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Abstract

Transportation cost metrics, also known as the Wasserstein distances Wp, are a
natural choice for defining distances between two pointsets, or distributions, and have
been applied in numerous fields. From the computational perspective, there has been
an intensive research effort for understanding the Wp metrics over Rk, with work on the
W1 metric (a.k.a earth mover distance) being most successful in terms of theoretical
guarantees. However, the W2 metric, also known as the root-mean square (RMS)
bipartite matching distance, is often a more suitable choice in many application areas,
e.g. in graphics. Yet, the geometry of this metric space is currently poorly understood,
and efficient algorithms have been elusive. For example, there are no known non-trivial
algorithms for nearest-neighbor search or sketching for this metric.

In this paper we take the first step towards explaining the lack of efficient algorithms
for the W2 metric, even over the three-dimensional Euclidean space R3. We prove that
there are no meaningful embeddings of W2 over R3 into a wide class of normed spaces, as
well as that there are no efficient sketching algorithms for W2 over R3 achieving constant
approximation. For example, our results imply that: 1) any embedding into L1 must
incur a distortion of Ω(

√
log n) for pointsets of size n equipped with the W2 metric; and

2) any sketching algorithm of size s must incur Ω
(√

log n/
√
s
)

approximation. Our
results follow from a more general statement, asserting that W2 over R3 contains the
1/2-snowflake of all finite metric spaces with a uniformly bounded distortion. These
are the first non-embeddability/non-sketchability results for W2.
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1 Introduction

Transportation metrics provide a natural distance on sets of points, or probability measures
more generally, and as such have applications in numerous fields, such as computer science,
as well as statistical physics, mathematical economics, automated control, shape optimiza-
tion, applied probability, partial differential equations, metric geometry and many more,
see [58, 53]. These metrics are also known as Wasserstein distance, Kantorovich-Rubinstein
distance, Prokhorov distance, or the earth mover distance. We now recall basic notation
and terminology from the theory of transportation cost metrics [73]. For a metric space
(X, dX) and p ∈ (0,∞), let Pp(X) denote the space of all (Borel) probability measures µ
on X satisfying

∫
X
dX(x, x0)pdµ(x) < ∞ for some (hence all) x0 ∈ X. The Wasserstein-p

distance between µ, ν ∈ Pp(X) is then

Wp(µ, ν)
def
= inf

π∈Π(µ,ν)

(∫∫
X×X

dX(x, y)pdπ(x, y)

) 1
p

,

where Π(µ, ν) is the set of all couplings (matchings) π between (µ, ν) on X, i.e., probability
measures π on X ×X such that µ(A) = π(A×X) and ν(A) = π(X × A) for every A ⊆ X.
Wp on Pp(X) is a metric whenever p > 1. Here we consider the classic setting of X being
Rk, for k > 2, endowed with the standard Euclidean distance.

In computer science, the transportation metrics on Rk play an important role in computer
vision [74, 60, 28, 29, 35, 56, 51, 41], machine learning [25], information retrieval [59], and
mechanism design [19], among others. For example, an image can be represented as a set
of pixels in a color space R3; the transportation cost between such sets yields an accurate
measure of dissimilarity between color characteristics of the images [61, 32].

These applications motivated a lot of research into the computational properties of trans-
portation metrics. In particular, typical problems are to develop efficient algorithms for:
computing the distance between two pointsets (finitely-supported measures), nearest neigh-
bor search under these metrics, as well as problems in the streaming and sketching context.

So far, most of the rigorous algorithmic results have been developed for the W1 metric,
often refered to as the Earth Mover Distance (EMD). There is a long line of work on approx-
imation algorithms for computing EMD between two pointsets in Rk [71, 2, 72, 1, 31, 64],
culminating in a near-linear time algorithm achieving a (1+ε)-approximation [65, 3, 7]. Near-
est neighbor search algorithms all proceed via either embedding EMD into L1 or sketching.
Understanding the embeddability of EMD over Rk into L1 is a well-known open problem [38],
and the best distortion is currently known [17, 32, 33, 50, 5] to be between O(k log n) and
Ω(k+

√
log n) for pointsets in [n]k = {1, 2, . . . n}k. Similarly, designing sketching algorithms

for EMD over Rk is also a well-known open problem [54, 55]. Some of the sketching bounds
for W1 follow from the aforementioned L1 embeddings, and some others are proved directly
[4, 6].

Yet, in a number of applications the Wasserstein-2 distance W2 is a more natural distance
than Wasserstein-1 (EMD), and indeed other communities have paid more attention to W2
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[68]. Specifically, W2 (a.k.a., root-mean square bipartite matching distance) corresponds to
the “`2 error” between two pointsets, in contrast to the “`1 error” measured by W1; as such
they have better regularity properties and also have a differential interpretation [68]. See
[42, 21] for a further discussion of why using W2 gives results of a better quality than W1. W2

is used in graphics [66, 67, 69, 68], for shape interpolation [15], for barycenter computation
[18, 14], shape reconstruction [22], blue noise generation [21], triangulations [42], among
others.

Surprisingly, the algorithmic results for W2 have been much more elusive. The best
algorithms for computing W2 distance between two pointsets follow from [57, 3], who obtain
Õ(n2) time for exact and Õ(n3/2) for approximate computation (in contrast to the near-linear
time algorithms for W1). Beyond these results, there are no known non-trivial algorithms
for embedding, nearest neighbor search, or sketching for W2! This discrepancy raises the
question of why there has been such a dire lack of progress on algorithms for W2.

