
Data-Dependent Hashing via Nonlinear Spectral Gaps

Alexandr Andoni
Columbia University

andoni@cs.columbia.edu

Assaf Naor
Princeton University

naor@math.princeton.edu

Aleksandar Nikolov
University of Toronto

anikolov@cs.toronto.edu

Ilya Razenshteyn
Microsoft Research Redmond

ilyaraz@microsoft.com

Erik Waingarten
Columbia University

eaw@cs.columbia.edu

April 16, 2018

Abstract

We establish a generic reduction from nonlinear spectral gaps of metric spaces to data-
dependent Locality-Sensitive Hashing, yielding a new approach to the high-dimensional Ap-
proximate Near Neighbor Search problem (ANN) under various distance functions. Using this
reduction, we obtain the following results:
• For general d-dimensional normed spaces and n-point datasets, we obtain a cell-probe ANN

data structure with approximation O(log d
ε2), space dO(1)n1+ε, and dO(1)nε cell probes per

query, for any ε > 0. No non-trivial approximation was known before in this generality
other than the O(

√
d) bound which follows from embedding a general norm into `2.

• For `p and Schatten-p norms, we improve the data structure further, to obtain approximation
O(p) and sublinear query time. For `p, this improves upon the previous best approximation
2O(p) (which required polynomial as opposed to near-linear in n space). For the Schatten-p
norm, no non-trivial ANN data structure was known before this work.

Previous approaches to the ANN problem either exploit the low dimensionality of a metric,
requiring space exponential in the dimension, or circumvent the curse of dimensionality by
embedding a metric into a “tractable” space, such as `1. Our new generic reduction proceeds
differently from both of these approaches using a novel partitioning method.

1

Contents
1 Introduction 3

1.1 ANN for general distance functions . 3
1.2 Main results . 4
1.3 Techniques . 5
1.4 Related work . 8
1.5 Lower bounds . 9
1.6 Open problems . 10
1.7 Organization of the paper . 10

2 Preliminaries 11

3 Partitioning general metrics 12
3.1 Cutting modulus of a metric space . 12
3.2 Partitioning theorems . 13

3.2.1 Partitioning with the (R, ε)-ball-or-cut property 14
3.2.2 Inner multiplicative weights update . 15
3.2.3 Outer multiplicative weights update: proof of Theorem 3.6 17

4 Cell-probe data structure for general metrics 20

5 Discretizing the space 23

6 Bounding the cutting modulus of a normed space 25

7 Algorithm for `p 29
7.1 Rayleigh quotient inequality for `p spaces and proof of Lemma 7.4 30
7.2 Proof of Lemma 7.5 . 33

8 Algorithm for Schatten-p 34
8.1 Rayleigh quotient inequality for Sp, p > 2 . 36
8.2 Proof of Lemma 8.3 . 42
8.3 The case of 1 ≤ p ≤ 2 . 44

9 Lower bounds 46
9.1 General norms do not admit succinct collections . 46
9.2 Lower bound for random partitions . 48

10 Acknowledgments 51

2

1 Introduction

The c-Approximate Near Neighbor Search (c-ANN) problem is defined as follows. Given an n-point
dataset P ⊂ X lying in a metric space (X, dX), we want to preprocess P to answer approximate
near neighbor queries quickly. Namely, given a query point q ∈ X such that there is a data point
p∗ ∈ P with dX(q, p∗) ≤ r, the algorithm should return a data point p̂ ∈ X with dX(q, p̂) ≤ cr.
We refer to c > 1 as the approximation and r > 0 as the distance scale; both parameters are
known during the preprocessing. The main quantities to optimize are the space the data structure
occupies and the time it takes to answer a query. In addition to being an indispensable tool for
data analysis, ANN data structures have spawned two decades of theoretical developments (see,
e.g., the surveys [AI17, AIR18] and the thesis [Raz17] for an overview).

1.1 ANN for general distance functions

The best-studied metrics in the context of ANN are the Hamming/Manhattan (`1) and the Euclidean
(`2) distances. Both `1 and `2 are very common in applications and admit efficient algorithms based
on hashing: in particular, Locality-Sensitive Hashing (LSH) [IM98, AI06] and its data-dependent
counterparts [AINR14, AR15, ALRW17]. Hashing-based algorithms for ANN over `1 and `2 have
now been the subject of a long line of work, leading to a comprehensive understanding of the
respective time–space trade-offs.

Beyond `1 and `2, the ANN landscape is much more mysterious despite having received significant
attention (see Section 1.4 for an overview). In summary, we are still very far from having a general
recipe for ANN data structures for general metrics with a non-trivial approximation. This state of
affairs motivates the following broad question.

Problem 1.1. For a given approximation c > 1, which metric spaces allow efficient ANN algorithms?

An algorithm for general metrics is highly desirable both in theory and in practice. From the
theoretical perspective, we are interested in a theory of ANN algorithms for a wide class of distance
functions. Such a theory would yield data structures (or impossibility results) for a variety of
important distances for which we still do not know efficient ANN algorithms (e.g. the Earth Mover’s
Distance (EMD), the edit distance, generalized versions of the Hamming distance1, etc). Perhaps
even more tantalizing is the question of understanding what geometric properties of a metric space
govern the hardness of ANN. In addition to the theoretical interest, in practice, one often needs to
tune the distance function to the specifics of the application, and hence generic ANN algorithms are
also preferred.

In this paper, we focus on the following important case of Problem 1.1, which was first raised in
2010 [And10].

Problem 1.2. Solve Problem 1.1 for d-dimensional normed spaces.
1E.g., a metric of interest in applications is (Xd, ρXd), where X is a metric itself, with the distance between vectors

x, y ∈ Xd defined as ρXd (x, y) =
∑d

i=1 dX(xi, yi).

3

Most metrics arising in applications are actually norms (e.g., the `p distances, matrix norms, the
Earth Mover’s Distance, etc.). Besides that, norms are geometrically nicer than general metrics, so
there is more hope for a coherent theory (e.g., for the problems of sketching and streaming norms,
see the general results of [AKR15, BBC+17], for ANN over general symmetric norms, see a recent
result [ANN+17]).

1.2 Main results

In this paper, we make progress towards resolving Problem 1.2. Our main contribution is a data
structure for the O(log d)-ANN problem over a general d-dimensional norm in the cell-probe model
introduced by Yao [Yao81]. Prior to this work, the only other ANN data structure for general norms
achieved approximation O(

√
d) (see Section 1.4).

Theorem 1.3. Let 0 < ε < 1. Suppose that (Rd, ‖ · ‖) is a d-dimensional normed space. Then there
exists a randomized data structure for O

(
log d
ε2

)
-ANN over ‖ · ‖ with the following parameters:

• The space used by the data structure is n1+ε · dO(1);

• The query procedure probes nε · dO(1) words in memory, where words consist of O(logn) bits2.

Let us emphasize that we do not claim any time bound on the query procedure. We only restrict
the number of memory locations the data structure is allowed to probe (see Section 4 for a further
discussion of the model). Nonetheless, we conjecture that one can in fact obtain a data structure
for O(log d)-ANN with sublinear time query complexity (as opposed to cell probe complexity only),
provided a suitable oracle access to the norm.

Irrespective of the conjecture, our theorem can be thought of as a barrier for proving impossibility
of efficient ANN data structures with approximation O(log d) for general norms. This is because all
known unconditional data structure lower bounds proceed by proving a cell-probe lower bound [Mil99].
Thus, a potential strong lower bound for the ANN problem would require a completely new approach
to data structure lower bounds.

The main tool behind Theorem 1.3 is a new random partition for sets of points in a general
normed space, and is of independent interest. In particular, we show how to convert an estimate
on the nonlinear spectral gap of a metric space into a data-dependent Locality-Sensitive Hashing
(LSH) family (see Section 1.3 for an overview).

Finally, our technique also gives a natural approach to designing data structures for specific metric
spaces with better parameters, including sublinear time. Indeed, we instantiate our technique with
the `p and Schatten-p norms, for which, with additional work, we obtain data structures with better
approximations and sublinear time. For the `p norms, we obtain approximation c = O(p), which
improves exponentially over the approximation factor of 2O(p) from [NR06, BG15] (see Section 1.4).

Theorem 1.4. Let 0 < ε < 1 and 2 < p ≤ ∞. There exists a randomized data structure for
O (p/ε)-ANN over the `p norm with the following parameters:

2We assume that all the coordinates of the dataset and query points as well as r can be stored in O(logn) bits.

4

• The space used by the data structure is n1+ε · dO(1);

• The query procedure takes time nε · dO(1).

Generalizing the theorem from above to Schatten-p norms, we obtain the first ANN data
structures with a non-trivial approximation factor. Recall that the Schatten-p norm ‖ · ‖Sp of a
matrix is the `p norm of the vector of its singular values3. The challenge of designing ANN under
Schatten norms was posed in [And10].

We state our Schatten-p results for regimes 1 ≤ p ≤ 2 and 2 < p <∞ separately.

Theorem 1.5. Let 0 < ε < 1 and 1 ≤ p ≤ 2. There exists a randomized data structure for c-ANN
over the Schatten-p norm, where c = O

(
1

ε2/p

)
with the following parameters:

• The space used by the data structure is n1+ε · dO(1);

• The query procedure takes time nε · dO(1).

We now state the data structure for Schatten-p norms with p > 2. Compared to the `p algorithm
from Theorem 1.4, the result for Schatten-p has worse dependence on the dimension for the space
and query time. We note that for p > log d, the norm ‖x‖Sp is a constant factor from ‖x‖Slog d ; thus,
it suffices to consider the cases when 2 < p ≤ log d.

Theorem 1.6. Let 0 < ε < 1 and 2 < p ≤ ∞. There exists a randomized data structure for c-ANN
over the Schatten-p norm, where c = O (p/ε) with the following parameters:

• The space used by the data structure is n1+ε · dO(p);

• The query procedure takes time nε · dO(p).

See Section 1.4 for a more detailed exposition of how Theorem 1.5 and Theorem 1.6 relate to
previously known results.

Let us note that the preprocessing procedures in all the new data structures are inefficient.
Improving the preprocessing time is left as an interesting open problem.

