[MNP'06, OWZ'11]	J L3
<i>n</i> ^{1+<i>ρ</i>}	$n^{ ho}$	$\rho \approx \frac{1}{2c^2 - 1}$	$\rho = 1/7$	[AINR'14,AR'15]	
	Space $n^{1+\rho}$ $n^{1+\rho}$ $n^{1+\rho}$ $n^{1+\rho}$	Space Time $n^{1+\rho}$ n^{ρ} $n^{1+\rho}$ n^{ρ} $n^{1+\rho}$ n^{ρ} $n^{1+\rho}$ n^{ρ} $n^{1+\rho}$ n^{ρ}	SpaceTimeExponent $n^{1+\rho}$ n^{ρ} $\rho = 1/c$ $n^{1+\rho}$ n^{ρ} $\rho \ge 1/c$ $n^{1+\rho}$ n^{ρ} $\rho \approx \frac{1}{2c-1}$ $n^{1+\rho}$ n^{ρ} $\rho \ge 1/c^2$ $n^{1+\rho}$ n^{ρ} $\rho \ge 1/c^2$	$\begin{array}{ c c c c c } \hline \mathbf{Space} & \mathbf{Time} & \mathbf{Exponent} & c=2 \\ \hline n^{1+\rho} & n^{\rho} & \rho = 1/c & \rho = \mathbf{1/2} \\ \hline & \rho \geq 1/c & & \\ \hline n^{1+\rho} & n^{\rho} & \rho \approx \frac{1}{2c-1} & \rho = \mathbf{1/3} \\ \hline & & \rho \approx 1/c^2 & \rho = \mathbf{1/4} \\ \hline & & \rho \geq 1/c^2 & & \\ \hline n^{1+\rho} & n^{\rho} & \rho \approx \frac{1}{2c^2-1} & \rho = \mathbf{1/7} \\ \hline \end{array}$	$ \begin{array}{ c c c c c c } \hline \textbf{Space} & \textbf{Time} & \textbf{Exponent} & c = 2 & \textbf{Reference} \\ \hline n^{1+\rho} & n^{\rho} & \rho = 1/c & \rho = 1/2 & [\texttt{IM'98}] \\ \hline & \rho \ge 1/c & [\texttt{MNP'06, OWZ'11}] \\ \hline n^{1+\rho} & n^{\rho} & \rho \approx \frac{1}{2c-1} & \rho = 1/3 & [\texttt{AINR'14, AR'15}] \\ \hline & \rho \ge 1/c^2 & \rho = 1/4 & [\texttt{AI'06}] \\ \hline & \rho \ge 1/c^2 & [\texttt{MNP'06, OWZ'11}] \\ \hline n^{1+\rho} & n^{\rho} & \rho \approx \frac{1}{2c^2-1} & \rho = 1/7 & [\texttt{AINR'14, AR'15}] \\ \hline \end{array} $

New approach?

Data-dependent hashing

- A random hash function, chosen after seeing the given dataset
- Efficiently computable

Construction of hash function

[A.-Indyk-Nguyen-Razenshteyn'14, A.-Razenshteyn'15]

- Two components:
 - Nice geometric structure
 - Reduction to such structure

data-dependent

Nice geometric structure

Points on a unit sphere, where

- $cr \approx \sqrt{2}$, i.e., far pair is (near) orthogonal
- this would be distance if the dataset were random on sphere

• Close pair:
$$r = \sqrt{2}/c$$

• Query:

> at angle 45' from near-neighbor

Alg 1: Hyperplanes [Charikar'02]

- Sample *unit* r uniformly, hash p into $sgn\langle r, p \rangle$
 - $\Pr[h(p) = h(q)]$? = 1 - α / π
 - \blacktriangleright where α is the angle between p and q
- ▶ $P_1 = 3/4$
- $P_2 = 1/2$
- $ho \approx 0.42$

Alg 2: Voronoi

[A.-Indyk-Nguyen-Razenshteyn'14] based on [Karger-Motwani-Sudan'94]

Sample *T* i.i.d. standard *d*-dimensional Gaussians

 $g_1, g_2, ..., g_T$

• Hash *p* into

$$h(p) = argmax_{1 \le i \le T} \langle p, g_i \rangle$$

• T = 2 is simply Hyperplane LSH

Hyperplane vs Voronoi

- Hyperplane with k = 6 hyperplanes
 - Means we partition space into $2^6 = 64$ pieces
- Voronoi with $T = 2^k = 64$ vectors

Reduction to nice structure (very HL)

Idea:

iteratively decrease the radius of minimum enclosing ball OR make more isotopic

- Algorithm:
 - find dense clusters
 - with smaller radius
 - large fraction of points
 - recurse on dense clusters
 - apply VoronoiLSH on the rest
 - recurse on each "cap"
 - eg, dense clusters might reappear

radius = 99cr

*picture not to scale & dimension

Dense clusters

- Current dataset: radius R
- A dense cluster:
 - Contains $n^{1-\delta}$ points
 - Smaller radius: $(1 \Omega(\epsilon^2))R_{\sim}$
- After we remove all clusters:
 - For any point on the surface, there are ϵ trade-off points within distance $(\sqrt{2} \epsilon)R$

 $\sqrt{2} - \epsilon R$

- The other points are essentially orthogonal !
- When applying Cap Carving with parameters trade-off
 - Empirical number of far pts colliding with query: $nP_2 + n^{1-1}$
 - As long as $nP_2 \gg n^{1-\delta}$, the "impurity" doesn't matter!

Tree recap

- During query:
 - Recurse in all clusters
 - Just in one bucket in VoronoiLSH
- Will look in >1 leaf!
- How much branching?
 - Claim: at most $(n^{\delta} + 1)^{O(1/\epsilon^2)}$
 - Each time we branch
 - at most n^{δ} clusters (+1)
 - ► a cluster reduces radius by $\Omega(\epsilon^2)$
 - cluster-depth at most $100/\Omega(\epsilon^2)$
- Progress in 2 ways:
 - Clusters reduce radius
 - CapCarving nodes reduce the # of far points (empirical P_2)

 δ trade-off

• A tree succeeds with probability $\ge n^{-\frac{1}{2c^2-1}-o(1)}$

NNS: conclusion

- I.Via sketches
- 2. Locality Sensitive Hashing
 - Random space partitions
 - Better space bound
 - Even near-linear!
- 3. Data-dependent hashing even better
 - Used in practice a lot these days