Here we address this question by proving the first explicit lower bounds for W2 over R3,
establishing that it is a very rich space that cannot be represented faithfully even with weak
guarantees in a large class of normed spaces (that includes all Lq spaces for finite q, and
much more). In particular, focusing on W2 on measures over R3 supported on at most n
points, we show that Ω(

√
log n) distortion is required for either: 1) embedding of W2 into

L1, and 2) constant-size sketching. To contrast these results to those known for W1 over the
same set of measures, while W1 has a similar non-embeddability into L1 [50], it does not
translate into sketching lower bounds. In fact, it was only recently established [6] that the
approximation for sketching W1 must be super-constant (without giving an explicit bound).
Besides stronger sketching lower bounds, our results for W2 are stronger than any known
W1 non-embeddability results since they apply to a larger class of Banach space targets
(nontrivial type), and also rule out embeddings that are much weaker than bi-Lipschitz, like
coarse embeddings. Finally, our results also apply to Wp space for p ∈ (1, 2), yielding a
Ω((log n)1/p) distortion lower bound, which is asymptotically stronger than the distortion
lower bound known for embedding W1 into L1.

Our results apply to measures over R3 only, and the validity of analogous results for
measures over R2 remains an open question. The only progress has been obtained in the
forthcoming work [8], where the authors establish the first lower bound for embedding W2(R2)
into L1, showing that the distortion goes to infinity (without an explicit bound). However,
[8] does not yield the full strength of our results in terms of ruling out embeddings into
spaces with nontrivial type, as well as, say, coarse embeddings.

1.1 Main Results

We now present our results on non-existence of good embedding and sketching methods for
W2 over R3. We then show that these results follow from a more general principle: that W2

over R3 is snowflake-universal, and hence, say, we can embed the square-root of a shortest
path metric on an expander graph into it with distortion arbitrarily close to 1. Our results
apply to all Wp for p > 1, but not to W1.
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Non-embeddability results. We now introduce the standard notion of embeddings.

Definition 1. Fix two metric spaces (X, dX) and (Y, dY ), and D ∈ [1,∞]. A mapping
f : X → Y is an embedding with distortion at most D if there exists s ∈ (0,∞) such that
every x, y ∈ X satisfy s · dX(x, y) 6 dY (f(x), f(y)) 6 Ds · dX(x, y). The infimum over those
D ∈ [1,∞] for which this holds true is called the distortion of f and is denoted dist(f).
If there exists a mapping f : X → Y with distortion at most D then we say that (X, dX)
embeds with distortion D into (Y, dY ). The infimum of dist(f) over all f : X → Y is
denoted c(Y,dY )(X, dX), or cY (X) if the metrics are clear from the context.

We prove the following theorem.

Theorem 2. For any fixed p ∈ (1,∞) and n ∈ N, consider the metric space X consisting of
all the measures on R3 that are supported on at most n points, equipped with the Wp metric.
Then any embedding of X into L1 must incur distortion Ω(((p− 1) log n)1/p).

Theorem 2 implies a Ω(
√

log n) approximation for any algorithmic approach proceeding
via embedding W2 over measures on R3 whose support is of size at most n into L1. While
embedding into L1 is a common algorithmic technique for high-dimensional metric spaces, it
is not the only one. In particular, despite non-embeddability into L1, a metric could admit a
better embedding into, say, L1/2, which would imply efficient sketches and nearest neighbor
search algorithms. We rule out such weaker embeddings as well.

In fact, our work actually yields impossibility results that are much stronger than the
bi-Lipschitz nonembeddability statement that corresponds to Theorem 2. Our most general
results are contained in the full version of this paper, but here is one illustrative example.
Let X be either L1 or a Banach space of nontrivial type.1 Then for p ∈ (1,∞) there do not
exist any nondecreasing functions α, β : [0,∞) → [0,∞) with limt→∞ α(t) = ∞ for which
there is a mapping f : Pp(R3)→ X that satisfies

∀µ, ν ∈ Pp(R3), α(Wp(µ, ν)) 6 ‖f(µ)− f(ν)‖X 6 β(Wp(µ, ν)).

Theorem 2 corresponds to the special case when the function α, β are linear and X is L1.
In common metric geometry jargon, the above statement asserts that Pp(R3) fails to admit
a coarse embedding into any normed space of nontrivial type.

Sketching. We can also state our results using the language of the sketching algorithms.
The notion of sketching is defined as follows [62].

Definition 3. Fix a metric (X, dX), and approximationD > 1. We say (X, dX) has sketching
complexity s > 1 if, for any threshold r > 0, there exists a distribution over sketching maps
sk : X → {0, 1}s and reconstruction algorithms R : {0, 1}s×{0, 1}s → {close, far}, satisfying
the following. For any x, y ∈ X, with at least 2/3 probability of success:

1The correct class of Banach spaces here could even be all those Banach spaces that do not contain every
finite metric space with distortion arbitrarily close to 1, but currently this stronger version of the ensuing
statement holds true conditionally on a well-known open question in metric geometry; see the full version of
this paper for more details.
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• if dX(x, y) 6 r, then R(sk(x), sk(y)) = close;

• if dX(x, y) > Dr, then R(sk(x), sk(y)) = far.

We are now ready to state our sketching lower bound for Wp for p > 1.

Theorem 4. Fix p ∈ (1,∞) and let n, s ∈ N. Consider the metric space X consisting of
all the measures on R3 that are supported on at most n points, equipped with the Wp metric.
Then any sketching algorithm for X with sketching complexity s must have an approximation

guarantee of D = Ω

((
(p−1) logn

s

)1/p
)

.

We note that, for comparison, standard `1, `2 metrics have constant sketching complexity
[34, 62, 11]. Also, for W1 over R3 (or R2), the only known lower bound is that Ds = ω(1),
shown recently in [6], based on [50].

Snowflake universality. Our results follow from a more general phenomenon, captured by
the following theorem.

Theorem 5. If p ∈ (1,∞) then for every finite metric space (X, dX) we have

c(Pp(R3),Wp)

(
X, d

1
p

X

)
= 1.

For a metric space (X, dX) and θ ∈ (0, 1], the metric space (X, dθX) is commonly called
the θ-snowflake of (X, dX); see e.g. [20]. Thus Theorem 5 asserts that the θ-snowflake of any
finite metric space (X, dX) embeds with distortion 1 +ε into Pp(R3) for every ε ∈ (0,∞) and
θ ∈ (0, 1/p].2 Our techniques fall short of proving a longstanding conjecture of Bourgain [16],
who asked whether (P1(R2),W1) is not universal (i.e., does not contain all finite metrics).3

Bourgain proved in [16] that (P1(`1),W1) is universal (despite the fact that `1 is not universal),
but it remains an intriguing open question to determine whether or not (P1(Rk),W1) is
universal for any finite k ∈ N, the case k = 2 being most challenging.