1.3 Techniques

Nonlinear spectral gaps. At the conceptual level, the main contribution of the paper is a
reduction from bounds on the nonlinear spectral gap to a data-dependent Locality-Sensitive Hashing
(LSH) family for a general metric space. Let A = (aij) ∈ Rm×m be a symmetric doubly stochastic
m×m matrix. Then, for a metric space (X, dX) and q ≥ 1 the nonlinear spectral gap γ(A, dqX) is
the smallest number for which the following holds. For every set of points x1, x2, . . . , xm ∈ X,

1
m
·
m∑
i=1

m∑
j=1

dX(xi, xj)q ≤ γ(A, dqX) ·
m∑
i=1

m∑
j=1

aij · dX(xi, xj)q.

3The Schatten-1 norm is known under the names of the nuclear or trace norm, the Schatten-2 norm is simply the
Frobenius norm, and Schatten-∞ is known as the spectral or the operator norm.

5

For the `2 norm, γ(A, ‖ · ‖22) = 1
1−λ2(A) , where λ2(A) is the second largest eigenvalue of A; i.e. in

this case γ(A, ‖ · ‖22) is the inverse of the usual spectral gap of A. A systematic study of nonlinear
spectral gaps of metric spaces was initiated in [MN14]. Similar inequalities can be found in earlier
works (see, e.g., the introduction of [MN15] for a thorough literature review); we single out the
reference [Mat97] which is instrumental for our results. In the above-mentioned works, bounds on
the nonlinear spectral gap were primarily used to show strong non-embeddability results.

We use the following recent result from [Nao17] in order to build a cell-probe data structure for
ANN over a general norm, as claimed in Theorem 1.3.

Theorem 1.7 ([Nao17]). For every norm ‖ · ‖ defined on Rd, one has:

γ(A, ‖ · ‖2) = O

(
log2 d

(1− λ2(A))2

)
.

We present a simplified proof of this theorem with a slight generalization to a weighted setting
(which we need for the actual reduction) in Section 6.

At a high level, a strong enough upper bound on γ(·, dqX) in terms of γ(·, ‖ · ‖22) gives a cell-probe
data structure for ANN over a given metric space (X, dX) using the reduction given in this paper.
For the time-efficient data structures over `p and Schatten-p spaces (Theorem 1.4 and Theorem 1.6),
we need the nonlinear spectral gap inequality in a strong Rayleigh quotient form. For the `p norms,
such a stronger inequality was shown by Matoušek [Mat97]. We adapt Matoušek’s inequality to the
weighted setting in Section 7. For Schatten-p, the corresponding inequality is stated and proved in
Section 8. The new inequality is an extension of the Matoušek’s inequality to the matrix setting
using estimates from [Ric15]. An additional twist compared to [Mat97] is the need for a fixed-point
statement similar to the Brouwer’s theorem.

Data-dependent LSH. We now briefly describe how to utilize Theorem 1.7 to obtain a data-
dependent LSH family for a general norm. Informally, for a given dataset, we would like to design a
random partition of Rd that separates a query point from far data points often, while not separating
a query point from close data points too often. With such a random partition, we can build the data
structure as simply a collection of random decision trees. In each node, we sample a partition from
the family, split the dataset among child nodes accordingly, and recurse on each child node. This
connection has already been used in [Ind01, AR15, ALRW17] (however, let us note that in [Ind01]
space partitions are used in a fundamentally different way; see the discussion in Section 1.5).

The construction of the data-dependent LSH incorporates three main ideas.

• We use the multiplicative weights update algorithm (MWU) [AHK12] to reduce the problem
of constructing a random partition to the problem of finding a deterministic partition that
works on average with respect to a given distribution over points. This step is non-trivial since
the resulting random partition must depend on the dataset fairly weakly so that a sample from
it can be stored in poly(d) space. We end up using two levels of MWU, where the “outer” part
is responsible for “guessing” the dataset iteratively, while the “inner” part finds a required

6

random partition for a current guess.

• The problem of finding a deterministic partition can be seen as finding a sparse cut in an
undirected graph embedded in (Rd, ‖·‖) so that the following conditions hold. First, we assume
that the distance between the endpoints of every edge is at most 1. Additionally, suppose that
the distance between a typical pair of vertices is � log d. It suffices to prove that this graph
cannot be a spectral expander, since we may then employ Cheeger’s inequality [Che69, Chu96]
to obtain a sparse cut.

• Finally, Theorem 1.7 directly implies that expanders do not embed into (Rd, ‖ · ‖), so the
above graph cannot be a spectral expander. In fact, if A ∈ Rm×m is a normalized adjacency
matrix of a graph and x1, x2, . . . , xm ∈ Rd are the points the vertices are mapped to, then the
following holds. Since every edge has length at most 1,

m∑
i=1

m∑
j=1

aij · ‖xi − xj‖2 ≤
m∑
i=1

m∑
j=1

aij = m. (1)

Since a typical pair of vertices is at distance � log d apart,

1
m
·
m∑
i=1

m∑
j=1
‖xi − xj‖2 � m · log2 d. (2)

Combining (1) and (2) with Theorem 1.7, we get that 1− λ2(A)� 1, which implies that the
graph is not an expander.

Algorithmically, we construct a randomized space partition by combining the two-level MWU
algorithm together with a spectral partitioning procedure. The new data-dependent LSH construction
gives a generic approach to ANN, which departs substantially from the commonly-used embeddings
technique.

Partitions of normed spaces. As mentioned briefly, Theorems 1.3, 1.4, 1.5, and 1.6 follow from
new partitioning results for sets of points lying in normed spaces. The specific partitioning results
are given in Sections 6, 7 and 8, respectively. Let us now state the partitioning results for `p spaces
and for general normed spaces.

A box in Rd is an intersection of sets of the form {x ∈ Rd | xk ≤ u} or {x ∈ Rd | xk ≥ u}, where
1 ≤ k ≤ d and u ∈ R. In Section 7, we obtain the following partitioning result for `p spaces.

Theorem 1.8. Let 0 < ε < 1, 2 < p < ∞ and R > 0. Consider any dataset P ⊂ Rd of n points
lying in Bp(0, R) = {x ∈ Rd | ‖x‖p ≤ R}. Either there is an `p-ball of radius O(p/ε) containing
Ω(n) points from P , or there exists a distribution D over boxes such that:

1. For every u, v ∈ Bp(0, R) with ‖u − v‖p ≤ 1, a random box S ∼ D separates u and v with
probability at most ε.

7

2. For every box S from the support of D, the number of points in P lying in S is between Ω(n)
and

(
1− Ω(1)

)
· n.

Now let us state the partitioning result for general normed spaces, proved in Section 6.

Theorem 1.9. Let 0 < ε < 1, X = (Rd, ‖ · ‖X) be a normed space and 0 < R ≤ 2poly(d). There
exists a collection C of measurable subsets of BX(0, R) = {x ∈ Rd | ‖x‖X ≤ R} with log |C| ≤ poly(d)
such that the following holds. Consider any dataset P ⊂ Rd of n points lying in BX(0, R). Either
there is an X-ball of radius O

(
log d
ε2

)
containing Ω(n) points from P , or there exists a distribution

D over the elements of C such that:

1. For every u, v ∈ BX(0, R) with ‖u − v‖X ≤ 1, a random set S ∼ D separates u and v with
probability at most ε.

2. For every set S from the support of D, the number of points in P lying in S is between Ω(n)
and

(
1− Ω(1)

)
· n.

1.4 Related work

Prior to our work, the quest for efficient ANN data structures in high-dimensional spaces beyond `1
and `2 has proceeded via embeddings. The idea is to embed the original space into an algorithmically
tractable target space, for which one then builds a data structure. The common targets are `1 and
`2 which can be handled with O(1)-approximation by [ALRW17], `∞ which can be handled with
O(log log d)-approximation with [Ind01], and `p-direct sums of these spaces, which can be handled
with approximation poly(log logn) by [Ind02, Ind04, AIK09, And09]. This approach gives the best
known ANN data structure for a general norm with approximation O(

√
d) [Joh48, Bal97]. It has

also been successful for a poly(log log d)-approximation for the Ulam metric [AIK09], a O(log d)-
approximation for EMD [Cha02, IT03], a 2Õ(

√
log d)-approximation for edit distance [OR07], and a

poly(log d)-approximation for Frechét distance [Ind02].
In a similar vein, the recent work [ANN+17] gives an ANN data structure for general symmetric

norms with poly(log logn)-approximation. It proceeds via a linear embedding of a d-dimensional
symmetric norm into a dO(1)-dimensional tractable universal space. However, the same paper shows
that this approach fails for general norms.

For ANN under `p norms, constant factor approximations were known for 1 ≤ p ≤ 2 for near-
linear space and sub-linear time [Ngu14]. The case when p ≥ 2 is less clear. Prior to this work, the
best algorithm for `p norms of [NR06, BG15] achieved approximation 2O(p) with polynomial space
(as opposed to near-linear space) and poly-logarithmic query time. For large p, there is a better
algorithm with approximation O(log log d) [AIK09, And09].

For ANN under Schatten-p norm, the previous best algorithm has polynomial in d approximation
and follows from the relation between Schatten-p and `2 norms. An approximation 2O(p) using
polynomial space follows implicitly from a combination of the results from [NR06, BG15] with the
estimate from [Ric15]. The related questions of streaming, sketching and dimension reduction of

8

Schatten-p norms have been actively studied over the past few years [LNW14, AKR15, LW16a,
LW16b, LW17, NPS18].

For metrics with low intrinsic dimension, efficient ANN algorithms are known for any metric
space [Cla99, KR02, KL04, BKL06]. These results depend exponentially on the intrinsic dimension,
and therefore the latter is assumed to be low. This is in contrast to this paper, where we do not
make such assumptions, and focus on the high-dimensional regime (when ω(logn) ≤ d ≤ no(1)),
where we cannot afford to have an exponential dependence on the dimension.

1.5 Lower bounds

We complement our new algorithms with two impossibility results.

Limitation of efficient cuts. The reason that Theorem 1.3 is restricted to the cell-probe model
is due to the inability to bound the time complexity of evaluating the random space partitions from
Theorem 3.6 when working with general norms (even though we bound their space complexity).
In constrast, for `p and Schatten-p norms, we manage to bound the time complexity and obtain
time-efficient data structures. To explain this disparity, consider the following general scenario.

Let G = (V,E) be a large graph embedded into an arbitrary normed space (Rd, ‖ · ‖) with edges
between points at distance at most 1, and typical pair of vertices being well-separated. Following
the discussion in Section 1.3, the graph G must have a sparse cut; however, the cut may not be
induced by a “geometrically nice” subset of Rd. During the algorithm from the proof of Theorem 1.3,
graphs will have dΩ(d) vertices, so we cannot afford to store the cut explicitly. Therefore, the query
procedure re-computes the cuts on the fly. In order to achieve a time-efficient data structure for
general norms, one would need to find geometrically nice cuts which can be evaluated efficiently.

For `p norms, we always find a sparse cut that is realized by a coordinate cut (that is, {v ∈ V |
f(v)k ≤ u} for some 1 ≤ k ≤ d and u ∈ R). In our reduction we need to take intersections of cuts,
which, in the case of coordinate cuts, are boxes, which are the main objects of Theorem 1.8. Thus,
we store the boxes by storing the 2d values (lower and upper limits for each coordinate), and then
we can easily evaluate on which side of a cut a given point lies. For Schatten-p norms, the argument
is more delicate, but we are also able to store and compute cuts in an efficient manner.

In Section 9, we show that it is not enough to consider a fixed family of cuts with small description
complexity for general norms; these include coordinate cuts and hyperplane cuts. More generally,
Theorem 9.1 says that families of cuts used must be tailored to the particular normed space. We use
a random norm construction similar to the one used by Gluskin in [Glu81] to prove Theorem 9.1.
We note that this lower bound does not rule out ball cuts or other families of cuts that depend on
the particular norm.

Optimality of data-dependent LSH.We show that for `p spaces, any data-dependent LSH family
with sufficiently good parameters requires approximation Ω(min{p, log d}),4 thus our construction is

4Note that when p > log d, `p is O(1)-close to `log d, so an Ω(p) lower bound when 1 ≤ p ≤ log d covers all interesting
values of p.

9

optimal within the data-dependent LSH framework. To show this, we embed a large expander into
`p using a result from [Mat97]. We apply a similar argument to [AR16] to the embedded expander
to show the desired lower bound. Thus, at least in some cases, embeddability of expanders captures
the complexity of LSH precisely.

This result should be contrasted with the O(log log d)-ANN data structure for `∞ from [Ind01].
It also proceeds by certain5 space partitions; the difference is that a dataset point is duplicated when
inside some parts. This duplication allows the result of [Ind01] to overcome the above-mentioned
Ω(log d) lower bound.

1.6 Open problems

We state several natural open problems which seem approachable in light of the techniques developed
in this paper.

• Can we get a time-efficient O(log d)-ANN data structure for general norms? As mentioned in
Section 1.5, randomized partitions from a family of “geometrically nice” cuts must be tailored
to the norm of interest.

• Can we improve the approximation for general norms to O(log log d) (even in the cell-probe
model)? To accomplish this, we need to step out of the data-dependent LSH framework (see
Section 1.5) to resemble the techniques from [Ind01]. A related (perhaps easier) question is to
obtain an O(log p)-ANN data structure over the `p or Schatten-p norm.

• Can we make the preprocessing time polynomial in n and d, even for the `p case?

• For the edit distance defined on {0, 1}d, can we obtain a (log d)O(1)-ANN data structure by
bounding the nonlinear spectral gap? The best known ANN data structure proceeds by
embedding the metric into `1 with distortion 2Õ(

√
log d) [OR07].

• For the Earth Mover’s Distance on [d]2, can we obtain a o(log d)-ANN data structure by
bounding the nonlinear spectral gap? The best known ANN data structure (aside from the
cell-probe data structure from Theorem 1.3) proceeds by embedding into `1 with distortion
O(log d) [Cha02, IT03, NS07].

1.7 Organization of the paper

In Section 3, we show how to construct a data-dependent LSH family for a general finite metric
space assuming a good enough bound on the spectral gap. We state this result in terms of a cutting
modulus of a metric space, a quantity we introduce in Section 3.1. In Section 4, we show how to use
this LSH family to construct a cell-probe ANN data structure for a finite metric. In order to handle
general normed spaces defined over Rd (and not just finite metrics), we discretize the ambient space;
the corresponding argument is standard and appears in Section 5. In Section 6, we show a minor

5Deterministic.

10

generalization of Theorem 1.7, which bounds the spectral gap of a general norm. This allows us to
give an upper bound on the cutting modulus of a normed space.

Using the results from Sections 4 and 5, we obtain a cell-probe data structure for O(log d)-ANN,
as claimed in Theorem 1.3. In Section 7, we address the case of `p norms and prove Theorem 1.4. In
Section 8, we show a new spectral gap inequality for Schatten-p norms which implies Theorems 1.5
and 1.6.

Finally, in Section 9, we show the two impossibility results discussed in Section 1.5.

2 Preliminaries

We write χE as the indicator variable of event E. For any m > 0, we denote by ∆(m) ⊂ Rm×m

the space of symmetric matrices G = (gij) with non-negative entries such that
∑m
i=1

∑m
j=1 gij = 1.

For G ∈ ∆(m), we denote the row sums as ρG(i) =
∑m
j=1 gij . The Laplacian of G is given by the

m×m matrix
LG = D −G,

and the normalized Laplacian of G is given by the m×m matrix

LG = Im −D−1/2GD−1/2,

where D = diag(ρG(1), ρG(2), . . . , ρG(m)) and Im is the m × m identity matrix. We denote
0 = λ1(LG) ≤ λ2(LG) ≤ . . . ≤ λm(LG) the eigenvalues of the normalized Laplacian of G, and
ν1(LG), . . . , νm(LG) ∈ Rm be the corresponding eigenvectors. For a subset S ⊆ [m], we write
S = [m] \ S and ρG(S) =

∑
i∈S ρG(i). We will frequently refer to sequences of m points in X,

x = (x1, . . . , xm) ∈ Xm. We will associate a subset S ⊂ [m] with the corresponding subset of points
Sx ⊂ X with Sx = {xi : i ∈ S}; and we often drop the subscript and refer to Sx as S when the
sequence x is clear. In addition, for S ⊂ X, we write S : X → {0, 1} for the map S(x) = χ{x∈S}.
For some finite subset P ⊂ X and x ∈ X, we let S(x, P) = {p ∈ P : S(x) = S(p)}.

For a fixed matrix G ∈ ∆(m) and S ⊂ [m], the conductance of S with matrix G is given by:

ΦG(S) =

∑
i∈S
j /∈S

gij

min
{
ρG(S), ρG(S)

} .
Definition 2.1. For any G ∈ ∆(m), any metric space (X, dX), and any x = (x1, . . . , xm) ∈ Xm,
we define the Rayleigh quotient of x and G with respect to dpX by

R(x, G, dpX) =
∑m
i=1

∑m
j=1 gijdX(xi, xj)p∑m

i=1
∑m
j=1 ρG(i)ρG(j)dX(xi, xj)p

.

Via a straight-forward calculation, we have that when the metric space is R with dX(xi, xj) =

11

|xi − xj |, if x ∈ Rm and
∑m
i=1 ρG(i)xi = 0,

R(x,G, | · |2) =
∑m
i=1

∑m
j=1 gij |xi − xj |2∑m

i=1
∑m
j=1 ρG(i)ρG(j)|xi − xj |2

= xTLGx

xTdx
.

I.e. in this case R(x,G, | · |2) is the Rayleigh quotient yTLGy
yT y

for y = D1/2x. Using this observation,
we may state Cheeger’s inequality with respect to R(x,G, | · |2).

Theorem 2.2 (Cheeger’s Inequality, [Che69, Chu96], see also [Spi15]). For x ∈ Rm with
∑m
i=1 ρG(i)xi =

0, there exists t ∈ R for which the set St = {i ∈ [m] : xi < t} satisfies:

ΦG(St) ≤

√
R(x,G, | · |2)

2 .

Letting x = D−1/2ν2(LG), there exists a subset S ⊂ [m] which satisfies:

ΦG(S) ≤
√

2 · λ2(LG).

Remark 2.3 (Oracle access to a norm). When working with a general normed space (Rd, ‖ · ‖X), we
assume oracle access to the function ‖ · ‖ : Rd → R≥0. We also assume John’s ellipsoid of (Rd, ‖ · ‖X),
i.e. the maximum volume centered ellipsoid in Rd contained in the unit ball of ‖ · ‖X , is given by the
d vectors in Rd specifying the ellipsoid.

3 Partitioning general metrics

In this section, we give a general approach for constructing LSH schemes for general metric spaces.
Section 3.1 defines the cutting modulus of a metric space. At a high level, the cutting modulus
captures the following property of a metric space (X, dX): for any probability distribution on pairs
of close points in X, either X contains a small ball with most of the mass (with respect to the
marginal distribution), or there is a balanced partition of X which separates a small fraction of
neighboring pairs.

The cutting modulus determines the approximation of the data structure and is an interface
between the data structure description and nonlinear spectral gaps. We describe the data structure
with cutting modulus as a parameter of the metric space, and we bound the cutting modulus of
various metric spaces with bounds on the non-linear spectral gap.

3.1 Cutting modulus of a metric space

We consider a metric space (X, dX). The goal of this section is to define the cutting modulus of a
metric space.

Definition 3.1. Fix some G ∈ ∆(m). We say x = (x1, . . . , xm) ∈ Xm has a β-dense ball of radius
R if there exists a point c ∈ X such that ρG ({i ∈ [m] : xi ∈ BX(c,R)}) ≥ β.