Theorem 6 below implies that Theorem 5 is sharp if p ∈ (1, 2], and yields a nontrivial,
though probably non-sharp, restriction on the embeddability of snowflakes into Pp(R3) also
for p ∈ (2,∞).

Theorem 6. For arbitrarily large n ∈ N there exists an n-point metric space (Xn, dXn) such
that for every α ∈ (0, 1] we have

c(Pp(R3),Wp)(Xn, d
α
Xn) &

{
(log n)α−

1
p if p ∈ (1, 2],

(log n)α+ 1
p
−1 if p ∈ (2,∞).

2Formally, Theorem 5 makes this assertion when θ = 1/p, but for general θ ∈ (0, 1/p] one can then apply

Theorem 5 to the metric space (X, dθpX ) to deduce the seemingly more general statement.
3Bourgain actually formulated this question as asking whether a certain Banach space (namely, the dual

of the Lipschitz functions on the square [0, 1]2) has finite Rademacher cotype, but this is equivalent to the
above formulation.
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Here, and in what follows, we use standard asymptotic notation, i.e., for a, b ∈ [0,∞) the
notation a & b (respectively a . b) stands for a > cb (respectively a 6 cb) for some universal
constant c ∈ (0,∞). The notation a � b stands for (a . b) ∧ (b . a).

The rest of the paper is organized as follows. We give the proof of Theorem 5 in Section 2,
and its consequences, Theorem 2 and 4, in Section 2.1. We then present some future research
directions suggested by our results in Section 3. Finally, we prove the sharpness of Theorem 5,
namely Theorem 6, in Appendix A.

2 Proof of Theorem 5

To establish the theorem, we will construct an explicit embedding of an n-point metric into
W2(R3). In what follows fix n ∈ N and an n-point metric space (X, dX).

We start by presenting the intuition behind the construction. In particular, let us demon-
strate a fundamental difference between W1 and Wp for p > 1 for a simple transportation
instance. We will exploit this construction in our embedding. Fix a positive integer k, and
consider the optimal transport between the sets A = {0, 1

k
, 2
k
, . . . , k−1

k
} and B = { 1

k
, 2
k
, . . . , 1}.

While under the W1 metric the optimal cost is simply 1, under Wp the optimal transport

would send every x ∈ A to x+ 1
k
∈ B, which incurs a cost of

(∑k
i=1

(
1
k

)p)1/p

= k1/p−1 −−−→
k→∞

0.

Note that for any 0 6 ε < 1, we can increase the transport cost to ε by introducing a “gap” of
size εk. E.g., for some i, define A = {0, 1

k
, . . . , i

k
, i+εk

k
, i+εk+1

k
, . . . , k−1

k
} and B = Ar{0}∪{1}.

Then the optimal transport cost under Wp would be((
εk

k

)p
+

k−εk∑
i=1

(
1

k

)p)1/p

−−−→
k→∞

ε .

We shall use the fact that any graph, in particular the complete graph, can be realized
in R3, so that if every edge is represented by a wire, there are no wire crossings (except at
vertices). Imagine that each wire is replaced by a set of points with distances 1/k between
neighboring points. We then introduce a gap of length proportional to dX(u, v)1/p on the
wire connecting u and v. The embedding of u ∈ X will be into a uniform measure over
the point realizing u, and all the points in all the wires. Then the transport from u to
v must move the mass at u to the mass of v. By the simple example above, this can be
done at cost proportional to dX(u, v)1/p, when k is sufficiently large. The trickier part is
showing no better transport exist. To this end, we require that all the wires are sufficiently
far apart, so any transport plan that does not move along the wires will have a huge cost.
Finally, the triangle inequality ensures that the cost of a plan using the wires between the
points u = u0, u1, . . . , uq = v is at least dX(u, v)1/p (this is the reason why we make the gaps
proportional to the p-th roots).

We now proceed with the formal proof of the theorem. Write X = {x1, . . . , xn} and fix
φ : {1, . . . , n} × {1, . . . , n} → {1, . . . , n2} to be an arbitrary bijection between {1, . . . , n} ×
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{1, . . . , n} and {1, . . . , n2}. Below it will be convenient to use the following notation.

m
def
= min

x,y∈X
x 6=y

dX(x, y)
1
p and M

def
= max

x,y∈X
dX(x, y)

1
p . (1)

Fix K ∈ N. Denoting the standard basis of R3 by e1 = (1, 0, 0), e2 = (0, 1, 0), e3 =
(0, 0, 1), for every i, j ∈ {1, . . . , n} with i < j define five families of points in R3 by setting
for s ∈ {0, . . . , K},

Q1
s(i, j)

def
=
Mi

m
e1 +

Mφ(i, j)s

mK
e2, (2)

Q2
s(i, j)

def
=
Mi

m
e1 +

Mφ(i, j)

m
e2 +

Ms

mK
e3, (3)

Q3
s(i, j)

def
=
M(s(j − i) +Ki) + (K − s)dX(xi, xj)

1
p

mK
e1 +

Mφ(i, j)

m
e2 +

M

m
e3, (4)

Q4
s(i, j)

def
=
Mj

m
e1 +

Mφ(i, j)

m
e2 +

M(K − s)
mK

e3, (5)

Q5
s(i, j)

def
=
Mj

m
e1 +

M(K − s)φ(i, j)

mK
e2. (6)

Then Q1
K(i, j) = Q2

0(i, j), Q3
K(i, j) = Q4

0(i, j) and Q4
K(i, j) = Q5

0(i, j), so the total number of
points thus obtained equals 5(K + 1)− 3 = 5K + 2.