12

Definition 3.2. Let S be family of subsets of the metric space X. We say that G ∈ ∆(m) has the
(R, ε)-ball-or-cut property with respect to S if for every m points x = (x1, . . . , xm) ∈ Xm where
dX(xi, xj) ≤ 1 if gij > 0, one of the two properties hold:

• Either x has a 1
2 -dense ball of radius R, or

• There exists a subset S ∈ S such that Sx = {i : xi ∈ S} satisfies ΦG(Sx) ≤ ε.

If S contains all finite subsets of X, then we say that G has the (R, ε)-ball-or-cut property.

We may now formally define the notion of cutting modulus of a metric space.

Definition 3.3. We say that the ε-cutting modulus of a metric space (X, dX) with respect to a
family S of subsets of X, ΞS(X, ε), is given by:

ΞS(X, ε) = inf{R ∈ R : ∀m ∈ N, ∀G ∈ ∆(m), matrix G has (R, ε)-ball-or-cut property w.r.t. S}.

If S contains all finite subsets of X, we denote ΞS(X, ε) simply by Ξ(X, ε).

At a high level, the ε-cutting modulus of a metric space will govern the approximation ratio
one may achieve with space poly(d) · n1+O(ε) and query time poly(d) · nO(ε). In particular, suppose
(X, dX) has Ξ(X, ε) = R. Consider any sequence of points x1, . . . , xm ∈ X, and form a graph by
connecting points lying at distance at most 1. The graph defines a normalized adjacency matrix
G ∈ ∆(m) which has the (R, ε)-ball-or-cut property. If there exists a dense ball, then we know that
a constant fraction of the points lie close to each other (within distance 2R). Otherwise, there is a
sparse cut of the points which does not cut many edges of G. Roughly speaking, the data-dependent
LSH will be built by recursively applying this procedure, and using the multiplicative weights
update rule in order to handle any possible distribution over datasets and queries. For our cell-probe
algorithms we will allow S to contain all finite subsets of X. However, our efficient data structures
will use a restricted family S which allows us to quickly determine which side of a cut a point lies
on.

3.2 Partitioning theorems

The goal of this section is to prove the main partitioning theorem. We consider a metric space
(X, dX) which consists of N points. Let 0 < ε < ε0 be a small positive parameter and R = Ξ(X, ε).

We first define the notion of balanced collections of balls and cuts.

Definition 3.4. Let S be a collection of subsets S1, . . . , Sm ⊆ X. We say S is ε-sparse if for every
two points x, y ∈ X with dX(x, y) ≤ 1, at most an ε-fraction of subsets from S split x and y, i.e.,

Pr
i∼[m]

[Si(x) 6= Si(y)] ≤ ε.

13

Definition 3.5. Consider a dataset P ⊆ X of n points. Let S be a collection of subsets S1, . . . , Sm ⊆
X. We say that S is γ-balanced under P if for any S ∈ S we have

(1− γ)n ≤ |S ∩ P | ≤ γn.

These two notions of sparsity and balancedness will measure the quality of the data-dependent
LSH. Intuitively, the data-dependent LSH is constructed by recursively partitioning the space with
a random subset from a particular collection. We want the collection to be balanced, to ensure
the algorithm makes progress, and sparse, to maintain a low probability of error. Lastly, we want
collections of subsets which can be written succinctly; such a condition will ensure the querying
algorithm can utilize the data-dependent LSH. We ensure our collection can be written succinctly
by requiring there are not too many of them, and that the collections do not have too many sets.

We may now state the main partitioning theorem for general metric spaces.

Theorem 3.6. Let R = Ξ(X, ε) for some ε ∈ (0, 1
4), and fix any n ∈ N. There exists a collection C

of subsets of X with log |C| = O(log(N) log(log(N)/ε)) such that for any dataset P ⊆ X of n points,

• Either there exists a point x0 ∈ X with |P ∩BX(x0, R)| ≥ n
50 , or

• There exists a subcollection S ⊆ C of subsets of X such that:

– S is 50ε-sparse,

– S is 49
50 -balanced under P .

Theorem 3.6 suggests a very natural data-dependent LSH. At each step of the algorithm, either
we have a dense ball, or we have a collection of subsets with a distribution which decreases the
size of the dataset and does not split the query from its dataset point too often. Note that the
set C does not depend on P . This means the querying algorithm will know C, and needs to read
O(log(N) log(log(N)/ε)/ε) many bits from the data-structure in order to specify any particular set
S ∈ C.

We now turn to proving Theorem 3.6. The proof is algorithmic and requires a few lemmas,
which correspond to particular subroutines.

3.2.1 Partitioning with the (R, ε)-ball-or-cut property

Let X = {x1, . . . , xN} be the points of the metric space of size N . For the remainder of the section,
let G ∈ ∆(N) be a fixed matrix with gij > 0 only if dX(xi, xj) ≤ 1. We will frequently interchange
between subsets S ⊆ X and S ⊆ [N] by associating xi ∈ X with i ∈ [N]. In addition, we frequently
write S = [N] \ S. The goal of this section is to use the (R, ε)-ball-or-cut property to give a
subroutine which when given a matrix G ∈ ∆(N), outputs a dense ball with respect to G, or a
particular subset of vertices which cuts few edges with respect to G.

14

Lemma 3.7. Let R = Ξ(X, ε) for some ε ∈ (0, 1
4). Then there either exists a 1

4 -dense ball of radius
R with respect to G, or there exists a subset S ⊆ X where

1
3 ≤ ρG(S) ≤ 3

4 and
∑

i∈S,j 6∈S
gij ≤ 2ε.

Proof. We give an iterative procedure which begins with a set S := ∅, and at each step, either finds
a dense ball of radius R, or adds some points to S while keeping ρG(S) ≤ 3

4 and
∑
i∈S,j /∈S gij ≤ 2ε.

At the beginning of an iteration, assume ρG(S) < 1
3 . We repeat the following procedure:

1. Consider the matrix G̃ ∈ ∆(|S|) obtained by restricting G on the rows and columns corre-
sponding to S and scaling the entries so they sum to 1. Note that we still have gij > 0 only if
dX(xi, xj) ≤ 1.

2. The matrix G̃ has the (R, ε)-ball-or-cut property, so either there exists a 1
2 -dense ball of radius

R in S with respect to G̃, or there exists a subset S̃ ⊂ S with Φ
G̃

(S̃) ≤ ε.

(a) Suppose S has a 1
2 -dense ball of radius R with respect to G̃. Then, that ball is 1

4 -dense
with respect to G, since G̃ was rescaled by at least 1− ρG(S)− 2ερG(S) ≥ 1

2 .

(b) Suppose S̃ ⊂ S is a subset with Φ
G̃

(S̃) ≤ ε, and assume, without loss of generality, that
S̃ has 0 < ρ

G̃
(S̃) ≤ 1

2 , since otherwise, we can switch S̃ and S \ S̃. Then, let S ← S ∪ S̃.

The quantity ρG(S) is monotonically increasing with the iterations, and the procedure terminates
when ρG(S) ≥ 1

3 . Thus, we just need to show that, as long as we do not return a 1
4 -dense ball with

respect to G, we always have ρG(S) ≤ 3
4 and ΦG(S) ≤ 2ε.

Consider the final iteration of the algorithm before S is returned; we have that S ⊂ [N] satisfies
ρG(S) < 1

3 and ρ
G̃

(S̃) ≤ 1
2 . Additionally, assume ΦG(S) ≤ 2ε and Φ

G̃
(S̃) ≤ ε. Then,

∑
i∈S∪S̃
j /∈S∪S̃

gij ≤
∑
i∈S
j /∈S

gij +
∑
i∈S̃

j /∈S∪S̃

gij ≤ 2ε · ρG(S) + ε · ρ
G̃

(S̃) ≤ 2ε
(
ρG(S) + ρG(S)

)
= 2ε · ρG(S ∪ S̃),

where we used the fact that ρ
G̃

(S̃) ≤ 2ρG(S̃), because the matrix G̃ was normalized by a factor of
at least 1

2 . Therefore, we have ΦG(S ∪ S̃) ≤ 2ε. Finally, note that:

ρG(S ∪ S̃) ≤ ρG(S) + ρG(S̃) ≤ ρG(S) + 1
2 (1− ρG(S)− ΦG(S)) + ΦG(S) ≤ 2

3 + ε

3 ≤
3
4 .

3.2.2 Inner multiplicative weights update

The goal of this subsection is to use the partitioning procedure from Lemma 3.7 in order to either
find a dense ball (with respect to a given distribution over X), or build a sparse collection of subsets.

15

For the rest of the section, we let E be the set of unordered pairs of close points in X (at distance
at most 1).

Lemma 3.8. Let R = Ξ(X, ε) for some ε ∈ (0, 1
4), and let ν be a probability measure over points in

X. Then, either there exists a ball B of radius R such that ν(B) ≥ 1
6 , or there exists a collection S

of O
(

logN
ε

)
subsets S ⊆ X such that:

• S is 50ε-sparse, and

• Every S ∈ S satisfies 1
4 ≤ ν(S) ≤ 5

6 .

Proof. We prove the lemma by giving an algorithm which produces the collection S via the
multiplicative weights update algorithm. More specifically, we give an iterative procedure where
for t = 0, . . . , O

(
logN
ε

)
, maintains at most N2 weights, wt : E → R≥0. At each step, the procedure

produces a matrix G ∈ ∆(N), checks the conditions of Lemma 3.7, and either outputs a dense ball
or updates the weights wt+1. Fix δ = 1

10 . The procedure does the following:

1. For t = 0, . . . , T =
⌈

log2 N
ε

⌉
, maintain weights wt : E → R≥0, where initially, w0(x, y) = 1 for

all (x, y) ∈ E, and Ψt =
∑

(x,y)∈E wt(x, y). Start with S = ∅.

2. Let G(t) ∈ ∆(N) be given by:

g
(t)
ij =

δ · wt(xi,xj)2Ψt i 6= j, (xi, xj) ∈ E

0 i 6= j, (xi, xj) /∈ E
(1− δ)ν(xi) i = j

,

and consider the possible outcomes of Lemma 3.7 with matrix G(t):

(a) If there exists a 1
4 -dense ball B of radius R with respect to G(t), then 1

4 ≤ ρG(t)(B) =∑
i∈B(1− δ)ν(i) +

∑
i∈B

∑
j 6=i δ

wt(xi,xj)
2Ψt ≤ (1− δ)ν(B) + δ

2 . Return B, since ν(B) ≥ 1
6 .