Define B ⊆ R3 by setting

B
def
=

⋃
i,j∈{1,...,n}

i<j

Bij, (7)

where for every i, j ∈ {1, . . . , n} with i < j we write

Bij
def
=

K⋃
s=0

{
Q1
s(i, j), Q

2
s(i, j), Q

3
s(i, j), Q

4
s(i, j), Q

5
s(i, j)

}
. (8)

Hence |Bij| = 5K + 2. We also define C ⊆ R3 by

C
def
= Br

{
Mi

m
e1 : i ∈ {1, . . . , n}

}
. (9)

Note that by (2) we have (Mi/m)e1 = Q1
0(i, j) if i, j ∈ {1, . . . , n} satisfy i < j, and by (6) we

have (Mi/m)e1 = Q5
K(`, i) if `, i ∈ {1, . . . , n} satisfy ` < i. Thus C corresponds to removing

from B those points that lie on the x-axis. In what follows, we denote N = |C|+ 1. Finally,
for every i ∈ {1, . . . , n} we define Ci ⊆ R3 by

Ci
def
= C ∪

{
Mi

m
e1

}
. (10)
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Figure 1: A schematic depiction of the embedding f : X → Pp(R3) for a
four-point metric space (X, dX) = ({x1, x2, x3, x4}, dX). Here the x-axis is
the horizontal direction, the z-axis is the vertical direction and the y-axis is
perpendicular to the page plane. Recall that m and M are defined in (1).

Hence |Ci| = N . Our embedding f : X → Pp(R3) will be given by

∀ j ∈ {1, . . . , n}, f(xj)
def
=

1

N

∑
u∈Cj

δu, (11)

where, as usual, δu is the point mass at u. Thus f(xj) is the uniform probability measure
over Cj. A schematic depiction of the above construction appears in Figure 1 below.

Lemma 7 below estimates the distortion of f , proving Theorem 5.

Lemma 7. Fix ε ∈ (0, 1) and p ∈ (1,∞). Let f : X → Pp(R3) be the mapping appearing

in (11), considered as a mapping from the snowflaked metric space (X, d
1/p
X ) to the metric

space (Pp(R3),Wp). Then, recalling the definitions of m and M in (1), we have

K >

(
5Mpn2p

pmpε

) 1
p−1

=⇒ dist(f) 6 1 + ε. (12)

Proof. We shall show that under the assumption on K that appears in (12) we have

∀ i, j ∈ {1, . . . , n},
(
dX(xi, xj)

mpN

) 1
p

6 Wp(f(xi), f(xj)) 6 (1 + ε)

(
dX(xi, xj)

mpN

) 1
p

, (13)

where we recall that we defined N to be equal to |C| + 1 for C given in (9). Clearly (13)
implies that dist(f) 6 1 + ε, as required.

To prove the right hand inequality in (13), suppose that i, j ∈ {1, . . . , n} satisfy i < j
and consider the coupling π ∈ Π(f(xi), f(xj)) given by

π
def
=

1

N

( 5∑
t=1

K−1∑
s=0

δ(Qts(i,j),Qts+1(i,j)) + δ(Q2
K(i,j),Q3

0(i,j)) +
∑

u∈CrBij

δ(u,u)

)
, (14)
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where for (14) recall (8) and (9). The meaning of (14) is simple: the supports of f(xi) and
f(xj) equal Ci and Cj, respectively, where we recall (10). Note that CirCj = {Q1

0(i, j)} and
Cj r Ci = {Q5

K(i, j)}, where we recall (2) and (6). So, the coupling π in (14) corresponds
to shifting the points in Bij from the support of f(xi) to the support of f(xj) while keeping
the points in CrBij unchanged.

Now, recalling the definitions (2), (3), (4), (5) and (6),

Wp(f(xi), f(xj))
p 6

∫∫
R3×R3

‖x− y‖p2dπ(x, y)

=
1

N

5∑
t=1

K−1∑
s=0

∥∥Qt
s(i, j)−Qt

s+1(i, j)
∥∥p

2
+
‖Q2

K(i, j)−Q3
0(i, j)‖p2

N
. (15)

Note that if s ∈ {0, . . . , K − 1} then by (2), (3), (5), (6) we have

t ∈ {1, 5} =⇒
∥∥Qt

s(i, j)−Qt
s+1(i, j)

∥∥
2

=
Mφ(i, j)

mK
6
Mn2

mK
,

t ∈ {2, 4} =⇒
∥∥Qt

s(i, j)−Qt
s+1(i, j)

∥∥
2

=
M

mK
.

(16)

Also, by (3) and (4) we have

∥∥Q2
K(i, j)−Q3

0(i, j)
∥∥

2
=
dX(xi, xj)

1
p

m
. (17)

Finally, by (4) for every s ∈ {0, . . . , K − 1} we have

∥∥Q3
s(i, j)−Q3

s+1(i, j)
∥∥

2
=
M(j − i)
mK

− dX(xi, xj)
1
p

mK
6
Mn

mK
, (18)

where we used the fact that M(j − i)− dX(xi, xj)
1/p > 0, which holds true by the definition

of M in (1) because j − i > 1. A substitution of (16), (17) and (18) into (15) yields the
estimate

Wp(f(xi), f(xj))
p 6

dX(xi, xj)

mpN
+

5K

N

(
Mn2

mK

)p
=

(
1 +

5Mpn2p

Kp−1dX(xi, xj)

)
dX(xi, xj)

mpN
6 (1 + pε)

dX(xi, xj)

mpN
,

where we used the fact that by the definition of m in (1) we have mp 6 dX(xi, xj), and the
lower bound on K that is assumed in (12). This implies the right hand inequality in (13)
because 1 + pε 6 (1 + ε)p.

Passing now to the proof of the left hand inequality in (13), we need to prove that for
every i, j ∈ {1, . . . , n} with i < j we have

∀π ∈ Π(f(xi), f(xj)),

∫∫
R3×R3

‖x− y‖p2dπ(x, y) >
dX(xi, xj)

mpN
. (19)
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Note that we still did not use the triangle inequality for dX , but this will be used in the proof
of (19). Also, the reason why we are dealing with Pp(R3) rather than Pp(R2) will become
clear in the ensuing argument.