(b) If there exists a subset S(t) ⊂ X with 1
3 ≤ ρG(t)(S(t)) ≤ 3

4 and
∑
i∈S(t),j /∈S(t) g

(t)
ij ≤ 2ε,

then let S ← S ∪ {S(t)} and for all (x, y) ∈ E, we let:

wt+1(x, y) = wt(x, y)
(
1 + χ{S(t)(x)6=S(t)(y)}

)
.

3. After T iterations, if the procedure has not returned a ball, return S.

It remains to show that if the procedure does not return a ball B, then the collection S is 50ε-sparse,
and every S(t) ∈ S satisfies 1

4 ≤ ν(S(t)) ≤ 5
6 . Note that |S| = O

(
logN
ε

)
since T = O

(
logN
ε

)
. In

order to show that 1
4 ≤ ν(S) ≤ 5

6 for all S(t) ∈ S, note that, similarly to the case with B,

1
3 ≤ ρG(t)(S(t)) ≤ δ

2 + (1− δ)ν(S(t)) and (1− δ)ν(S(t)) ≤ ρG(t)(S(t)) ≤ 3
4 ,

16

where the claim follows since δ = 1
10 . We now turn to showing that S is 50ε-sparse. On the one

hand, we have:

Ψt+1 =
∑

(x,y)∈E
wt+1(x, y) =

∑
(x,y)∈E

wt(x, y)
(
1 + χ{S(t)(x) 6=S(t)(y)}

)

≤ Ψt + Ψt ·
2
δ

∑
i∈S(t),j /∈S(t)

δ · wt(xi, xj)2Ψt
≤ Ψt

(
1 + 4ε

δ

)
, (3)

since δ · wt(xi,xj)2Ψt = gij for every close pair (xi, xj), and
∑
i∈S(t),j /∈S(t) gij ≤ 2ε. Thus,

ΨT+1 ≤ Ψ0

(
1 + 4ε

δ

)T
≤ N2

(
1 + 4ε

δ

)T
.

On the other hand, for each pair (x, y) ∈ E,

ΨT+1 ≥ 2p(x,y)·T , (4)

where p(x, y) = Prt∈[T][S(t)(x) 6= S(t)(y)]. Combining (3) and (4), and taking logarithms, we have:

p(x, y) ≤ 2 log2N

T
+ log2

(
1 + 4ε

δ

)
≤ 2 log2N

T
+ 4ε

δ
≤ 2ε+ 40ε ≤ 50ε.

3.2.3 Outer multiplicative weights update: proof of Theorem 3.6

The goal of this subsection is to prove Theorem 3.6. Similarly to Lemma 3.8, we use the multiplicative
weights update rule to design an algorithm which incorporates (limited) information about the
dataset P ; in each update round, we call Lemma 3.8. We analyze this outer multiplicative weights
update process using KL-divergence as a potential function. In particular, we use the following
lemma, which is well known (see Theorem 2.4. in [AHK12]), and has been used, for example, in
the literature on differential privacy (Lemma IV.1. in [HR10]). We give the short proof here for
completeness. Below, KL divergence will be defined with respect to the natural logarithm, i.e. for
two measures µ and ν on X we have

DKL(µ‖ν) =
∑
x∈X

µ(x) ln µ(x)
ν(x) .

Lemma 3.9. Let µ and ν be probability measures over X. For a subset S ⊆ X, let σ = sign(µ(S)−
ν(S)), and define a new probability measure ν ′ over X by

ν ′(x) = ν(x)eησS(x)∑
y∈X ν(y)eησS(y) .

17

Then,
DKL(µ‖ν ′)−DKL(µ‖ν) ≤ −η|µ(S)− ν(S)|+ η2.

Proof. By the definition of KL-divergence we have

DKL(µ‖ν ′)−DKL(µ‖ν) =
∑
x∈X

µ(x) ln ν(x)
ν ′(x)

=
∑
x∈X

µ(x) ln
∑
y∈X ν(y)eησS(y)

eησS(x)

= −ησµ(S) + ln
∑
y∈X

ν(y)eησS(y)

≤ −ησµ(S) + ln
∑
y∈X

ν(y)(1 + ησS(y) + η2S(y))

= −ησµ(S) + ln(1 + ησν(S) + η2ν(S))

≤ −ησ(µ(S)− ν(S)) + η2

= −η|µ(S)− ν(S)|+ η2.

The first inequality above follows from ez ≤ 1 + z + z2 for all |z| ≤ 1. The second inequality follows
from ln(1 + z) ≤ z.

In particular, notice that Lemma 3.9 implies that if |µ(S)− ν(S)| > α, and we set η = α
2 , then

the KL-divergence dicreases by at least α2

4 .

Proof of Theorem 3.6. Similarly to Lemma 3.8, we give an iterative procedure where at each time
step t = 0, . . . , T = O(logN), we maintain N weights, wt : X → R≥0. At each step, the procedure
produces a probability measure ν supported on points in X and uses Lemma 3.8 to get a collection
of subsets of X. The procedure is defined as follows:

1. For t = 0, . . . , T = 400 lnN , maintain weights wt : X → R≥0, where initially, w0(x) = 1 for all
x ∈ X.

2. Let ν(t) be the probability measure supported on X given by ν(t)(x) = wt(x)∑
y∈X wt(x) . Consider

the possible outcomes of Lemma 3.8 with measure ν(t):

(a) If there exists a ball B(t) of radius R such that ν(t)(B) ≥ 1
6 and |P ∩B| ≥ n

50 , then return
B = B(t).

(b) If there exists a ball B(t) of radius R such that ν(t)(B) ≥ 1
6 but |P ∩B| < n

50 , then set

wt+1(x) = wt(x)e−B(t)(x)/20,

and continue with the next iteration.

(c) If there exists a collection S(t) of subsets of X satisfying the conditions of Lemma 3.8,
and n

25 ≤ |S ∩ P | ≤
24n
25 for all S ∈ S(t), then return S = S(t).

18

(d) If there exists a collection S(t) of subsets of X satisfying the conditions of Lemma 3.8,
and for some S ∈ S(t) we have |S ∩ P | < n

25 or |S ∩ P | > 24n
25 , then set σ =

sign
(
|S∩P |
n − ν(t)(S)

)
, update the weights as

wt+1(x) = wt(x)eσS(x)/20,

and continue with the next iteration.

Note that the procedure returns B = B(t) only if it is a ball of radius R that contains at least n
50

points, and it returns the collection S = S(t) only if it is 50ε-sparse and 49
50 -balanced. So, if the

procedure returns B or S, then we know it satisfies the condition of the theorem. Therefore, we
just need to show that the procedure will return B or S in the first T iterations, and that S is a
subcollection of a sufficiently small collection C. Since in each iteration we either return B or S, or
we update wt, for the first claim it is enough to show that wt is updated fewer than T times. We do
so using KL-divergence as a potential function.

Let µ be the empirical distribution induced by the dataset, i.e. µ(x) = 1
n for every x ∈ P and

µ(x) = 0 for every x ∈ X \ P . At step 0, we have

DKL(µ‖ν(0)) = lnN −H(µ) ≤ lnN, (5)

where H(µ) is the Shannon entropy of µ, which is always non-negative. If we update wt because there
exists a ball B(t) with ν(t)(B(t)) ≥ 1

6 but µ(B(t)) = |P∩B|
n < 1

50 , then we have |µ(B(t))− ν(t)(B(t))| >
1
6 −

1
50 >

1
10 , so, by Lemma 3.9

DKL(µ‖ν(t+1)) < DKL(µ‖ν(t))− 1
400 . (6)

Similarly, if we update wt because there exists a set S ∈ S(t) with µ(S) = |S∩P |
n < 1

25 or µ(S) > 24
25 ,

then, by Lemma 3.8 we know that 1
4 ≤ ν

(t) ≤ 5
6 , and, therefore,

|µ(B)− ν(t)(B)| > 24
25 −

5
6 >

1
10 .

So, by Lemma 3.9, the inequality (6) holds in this case, too. By (5) and (6), and because KL-
divergence is always non-negative, we have that wt can be updated at most 400 lnN ≤ T times.
Therefore, after one of the T iterations the procedure will return either a ball B or a collection S
satisfying the conditions of the theorem.

To finish the proof, we need to argue that S is a subcollection of a small collection C of subsets of
X. LetM be the number of distinct collections S that the iterative procedure can return. Lemma 3.8
guarantees that, for any such collection, |S| = O(logN/ε), and if we define C to be the union of all
possible S, then we have the bound |C| = O(M log(N/ε)). To bound M , observe that S depends
on the dataset P only to determine, for each t = 1, . . . , T , whether the procedure has returned
B or S, or, otherwise, to determine the identity of a set S ∈ S(t) such that µ(S) = |S∩P |

n < 1
25

19

or µ(S) > 24
25 , and the sign of µ(S) − ν(t)(S). Since |S(t)| = O(logN/ε), any set S ∈ S(t) can

be specified in O(log(log(N)/ε)) bits. Overall, S depends only on O(T (1 + log(log(N)/ε))) =
O(logN log(log(N)/ε)) bits from P , which gives the desired bound on M , and, therefore, on
log |C|.

4 Cell-probe data structure for general metrics

Here, we describe a cell-probe data structure solving c-ANN for (X, dX), where |X| = N . Along the
way, we use Theorem 3.6 as the main tool.

We first define the cell-probe model (as used in Theorem 1.3). Given a dataset, the cell-probe
algorithm is allowed unbounded preprocessing time and eventually stores some memory as a sequence
of cells of O(logn) bits each. Then, given a query point, a cell-probe algorithm is allowed to probe
some cells (possibly adaptively) to read the contents of a cell. The algorithm performs unbounded
auxiliary computations and uses unbounded auxiliary memory. The complexity of a cell-probe
algorithm is measured by the number of cells, or the space, the data structure uses, and the number
of probes the algorithm makes during a query. We will assume that log logN = O(logn) and that
any point in X can be specified using O(logN) cells.