Recall that the measures f(xi) and f(xj) are uniformly distributed over sets of the same
size, and their supports Ci and Cj (respectively) satisfy Ci4Cj = {(Mi/m)e1, (Mj/m)e1}.
Since the set of all doubly stochastic matrices is the convex hull of the permutation matrices,
and every permutation is a product of disjoint cycles, it follows that it suffices to establish
the validity of (19) when π = 1

N

∑L
`=1 δ(u`−1,u`) for some L ∈ {1, . . . , n} and u1, . . . uL−1 ∈ C,

where we set u0 = (Mi/m)e1 and uL = (Mj/m)e1. With this notation, our goal is to show
that

1

N

L∑
`=1

‖u` − u`−1‖p2 >
dX(xi, xj)

mpN
. (20)

For every a ∈ {1, . . . , n} define Sa ⊆ R3 by Sa
def
= S1

a ∪ S2
a, where

S1
a

def
=

n⋃
b=a+1

K⋃
s=0

{
Q1
s(a, b), Q

2
s(a, b)

}
, (21)

and

S2
a

def
=

a−1⋃
c=1

K⋃
s=0

{
Q3
s(c, a), Q4

s(c, a), Q5
s(c, a)

}
. (22)

Thus, recalling (7), the sets S1, . . . , Sn form a partition of B and a ∈ Sa for every a ∈
{1, . . . , n}. For every ` ∈ {0, . . . , L} let a(`) be the unique element of {1, . . . , n} for which
u` ∈ Sa(`). Then a(0) = i and a(L) = j. The left hand side of (20) can be bounded from
below as follows

1

N

L∑
`=1

‖u` − u`−1‖p2 >
1

N

L∑
`=1

min
u∈Sa(`−1)

v∈Sa(`)

‖u− v‖p2. (23)

We shall show that

∀ a, b ∈ {1, . . . , n}, ∀(u, v) ∈ Sa × Sb, ‖u− v‖p2 >
dX(xa, xb)

mp
. (24)

The validity of (24) implies the required estimate (20) because, by (23), it follows from (24)
and the triangle inequality for dX that

1

N

L∑
`=1

‖u` − u`−1‖p2 >
1

N

L∑
`=1

dX
(
xa(`−1), xa(`)

)
mp

>
dX(xi, xj)

mpN
.

It remains to justify (24). Suppose that a, b ∈ {1, . . . , n} satisfy a < b and (u, v) ∈ Sa×Sb.
Write u = Qt

s(c, d) and v = Qτ
σ(γ, δ) for some s, σ ∈ {0, . . . , K}, t, τ ∈ {1, . . . , 5} and

c, d,γ, δ ∈ {1, . . . , n}.
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We shall check below, via a direct case analysis, that the absolute value of one of the
three coordinates of u − v is either at least M/m or at least dX(xa, xb)

1/p/m. Since by the
definition of M in (1) we have M > dX(xa, xb)

1/p, this assertion will imply (24).

Suppose first that t, τ ∈ {1, 2, 4, 5}. By comparing (21), (22) with (2), (3), (4), (5)
we see that 〈u, e1〉 = Ma/m and 〈v, e1〉 = Mb/m. Since b − a > 1, this implies that
〈u− v, e1〉 >M/m, as required.

If t = τ = 3 then by (22) we necessarily have d = a and δ = b. Hence (c, d) 6= (γ, δ) and
therefore |φ(c, d) − φ(γ, δ)| > 1, since φ is a bijection between {1, . . . , n} × {1, . . . , n} and
{1, . . . , n2}. By (4) we therefore have |〈u− v, e2〉| >M/m, as required.

It remains to treat the case t 6= τ and 3 ∈ {t, τ}. If {t, τ} ⊆ {1, 3, 5} then by contrast-
ing (4) with (2) and (6) we see that the third coordinate of one of the vectors u, v vanishes
while the third coordinate of the other vector equals M/m. Therefore |〈u− v, e3〉| >M/m,
as required. The only remaining case is {t, τ} ⊆ {2, 3, 4}. In this case |〈u − v, e2〉| =
M |φ(c, d) − φ(γ, δ)|/m, by (4), (3), (5). So, if (c, d) 6= (γ, δ) then |φ(c, d) − φ(γ, δ)| > 1,
and we are done. We may therefore assume that c = γ and d = δ. Observe that by (22) if
{t, τ} = {3, 4} then {d, δ} = {a, b}, which contradicts d = δ. So, we also necessarily have
{t, τ} = {2, 3}, in which case, since a < b, by (21) and (22) we see that c = γ = a and
d = δ = b. By interchanging the labels s and σ if necessary, we may assume that u = Q2

σ(a, b)
and v = Q3

s(a, b). By (3) and (4) we therefore have

〈v − u, e1〉 =
M(s(b− a) +Ka)

mK
+

(K − s)dX(xa, xb)
1
p

mK
− Ma

m

=
dX(xa, xb)

1
p

m
+
sM(b− a)− sdX(xa, xb)

1
p

mK
>
dX(xa, xb)

1
p

m
,

where we used the fact that by (1) we have M > dX(xa, xb)
1/p, and that b − a > 1. This

concludes the verification of the remaining case of (24), and hence the proof of Lemma 7 is
complete.

2.1 Implications: Theorems 2 and 4

Theorem 2 follows from the fact that the shortest path metric on an expander graph on N
nodes has Ω(logN) distortion lower bound for embedding it into L1 [36]. Note that in the

proof above we obtain measures supported on n points where n 6 NO(1) ·
(

5MpN2p

pmp

) 1
p−1

for

a 1 + ε = 2 approximation. Hence, any embedding of Wp on R3 pointsets of size n into L1

has a distortion lower bound of Ω((logN)1/p) = Ω(((p− 1) log n)1/p).