The main theorem in this section is:

Theorem 4.1. For any metric space X of size N , and α ∈ (0, 1
4), there exists a cell-probe data

structure for (2·Ξ(X,Θ(α))+1)-ANN that uses O(n1+α ·logN) words of space and O(nα ·logn·logN)
cell probes per query.

While we do not measure time complexity in this section, we note the cell-probe algorithm
described may be implemented with preprocessing time and query time which depend exponentially
on the dimension.

In the rest of this section we fix R = Ξ(X, ε) for a parameter ε = Θ(α), to be determined later.

Preprocessing. Next we describe how to build the data structure (for the pseudocode, see Figure 1).
Let P ⊂ X be a dataset of n points. The data structure is a collection of independently generated
random decision trees. Each node v of a tree stores the following fields:

• v.type: the type of the node;

• v.P : a subset of the dataset points;

• v.center: a point in X;

• v.S: O(log(N) log(log(N)/ε)) bits used to indicate a set S in the collection C guaranteed by
Theorem 3.6, defining a cut node;

• v.left and v.right: pointers to child nodes.

20

function Process(P , `, v)
if ` = t or |P | ≤ 100 then

v.type ← “leaf.”
v.P ← P .

else if ∃x0 such that |P ∩BX(x0, R)| ≥ |P |50 then
call ProcessBall(P, x0, `, v)

else
S ←MWU(P).
v.mwu← mwu
sample S uniformly from S
store bits necessary to identify S ∈ C in v.S
ProcessCut(P, S, `, v).

function MWU(P)
S ⊆ C obtained from Theorem 3.6 with P .
return S.

function ProcessBall(P , x, `, v)
v.type ← “ball.”
v.center ← x.
v.P ← P ∩BX(x,R).
Process(P \BX(x0, R), `+ 1, v.left).

function ProcessCut(P, S, `, v)
v.type ← “cut.”
Pl = P ∩ Si, Pr = P \ S.
Process(Pl, `+ 1, v.left).
Process(Pr, `+ 1, v.right).
v.P ← ∅.

Figure 1: Pseudocode for constructing the data-structure

We keep a counter `, which denotes the current level of the tree we are processing. Initially, ` = 0,
and it is incremented on each recursive call. Once ` reaches some threshold t (to be specified shortly),
we store a leaf node v and save the points of the dataset which reached v in v.P . Thus the depth of
the tree is bounded by t a priori.

1. If there exists a point x0 ∈ X such that |P ∩BX(x0, R)| ≥ n
50 , we build a ball node. In this

case, the ball node saves x0 in v.center and P ∩BX(x0, R) in v.P . We then recurse by building
a data structure on P \BX(x0, R). (See ProcessBall in Figure 1).

2. Otherwise, the second condition of Theorem 3.6 holds, and the set C guaranteed by the theorem
contains a subcollection S ⊆ C of subsets ofX which is 50ε sparse and 96

100 -balanced. We sample
a uniformly random S ∈ S, and we build a cut node v. We store the O(log(N) log(log(N)/ε))
bits necessary to identify S in v.S, and recursively create two child nodes, holding the points
P ∩ S and P \ S. (See ProcessCut in Figure 1).

The final data structure consists of k = O(nα) independent trees, rooted at the nodes v1, . . . , vk,
where the i-th tree was built by a call to Process(P, 0, vi).

Querying the Data Structure. We now specify how to query the data structure; the pseudocode
is given in Figure 2. For each of the k trees in the data structure, we start the query procedure at
the root of the tree, and proceed by cases, according to the type of node, as follows:

• Leaf nodes: If a query q ∈ X queries a leaf node v, then the query scans v.P and returns the
first point which lies within distance 2R+ 1. If no such point is found, return ⊥.

• Ball nodes: If a query q ∈ X queries a ball node v, we test whether our query is close to the
ball centered at v.center of radius R. In particular, if dX(q, v.center) ≤ R + 1 and v.P 6= ∅,
we return an arbitrary p ∈ v.P . Otherwise, we recurse on the child node of v.

• Cut nodes: If a query q ∈ X queries a cut node v, the querying algorithm runs the multiplicative
weights algorithm, accessing the values stored in v.mwu. Once it determines the collection S,

21

function Query(q, v)
if v.type = “leaf” then

for p ∈ v.P do
return p if dX(q, p) ≤ 2R+ 1.

return ⊥.
if v.type = “ball” then

p← QueryBall(q, v).
return p if p 6= ⊥.

if v.type = “cut” then
p← QueryCut(q, v).
return p if p 6= ⊥.

function QueryBall(q, v)
x0 ← v.center.
if dX(x0, q) ≤ R+ 1 then

return any p ∈ v.P .
return Query(q, v.left).

function QueryCut(q, v)
Identify S ∈ C from v.S
if q ∈ S then

return Query(q, v.left).
return Query(q, v.right).

Figure 2: Pseudocode for querying the data-structure

the querying algorithm checks the index of the set Si ∈ S, which is stored in v.S. If q ∈ Si,
then the querying algorithm recurses on the left child, otherwise, it recurses on the right child
of v.

We collect some simple facts about the data structure which we use later in the analysis.

Claim 4.2. The following statements are true:

• The sets v.P for nodes v partition the dataset P .

• If Query(q, v) returns a point p ∈ P , then dX(p, q) ≤ 2R+ 1.

Analysis.
It remains to set the parameters t and ε. We let t =

⌈
logn

log(50/49)

⌉
and ε =

⌊
α·log(50/49)

50

⌋
in order

to have (1− 50ε)t ≥ n−α.
Consider a fixed dataset P , and let q ∈ X be any query, which is promised to have a point

p ∈ P with dX(p, q) ≤ 1. If there are multiple such points for q, we fix one arbitrarily. Let v
be a node of the data structure built by a call to Process(Pv, `, v) for some Pv ⊂ P and ` < t.
We let U = C(v, q) be the random variable (over the random choice of Si ∈ S if v is a cut node)
which specifies the child node followed by Query(q, v), and ⊥ if Query(q, v) does not recurse down
a child. We also consider the random variable PU consisting of the dataset involved in the call
Process(PU , `+ 1, U) which builds the node U when U 6= ⊥.

We first claim that for any node v of the data structure, if p ∈ Pv, then,

Pr[p ∈ PU | U 6= ⊥] ≥ 1− 50ε. (7)

To see this, first consider the case in which Process(Pv, `, v) calls ProcessBall, and let x be the
center of the ball. If U 6= ⊥, then QueryBall(q, v) did not return any point and dX(x, q) > R+ 1,
so p /∈ BX(x,R). Then p ∈ Pv \BX(x,R) = PU with probability 1. For the remaining case, when
Process calls ProcessCut, we have:

Pr
S∼S

[p ∈ PU] = Pr
S∼S

[S(p) = S(q)] ≥ 1− 50ε,

22

since S is guaranteed to be 50ε-sparse by Theorem 3.6.
By Claim 4.2, any point p′ returned by Query(q, vi), where vi is the root of one of the data

structure trees, satisfies dX(p′, q) ≤ 2R + 1. To prove correctness, it remains to argue that, with
sufficiently high probability, at least one of the Query(q, vi) calls, for i = 1, . . . , k, does in fact
return a point. Fix some i between 1 and k, and define a random sequence U0, U1, . . . , Us of nodes
of the tree rooted at vi by U0 = vi and U` = C(U`−1, q); Us is the first node in this sequence for
which C(Us, q) = ⊥. Notice that s ≤ t. Clearly, Query(q, vi) will return a point if p ∈ PUs . By
(7) and the choice of t, this happens with probability at least (1− 50ε)s ≥ (1− 50ε)t ≥ n−α. By
picking the number k of trees in the data structure to be a sufficiently large multiple of nα, we
can guarantee that with large constant probability the data structure returns a point p′ such that
dX(p′, q) ≤ 2R+ 1.

To finish the analysis, we need to bound the number of cells stored by the data structure, and the
number of cell probes made by the query procedure. Each of the points stored in the leaves of each
tree form a partition of the point set P , so each tree has at most n internal nodes. Each internal
node stores O(log(N)) cells, and all the leaves together use O(n logN) cells of space (O(logN) per
point in P). Therefore, the total space used by the data structure is O(n1+α logN) cells.

The query procedure probes O(logN) cells at each internal node of a tree. The number of
cells probed at a leaf node v is proportional to O(|v.P | · logN). We claim that v.P is bounded
by a constant. Suppose that u is a child of a node v, and also that v was created by a call to
Process(Pv, `, v) and u by a call to Process(Pu, `+1, u). Then, by the guarantees of Theorem 3.6,
|Pu| ≤ 49

50 |Pv|, so the number of points that can reach a leaf of a tree is bounded by n
(

49
50

)t
. By the

choice of t, this number is bounded by a constant, as we claimed. Therefore, the total number of
cells probed by the query procedure is O(kt logN) = O(nα logn logN). This completes the proof of
Theorem 4.1.

5 Discretizing the space

Let ‖ · ‖ be a norm on Rd with unit ball K. Let E be the John Ellipsoid of K, i.e. the largest volume
ellipsoid contained inside K. By John’s theorem [Joh48],

E ⊂ K ⊂
√
d · E .

We let C ⊃ E be the smallest rotated box (with side-length 2 in ‖ · ‖) containing E . More formally,
consider the affine transform F : Rd → Rd which maps Bd

2 (the unit ball of ‖ · ‖2) to E . Then
C = F (Bd

∞). Note that the collection

Hs = {F (2s · x) + s · C ⊂ Rd : x ∈ Zd},

partitions Rd into disjoint translated copies of C with side-length 2s.
In this section, we reduce the problem of c-ANN for ‖ · ‖ over Rd to the problem of c-ANN for

23

‖ · ‖ over a finite set of points. We first reduce to the case when the dataset and query are bounded
by a high-dimensional box, then we will show how to discretize the boxes in order to reduce to a
finite set of points.