Similarly, Theorem 4 follows by consideringX to be theN -point subset of (P1({0, 1}O(logN)),W1)
introduced in [33, Section 3]. Any sketching algorithm for this metric X requires Ω( logN

s
)

approximation for sketching complexity s [5, Theorem 4.1]. Since we can embed X into the

square of W2 with constant distortion, we obtain a Ω

((
(p−1) logn

s

)1/p
)

approximation lower

bound for any Wp sketch with sketching complexity s.
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3 Future Directions

As discussed in the Introduction, it seems plausible that Theorem 5 and Theorem 6 are not
sharp when p ∈ (2,∞). Specifically, we conjecture that there exist Dp ∈ [1,∞) such that
for every finite metric space (X, dX) we have

cPp(R3)

(
X,
√
dX

)
6 Dp. (25)

Perhaps (25) even holds true with Dp = 1. Since L2 admits an isometric embedding
into Lp (see e.g. [75]), the perceived analogy between Wasserstein p spaces and Lp spaces
makes it natural to ask whether or not (P2(R3),W2) admits a bi-Lipschitz embedding into
(Pp(R3),Wp). If the answer to this question were positive then (25) would hold true by virtue
of the case p = 2 of Theorem 5. We also conjecture that the lower bound of Theorem 6 could
be improved when p > 2 to state that for arbitrarily large n ∈ N there exists an n-point
metric space (Y, dY ) such that for every α ∈ (1/2, 1],

c(Pp(R3),Wp)(Y, d
α
Y ) &p (log n)α−

1
2 . (26)

It was shown in [48] that Lp has Markov type 2 for every p ∈ (2,∞). We therefore ask
whether or not (Pp(R3),Wp) has Markov type 2 for every p ∈ (2,∞). A positive answer to
this question would imply that the lower bound (26) is indeed achievable. For this purpose
it would also suffice to show that for every p ∈ (2,∞) and k ∈ N we have

Mp((Pp(R3),Wp); 2k) .p 2k(
1
2
− 1
p). (27)

Proving (27) may be easier than proving that M2(Pp(R3),Wp) <∞, since the former involves
arguing about the pth powers of Wasserstein p distances while the latter involves arguing
about Wasserstein p distances squared. Note that Mp(Lp;m) .

√
pm1/2−1/p by [48] (see

also [45, Theorem 4.3]), so the Lp-version of (27) is indeed valid.

Another natural direction to pursue concerns with the distortion of embedding finite
metric spaces into Wasserstein spaces.

Question 1. Is it true that for p ∈ (1, 2] and n ∈ N every n-point metric space (X, dX)
satisfies

cPp(R3)(X) .p (log n)1− 1
p ?

A positive answer to Question (1) would resolve the metric cotype dichotomy problem [39]
(see the full version for more details). We believe that Question 1 is an especially intriguing
challenge in embedding theory (for a concrete and natural target space) because a positive
answer would require an interesting new construction, and a negative answer would require
devising a new bi-Lipschitz invariant that would serve as an obstruction for embeddings into
Wasserstein spaces.

12



Focusing for concreteness on the case p = 2, Question 1 asks whether cP2(R3)(X) .
√

log n
for every n-point metric space (X, dX). Note that Theorem 5 implies that (X, dX) embeds
into P2(X) with distortion at most the square root of the aspect ratio of (X, dX), i.e.,

c(P2(R3),W2)(X, dX) 6

√√√√ diam(X, dX)

minx,y∈X
x6=y

dX(x, y)
, (28)

but we are asking here for the largest possible growth rate of the distortion of X into P2(X)
in terms of the cardinality of X. While for certain embedding results there are standard
methods (see e.g. [12, 30, 40]) for replacing the dependence on the aspect ratio of a finite
metric space by a dependence on its cardinality, these methods do not seem to apply to our
embedding in (28). See the full version for further discussion.
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A Sharpness of Theorem 5

Here we prove Theorem 6, that shows the sharpness of Theorem 5 whenever p ∈ (1, 2], and
in addition show a nontrivial, though probably non-sharp, restriction on the embeddability
of snowflakes into Pp(R3) also for p ∈ (2,∞).

The results of this section rely crucially on K. Ball’s notion [10] of Markov type. We
shall start by recalling the relevant background on this important invariant of metric spaces,
including variants and notation from [45] that will be used below. Let {Zt}∞t=0 be a Markov
chain on the state space {1, . . . , n} with transition probabilities aij = Pr [Zt+1 = j|Zt = i] for
every i, j ∈ {1, . . . , n}. {Zt}∞t=0 is said to be stationary if πi = Pr [Zt = i] does not depend
on t ∈ {1, . . . , n} and it is said to be reversible if πiaij = πjaji for every i, j ∈ {1, . . . , n}.

Let {Z ′t}∞t=0 be the Markov chain that starts at Z0 and then evolves independently of
{Zt}∞t=0 with the same transition probabilities. Thus Z ′0 = Z0 and conditioned on Z0 the
random variables Zt and Z ′t are independent and identically distributed. We note for future
use that if {Zt}∞t=0 as above is stationary and reversible then for every symmetric function
ψ : {1, . . . , n} × {1, . . . , n} → R and every t ∈ N we have

E
[
ψ(Zt, Z

′
t)
]

= E
[
ψ(Z2t, Z0)

]
. (29)

This is a consequence of the observation that, by stationarity and revesibility, conditioned
on the random variable Zt the random variables Z0 and Z2t are independent and identically
distributed. Denoting A = (aij) ∈ Mn(R), the validity of (29) can be alternatively checked
directly as follows.

E [ψ(Zt, Z
′
t)] = E

[
E [ψ(Zt, Z

′
t)|Z0]

]
=

n∑
i=1

n∑
j=1

n∑
k=1

πiA
t
ijA

t
ikψ(j, k)

(?)
=

n∑
j=1

n∑
k=1

πj

( n∑
i=1

AtjiA
t
ik

)
ψ(j, k) =

n∑
j=1

n∑
k=1

πjA
2t
jkψ(j, k), (30)

where (?) uses the reversibility of the Markov chain {Zt}∞t=0 through the validity of πiA
t
ij =

πjA
t
ji for every i, j ∈ {1, . . . , n}. The final term in (30) equals the right hand side of (29),

as required.