Lemma 5.1. Let A be a data structure solving c-ANN for ‖·‖ over s ·C where s = O(d) with success
probability 9

10 , query time T (n) and space S(n) = Ω(dn). Then there exists a data structure A′

solving c-ANN for ‖ · ‖ over Rd which solves the problem with probability 8
10 , query time T (n) +O(d)

and space S(n) +O(dn).

Proof. The data structure A′, upon receiving the dataset P , proceeds in the following way:

• Partition the space by a randomly shifted s · C where s = 5d (with respect to ‖ · ‖). More
formally, we sample y ∼ [0, 2s]d and consider the collection:

Hs,y = {F (y) +H ⊂ Rd : H ∈ Hs}.

• For each H ∈ Hs,y, we take the dataset P ∩H falling inside this location, translate the dataset
by the center of H and invoke the data structure A on the translated points of P ∩H.

On a query q, we identify the location q ∈ H ∈ Hs,y. We translate the query by the center of H,
and query the corresponding data structure holding P ∩H.

We say that two points p, q ∈ Rd are split if they lie in different cells of the partition Hs,y. For
any p and q with ‖p− q‖ ≤ 1, we have

Pr[p and q split] ≤ d · ‖p− q‖
2s ≤ 1

10

where we used the fact that after the affine transform F which maps e1, . . . , ed to the major axes of
E , we have the probability that we split points p and q is at most

1
2s

d∑
i=1
|(F−1(p− q))i| =

1
s

∥∥∥F−1(p)− F−1(q)
∥∥∥

1
≤
√
d

2s

∥∥∥F−1(p)− F−1(q)
∥∥∥

2

=
√
d

2s ‖p− q‖E ≤
‖p− q‖

2s .

Thus, with probability 9
10 , the query point and the dataset point fall in the same grid location.

The query time of T (n) +O(d) is immediate, and the space S(n) +O(dn) follows from the fact that
we must store a hash of the non-empty values of P ∩H where H ∈ Hs,y, as well as y, as well as the
fact that S(n) = Ω(n).

We now proceed to the second step where we reduce to the case the dataset and query lie within
a fixed set of points. We let X be a greedily constructed γ-net of s · C (where distances are measured
with respect to ‖ · ‖). Let (X, ‖ · ‖) be the metric space obtained by restricting the norm to T .

A standard volume argument gives the following fact.

24

Fact 5.2. We have that |X| ≤ exp (O(d log(d/γ))).

Since X is a γ-net, we may identify points with their closest neighbor in X. The following
lemma is immediate, and finishes the reduction.

Lemma 5.3. Let A be a data structure solving c-ANN for (X, ‖ · ‖) with success probability 9
10 ,

time T (n) and space S(n). There exists a data structure A′ solving c · (1+2γ
1−2γ)-ANN for ‖ · ‖ over

s · C with success probability 9
10 in time T (n) +O(d) and space S(n).

6 Bounding the cutting modulus of a normed space

For G = (gij) ∈ ∆(m), we denote D = diag(ρG(1), ρG(2), . . . , ρG(m)). We set A = (aij) =
D−1/2GD−1/2, so that aij = gij√

ρG(i)ρG(j)
and LG = I −A. For a metric space (M, dM) and q > 0,

we define (the inverse of) the nonlinear spectral gap γ(G, dqM) to be the infimum over γ > 0 such
that for every u1, u2, . . . , um ∈M, one has:

m∑
i,j=1

ρG(i)ρG(j) · dM(ui, uj)q ≤ γ
m∑

i,j=1
gij · dM(ui, uj)q.

Note that this definition agrees with the one from the Introduction if G is (a multiple of) a
doubly-stochastic matrix.

In this section, we show that for every d-dimensional normed space X = (Rd, ‖ · ‖X) and every
0 < ε < 1/2, one has Ξ(X, ε) = O

(
log d
ε2

)
. This bound easily follows (see Theorem 6.6) from a slight

extension of Theorem 1.7 to the case when A is not necessarily doubly stochastic. This extension
can be obtained by examining the proof from [Nao17], but instead we present a new, shorter and
more elementary argument, which constitutes the bulk of the present section (for a slightly different
exposition of the same argument, see [Nao18]).

Recall that for normed spaces X = (Rd, ‖·‖X) and Y = (Rd, ‖·‖Y) and a linear map T : Rd → Rd,
the operator norm ‖T‖X→Y is defined as follows: ‖T‖X→Y = sup‖x‖X=1 ‖Tx‖Y . The Banach–Mazur
distance dBM(X,Y) between X and Y is defined as follows: dBM(X,Y) = infT : Rd→Rd ‖T‖X→Y ·
‖T−1‖Y→X . By John’s theorem, one always has: dBM(X, `d2) ≤

√
d.

Theorem 6.1. For every normed space X = (Rd, ‖ · ‖X) and every G = (gij) ∈ ∆(m), one

has γ(G, ‖ · ‖2X) = O

((
1+log d
λ2(LG)

)2
)
, where d = dBM(X, `d2) ≤

√
d. In particular, one always has:

γ(G, ‖ · ‖2X) = O

((
1+log d
λ2(LG)

)2
)
.

Let V ⊂ (Rd)m be the following codimension-1 subspace:

V =
{

(v1, v2, . . . , vm) ∈ (Rd)m
∣∣∣∣∣
m∑
i=1

√
ρG(i) · vi = 0

}
.

We denote by VX = (V, ‖ · ‖VX) the normed space where for v = (v1, v2, . . . , vm) ∈ V , the norm
is given by ‖v‖VX =

√∑m
i=1 ‖vi‖2X . Denote by A : V → V the following linear map: (Av)i =

25

∑m
j=1 aijvj =

∑m
j=1

gijvj√
ρG(i)ρG(j)

. In words, A acts on a tuple of d-dimensional vectors the same way

as A = D−1/2GD−1/2 acts on a tuple of scalars. It is immediate to check that the image of A indeed
lies in V ; this follows from the fact that

(√
ρG(1),

√
ρG(2), . . . ,

√
ρG(m)

)
is an eigenvector of A.

Let I : V → V be the identity map.
We show that Theorem 6.1 readily follows from the following lemma.

Lemma 6.2. One has:
∥∥(I − A)−1∥∥

VX→VX
= O

(
1+log d
λ2(LG)

)
.

Proof of the implication “Lemma 6.2 ⇒ Theorem 6.1”. Indeed, an immediate reformulation of Lemma 6.2
is that for every v1, v2, . . . , vm ∈ Rd such that

∑m
i=1

√
ρG(i) · vi = 0, one has:

m∑
i=1
‖vi‖2X ≤ O

((1 + log d
λ2(L)

)2)
·
∑
i=1

∥∥∥∥∥∥vi −
m∑
j=1

gijvj√
ρG(i)ρG(j)

∥∥∥∥∥∥
2

X

. (8)

Our goal is to show that for every u1, u2, . . . , um ∈ Rd, one has:

m∑
i,j=1

ρG(i)ρG(j) · ‖ui − uj‖2X = O

((1 + log d
λ2(LG)

)2)
·

m∑
i,j=1

gij · ‖ui − uj‖2X . (9)

Without loss of generality, we can assume that
∑m
i=1 ρG(i) · ui = 0. We set vi =

√
ρG(i) · ui. Hence,∑m

i=1
√
ρG(i) · vi = 0 and (8) applies. On the one hand, one has:

m∑
i,j=1

ρG(i)ρG(j) · ‖ui − uj‖2X ≤
m∑

i,j=1
ρG(i)ρG(j) ·

(
‖ui‖X + ‖uj‖X

)2

≤ 2
m∑

i,j=1
ρG(i)ρG(j) ·

(
‖ui‖2X + ‖uj‖2X

)

= 4
m∑
i=1

ρG(i) · ‖ui‖2X = 4
m∑
i=1
‖vi‖2X . (10)

On the other hand, one has:

m∑
i=1

∥∥∥∥∥∥vi −
m∑
j=1

gijvj√
ρG(i)ρG(j)

∥∥∥∥∥∥
2

X

=
m∑
i=1

∥∥∥∥∥∥
m∑
j=1

gij√
ρG(i)

·
(

vi√
ρG(i)

− vj√
ρG(j)

)∥∥∥∥∥∥
2

X

=
m∑
i=1

∥∥∥∥∥∥
m∑
j=1

gij√
ρG(i)

· (ui − uj)

∥∥∥∥∥∥
2

X

≤
m∑
i=1

 m∑
j=1

gij√
ρG(i)

·
∥∥ui − uj∥∥X

2

≤
m∑

i,j=1
gij ·

∥∥ui − uj∥∥2
X
, (11)

where the third step is due to the triangle inequality, and the fourth step is due to Jensen’s inequality.
Combining (8), (10) and (11), we obtain (9).

Now let us show the proof of Lemma 6.2. For this we will need to relate the geometry of X

26

and the Euclidean geometry. Let H = (Rd, ‖ · ‖H) be a Hilbert space such that for every v ∈ Rd,
one has ‖v‖H ≤ ‖v‖X ≤ d · ‖v‖H . The existence of such a space follows immediately from the
definition of Banach-Mazur distance. In particular, if T is a linear map such that ‖T‖X→`d2 ≤ 1 and
‖T−1‖`d2→X ≤ d, we can define H by ‖x‖H = ‖Tx‖2. We define the normed space VH = (V, ‖ · ‖VH)

analogously to VX : the norm ‖v‖VH for v = (v1, v2, . . . , vm) ∈ V is defined by ‖v‖VH =
√∑m

i=1 ‖vi‖2H .
Clearly, for every v ∈ V , one has:

‖v‖VH ≤ ‖v‖VX ≤ d · ‖v‖VH . (12)

Finally, we define Ã = A+I
2 and Ã = A+I

2 . Let us observe that I − Ã = 1
2(I − A), so

∥∥(I −
A)−1∥∥

VX→VX
≤ 1

2 ·
∥∥(I − Ã)−1∥∥

VX→VX
, thus it is enough to show that

∥∥(I − Ã)−1∥∥
VX→VX

= O

(1 + log d
λ2(LG)

)
. (13)

One can see that (13) is an immediate corollary of the following three statements together with (12).
Let us note that Lemma 6.5 is the place where the logarithmic dependence on d shows up.