Given p ∈ [1,∞), a metric space (X, dX) and m ∈ N, the Markov type p constant of
(X, dX) at time m, denoted Mp(X, dX ;m) (or simply Mp(X;m) if the metric is clear from
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the context) is defined to be the infimum over those M ∈ (0,∞) such that for every n ∈ N,
every stationary reversible Markov chain {Zt}∞t=0 with state space {1, . . . , n}, and every
f : {1, . . . , n} → X we have

E
[
dX(f(Zm), f(Z0))p

]
6MpmE

[
dX(f(Z1), f(Z0))p

]
.

Observe that by the triangle inequality we always have

Mp(X;m) 6 m1− 1
p .

As we shall explain below, any estimate of the form Mp(X;m) .X mθ for θ < 1 − 1/p
is a nontrivial obstruction to the embeddability of certain metric spaces into X, but it is
especially important (e.g. for Lipschitz extension theory [10]) to single out the case when
Mp(X;m) .X 1. Specifically, (X, dX) is said to have Markov type p if

Mp(X, dX)
def
= sup

m∈N
Mp(X, dX ;m) <∞.

Mp(X, dX) is called the Markov type p constant of (X, dX), and it is often denoted simply
Mp(X) if the metric is clear from the context.

The Markov type of many important classes of metric spaces is satisfactorily understood,
though some fundamental questions remain open; see Section 4 of the survey [44] and the
references therein, as well as more recent progress in e.g. [23]. Here we study this notion
in the context of Wasserstein spaces. The link of Markov type to the nonembeddability
of snowflakes is simple, originating in an idea of [37]. This is the content of the following
lemma.

Lemma 8. Fix a metric space (Y, dY ), m ∈ N, K, p ∈ [1,∞) and θ ∈ [0, 1]. Suppose that

Mp(Y ;m) 6 Km
θ(p−1)
p . (31)

Denote n = 24m. Then there exists an n-point metric space (X, dX) such that

α ∈
[

1 + θ(p− 1)

p
, 1

]
=⇒ cY (X, dαX) &

1

K
(log n)α−

1+θ(p−1)
p .

Proof. Take (X, dX) = ({0, 1}4m, ‖ · ‖1), i.e., X is the 4m-dimensional discrete hypercube,
equipped with the Hamming metric. Thus |X| = n. Let {Zt}∞t=0 be the standard random
walk on X, with Z0 distributed uniformly over X. Suppose that f : X → Y satisfies

∀x, y ∈ X, s‖x− y‖α1 6 dY (f(x), f(y)) 6 Ds‖x− y‖α1 (32)

for some s,D ∈ (0,∞). Our goal is to bound D from below. By the definition of Mp(Y ;m),

E
[
dY (f(Zm), f(Z0))p

] (31)

6 Kpm1+θ(p−1)E
[
dY (f(Z1), f(Z0))p

]
. (33)
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By the right hand inequality in (32) we have

E
[
dY (f(Z1), f(Z0))p

]
6 DpspE

[
‖Z1 − Z0‖αp1

]
= Dpsp. (34)

At the same time, it is simple to see (and explained explicitly in e.g. [49] or [44, Section 9.4])
that E

[
‖Zm − Z0‖αp1

]
> (ηm)αp for some universal constant η ∈ (0, 1). Hence,

E
[
dY (f(Zm), f(Z0))p

] (32)

> spE
[
‖Zm − Z0‖αp1

]
& sp(ηm)αp. (35)

The only way for (34) and (35) to be compatible with (33) is if

D &
1

K
mα− 1+θ(p−1)

p � 1

K
(log n)α−

1+θ(p−1)
p .

Remark 9. In Lemma 8 we took the metric space X to be a discrete hypercube, but similar
conclusions apply to snowflakes of expander graphs and graphs with large girth [37], as well
as their subsets [13] and certain discrete groups [9, 46, 47] (see also [44, Section 9.4]). We
shall not attempt to state here the wider implications of the assumption (31) to the nonem-
beddability of snowflakes, since the various additional conclusions follow mutatis mutandis
from the same argument as above, and Lemma 8 as currently stated suffices for the proof of
Theorem 6.

Remark 10. Since the proof of Lemma 8 applied the Markov type p assumption (31)
to the discrete hypercube, it would have sufficed to work here with a classical weaker bi-
Lipschitz invariant due to Enflo [24], called Enflo type. Such an obstruction played a role in
ruling out certain snowflake embeddings in [26] (in a different context), though the fact that
the argument of [26] could be cast in the context of Enflo type was proved only later [52,
Proposition 5.3]. Here we work with Markov type rather than Enflo type because the proof
below for Wasserstein spaces yields this stronger conclusion without any additional effort.

The following lemma is a variant of [52, Lemma 4.1].

Lemma 11. Fix p ∈ [1,∞) and θ ∈ [1/p, 1]. Suppose that (X, dX) is a metric space such
that for every two X-valued independent and identically distributed finitely supported random
variables Z,Z ′ and every x ∈ X we have

E
[
dX(Z,Z ′)p

]
6 2θpE

[
dX(Z, x)p

]
. (36)

Then for every k ∈ N we have

Mp(X; 2k) 6 2k(θ−
1
p). (37)

Proof. Fix n ∈ N, a stationary reversible Markov chain {Zt}∞t=0 with state space {1, . . . , n},
and f : {1, . . . , n} → X. Recalling (29) with ψ(i, j) = dX(f(i), f(j))p, for every t ∈ N we
have

E
[
dX(Z2t, Z0)p

] (29)
= E

[
dX(Zt, Z

′
t)
p
] (36)

6 2θpE
[
dX(Zt, Z0)p

]
6 2θp−1Mp(X; t)p · 2tE

[
dX(Z1, Z0)p

]
, (38)

21



where the last step of (38) uses the definition of Mp(X; t). By the definition of Mp(X; 2t),
we have thus proved that

Mp(X; 2t) 6 2θ−
1
pMp(X; t),

so (37) follows by induction on k.

Corollary 12 below follows from Lemma 8 and Lemma 11. Specifically, under the as-
sumptions and notation of Lemma 11, use Lemma 8 with m replaced by 2k and θ replaced
by (θp− 1)/(p− 1).

Corollary 12. Fix p ∈ [1,∞) and θ ∈ [1/p, 1]. Suppose that (X, dX) is a metric space that
satisfies the assumptions of Lemma 11. Then for arbitrarily large n ∈ N there exists an
n-point metric space (Y, dY ) such that for every α ∈ [θ, 1] we have

cX (Y, dαY ) & (log n)α−θ.

The link between the above discussion and embeddings of snowflakes of metrics into
Wasserstein spaces is explained in the following lemma, which is a variant of [70, Proposi-
tion 2.10].

Lemma 13. Fix p ∈ [1,∞) and θ ∈ [1/p, 1]. Suppose that (X, dX) is a metric space that
satisfies the assumptions of Lemma 11, i.e., inequality (36) holds true for X-valued random
variables. Then the same inequality holds true in the metric space (Pp(X),Wp) as well, i.e.,
for every two Pp(X)-valued and identically distributed finitely supported random variables
M,M′ and every µ ∈ Pp(X),

E
[
Wp(M,M′)p

]
6 2θpE

[
Wp(M, µ)p

]
.

Proof. Suppose that the distribution of M equals
∑n

i=1 qiδµi for some µ1, . . . , µn ∈ Pp(X)
and q1, . . . , qn ∈ [0, 1] with

∑n
i=1 qi = 1. Our goal is to show that

n∑
i=1

n∑
j=1

qiqjWp(µi, µj)
p 6 2θp

n∑
i=1

qiWp(µi, µ)p. (39)

The finitely supported probability measures are dense in (Pp(X),Wp) (see [58, 73]), so it
suffices to prove (39) when there exists N ∈ N and points xik, xk ∈ X for every (i, k) ∈
{1, . . . , n}×{1, . . . , N} such that we have µ = 1

N

∑N
k=1 δxk and µi = 1

N

∑N
k=1 δxik for every i ∈

{1, . . . , n}. Let {σi}Ni=1 ⊆ SN be permutations of {1, . . . , N} that induce optimal couplings
of the pairs (µ, µi), i.e.,

∀ i ∈ {1, . . . , n}, Wp(µi, µ)p =
1

N

N∑
k=1

dX(xiσi(k), xk)
p. (40)

Since the measure 1
N

∑N
k=1 δ(xiσi(k),xjσj(k))

is a coupling of (µi, µj),

∀ i, j ∈ {1, . . . , n}, Wp(µi, µj)
p 6

1

N

N∑
k=1

dX(xiσi(k), xjσj(k))
p. (41)
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Consequently,

n∑
i=1

n∑
j=1

qiqjWp(µi, µj)
p

(41)

6
1

N

N∑
k=1

n∑
i=1

n∑
j=1

qiqjdX(xiσi(k), xjσj(k))
p

(36)

6
2θp

N

N∑
k=1

n∑
i=1

n∑
j=1

qiqjdX(xiσi(k), xk)
p (40)

= 2θp
n∑
i=1

qiWp(µi, µ)p.

Proof of Theorem 6. Let (Ω, µ) be a probability space. For p ∈ [1,∞] define T : Lp(µ) →
Lp(µ× µ) by Tf(x, y) = f(x)− f(y). Then clearly ‖T‖Lp(µ)→Lp(µ×µ) 6 2 for p ∈ {1,∞} and

∀ f ∈ L2(µ), ‖Tf‖2
L2(µ×µ) = 2‖f‖2

L2(µ) − 2
(∫

Ω

fdµ
)2

6 2‖f‖2
L2(µ).

Or ‖T‖L2(µ)→L2(µ×µ) 6
√

2. So, by the Riesz–Thorin theorem (e.g. [27]),

p ∈ [1, 2] =⇒ ‖T‖Lp(µ)→Lp(µ×µ) 6 2
1
p , (42)

and
p ∈ [2,∞] =⇒ ‖T‖Lp(µ)→Lp(µ×µ) 6 21− 1

p . (43)

Switching to probabilistic terminology, the estimates (42) and (43) say that if Z,Z ′ are i.i.d.
random variables then E

[
|Z−Z ′|p

]
6 2E

[
|Z|p

]
when p ∈ [1, 2] and E

[
|Z−Z ′|p

]
6 2p−1E

[
|Z|p

]
when p ∈ [2,∞). By applying this to the random variables Z − a, Z ′ − a for every a ∈ R,
we deduce that the real line (with its usual metric) satisfies (36) with

θ = θp
def
= max

{
1

p
, 1− 1

p

}
. (44)

Invoking this statement coordinate-wise shows that `3
p = (R3, ‖·‖p) satisfies (36) with θ = θp.

Lemma 13 therefore implies that (Pp(`
3
p),Wp) also satisfies (36) with θ = θp. Hence, by

Corollary 12 for arbitrarily large n ∈ N there exists an n-point metric space (Y, dY ) such
that for every α ∈ (θp, 1],

c(Pp(`3p),Wp)(Y, d
α
Y ) & (log n)α−θp =

{
(log n)α−

1
p if p ∈ (1, 2],

(log n)α+ 1
p
−1 if p ∈ (2,∞).

Since the `p norm on R3 is
√

3-equivalent to the `2 norm on R3,

c(Pp(`3p),Wp)(Y, d
α
Y ) � c(Pp(`32),Wp)(Y, d

α
Y ),

thus completing the proof of Theorem 6.

Remark 14. In the proof of Theorem 6 we chose to check the validity of (36) with θ = θp
given in (44) using an interpolation argument since it is very short. But, there are different
proofs of this fact: when p ∈ [1, 2) one could start from the trivial case p = 2, and then pass
to general p ∈ [1, 2) by invoking the classical fact [63] that the metric space (R, |x − y|p/2)
admits an isometric embedding into Hilbert space. Alternatively, in [43, Lemma 3] this is
proved via a direct computation.
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