Claim 6.3. One has ‖Ã‖VX→VX ≤ 1.

Claim 6.4. One has ‖Ã‖VH→VH ≤ 1− λ2(LG)
2 .

Lemma 6.5. Let ‖ · ‖P and ‖ · ‖Q be two norms on Rd′ such that for some Φ ≥ 1 and for every
u ∈ Rd′ one has ‖u‖Q ≤ ‖u‖P ≤ Φ · ‖u‖Q. Suppose that T : Rd′ → Rd′ is a linear map such that
‖T‖P→P ≤ 1 and ‖T‖Q→Q ≤ 1− ε for some 0 < ε < 1. Then, ‖(I − T)−1‖P→P = O

(
1+log Φ

ε

)
.

Proof of Claim 6.3. For every v = (v1, v2, . . . , vm) ∈ V one has

‖Av‖2VX =
m∑
i=1
‖(Av)i‖2X =

m∑
i=1

∥∥∥∥∥∥
m∑
j=1

gijvj√
ρG(i)ρG(j)

∥∥∥∥∥∥
2

X

≤
m∑
i=1

 m∑
j=1

gij
ρG(i)

∥∥∥∥∥
√
ρG(i)
ρG(j) · vj

∥∥∥∥∥
X

2

≤
m∑
i=1

m∑
j=1

gij
ρG(i)

∥∥∥∥∥
√
ρG(i)
ρG(j) · vj

∥∥∥∥∥
2

X

=
m∑
i=1

m∑
j=1

gij
ρG(j) ‖vj‖

2
X =

m∑
j=1
‖vj‖2X = ‖v‖2VX ,

where the third step is by the triangle inequality, and the fourth step is by Jensen’s inequality.
Hence, ‖A‖VX→VX ≤ 1. But this implies that ‖Ã‖VX→VX ≤ 1 as well.

Proof of Claim 6.4. Let us first observe that for every u ∈ Rm such that
∑m
i=1

√
ρG(i) · ui = 0, one

has
‖Ãu‖2 ≤

(
1− λ2(LG)

2

)
· ‖u‖2, (14)

since Ã is positive semidefinite, the largest eigenvalue is 1, the corresponding eigenvector is
(
√
ρG(i))mi=1, and the second largest eigenvalue is 1− λ2(LG)/2.
The desired inequality reduces to (14) as follows. Since H is a Hilbert space, there exists an

orthogonal basis e1, e2, . . . , ed ∈ Rd such that for every u ∈ Rm, one has ‖u‖2H =
∑m
i=1〈u, ei〉2. For

27

1 ≤ i ≤ d and v = (v1, v2, . . . , vm) ∈ V , define πi(v) = (〈v1, ei〉, 〈v2, ei〉, . . . , 〈vm, ei〉) ∈ Rm. Then,
‖v‖2VH =

∑d
i=1 ‖πi(v)‖22. One has:

‖Ãv‖2VH =
d∑
i=1
‖πi(Ãv)‖22 =

d∑
i=1
‖Ãπi(v)‖22 ≤

(
1− λ2(LG)

2

)2 d∑
i=1
‖πi(v)‖22

=
(

1− λ2(LG)
2

)2
‖v‖2VH .

Proof of Lemma 6.5. For every k ≥ 1, one has

‖T k‖P→P ≤ Φ‖T k‖Q→Q ≤ Φ · (1− ε)k.

Thus, we can choose k∗ = O((log 2Φ)/ε) such that ‖T k∗‖P→P ≤ 1/2. Finally, we have:

‖(I − T)−1‖P→P ≤
∞∑
k=0
‖T k‖P→P ≤ k∗ ·

∞∑
i=0
‖T ik∗‖P→P ≤ k∗ ·

∞∑
i=0

(1/2)i = 2k∗ = O

(1 + log Φ
ε

)

as desired.

Theorem 6.6. For every normed space X = (Rd, ‖ · ‖X) with dBM(X, `d2) = d ≤
√
d, and every

0 < ε < 1/2, one has: Ξ(X, ε) = O
(

1+log d
ε2

)
. In particular, one always has: Ξ(X, ε) = O

(
log d
ε2

)
.

Proof. Let R > 0 be a parameter to be fixed later. Let G ∈ ∆(m) and let x = (x1, x2, . . . , xm) ∈ Xm

be such that ‖xi − xj‖X ≤ 1 if gij > 0. Suppose that x has no 1/2-dense ball of radius R. Then,

m∑
i,j=1

ρG(i)ρG(j) · ‖xi − xj‖2X ≥
R2

2 . (15)

On the other hand, we have:
m∑

i,j=1
gij · ‖xi − xj‖2X ≤ 1, (16)

since ‖xi − xj‖2X ≤ 1 whenever gij > 0. Thus, combining (15), (16) and Theorem 6.1, we get:
λ2(LG) = O

(
1+log d
R

)
. Thus, by setting R to a large enough multiple of 1+log d

ε2 and using Cheeger’s
inequality (Theorem 2.2), we conclude that G has a cut with conductance at most ε.

Note that Theorems 3.6 and 6.6, together with a standard discretization argument imply
Theorem 1.9. Indeed, given a norm ‖ · ‖X on Rd, and a radius R so that logR is polynomial in d,
we can greedily find N points x1, . . . xN so that the balls BX(x1, γ), . . . , BX(xN , γ) cover BX(0, R),
and logN = O(d log(R/γ)). We can then use Theorem 3.6 with the metric space of size N induced
on {x1, . . . , xN} and the cutting modulus bound given in Theorem 6.6. We identify any set S in
the collection C guaranteed by Theorem 3.6 with the union of the balls BX(xi, γ) that cover the
elements of S. It is easy to verify that any two points u, v ∈ BX(0, R) that lie at a distance at most

28

1− 2γ apart are separated by a uniformly random set in the subcollection S with probability at
most 50ε. The guarantee of Theorem 1.9 then follows by a simple rescaling.

7 Algorithm for `p

In this section, we give an O(p)-ANN algorithm for `p norms when 2 < p ≤ ∞. We use the framework
of Section 4 and a more refined bound on the cutting modulus of `p in order to achieve an improved
approximation. The improved bound on the cutting modulus for `p norms will follow from a slight
generalization of an argument due to Matoušek [Mat97]. We note that this improved bound on the
cutting modulus can also be proved by generalizing the interpolation-based argument in [Nao14].
However, Matoušek’s argument is more explicit, and allows us to relate Rayleigh quotients in the `p
and `2 norms. Using this observation, we can show that in the case of `p norms, we can also bound
the cutting modulus with respect to just balls and complements of boxes, rather than arbitrary finite
sets of points. Because both are efficiently describable, we can derive an efficient data structure for
O(p)-ANN over `p.

The algorithm presented achieves efficient query time and near-linear space. As in the case of
the cell-probe algorithm of Section 4, the time for preprocessing is exponential in the dimension.
During preprocessing, we consider a finite metric space of exp(O(d log d)) points discretizing the
space, so executing the partitioning theorems takes exp(O(d log d)) time.

The goal of this section is to prove the following theorem.

Theorem 7.1. For any 0 < α < 1, there exists a data structure solving c-ANN for `p with success
probability 9

10 with the following guarantees:

• the approximation is c = O(p/α),

• the query time of the data structure is poly(d) · nα, and

• the space of the data structure is poly(d) · n1+α.

It suffices to give a data structure over some finite metric space of N = exp (O(d log d)) points,
where pairwise distances are given by the `p norm. In particular, let X be a set of N points
x1, . . . , xN ∈ Rd formed by suitably discretizing the cube [−s, s]d where s = O(d) (see Lemma 5.3);
we consider the metric space (X, ‖ · ‖p). Theorem 7.1 follows from the following lemma.

Lemma 7.2. For any 0 < α < 1, there exists a data structure solving c-ANN for (X, ‖ · ‖p) with
success probability 9

10 , approximation O(p/α), query time poly(d) · nα and space poly(d) · n1+α.

In order to prove Lemma 7.2, we follow the framework from Section 4, which requires two tasks:

1. Show that the metric space (X, ‖ · ‖p) described above has ΞH(X, ε) = O(p/ε) for ε = Θ(α),
and an efficiently representable, or succinct (see the following definition) collection H of subsets
of X.

29

2. Give an analogous, efficient version of Theorem 3.6. In particular, the collection of subsets
S1, . . . , Sm ⊂ X in Theorem 3.6 will belong to a succinct collection S.

Definition 7.3 (Succinct Collections). We say that a collection S of subsets of X is b-succinct if
there exists a function E : S→ {0, 1}b, as well as an algorithm D running in time poly(b) taking
inputs in {0, 1}b ×X satisfying

D(E(S), q) =
{

1 q ∈ S
0 q /∈ S

∀S ∈ S.

We proceed to state the lemmas accomplishing steps 1 and 2 described above. Let H be the
collection of subsets of X induces by coordinate halfspaces. I.e. H consists of sets of the type
{x ∈ X : xi ≥ t} or {x ∈ X : xi ≤ t} for some i ∈ [d] and t ∈ R. We let P ⊂ X be any set of n
points in X. We aim to prove the following two lemmas.

Lemma 7.4 (Cutting Modulus for `p). We have ΞH(X, ε) = O(p/ε).

By a quick inspection of the proof of Theorem 3.6, an efficient version of Theorem 3.6 would
follow from the following efficient version of Lemma 3.7.

Lemma 7.5 (Efficient Lemma 3.7). There exists an a collection of subsets S of X which is b-
succinct for b = poly(d) such that for any matrix G ∈ ∆(N) where gij > 0 only if ‖xi − xj‖p ≤ 1,
either there exists a 1

4 -dense ball of radius R = ΞH(X, ε), or there exists a subset S ∈ S where:

1
3 ≤ ρG(S) ≤ 3

4 and
∑

i∈S,j /∈S
gij ≤ 2ε.

Lemma 7.5 implies Theorem 1.8 by an argument analogous to the proof of Theorem 3.6.

Proof of Theorem 7.1 given Lemmas 7.4 and 7.5. The data structure proceeds in a similar fashion
to the cell-probe data structure in Section 4. The one modification is that the output S from
sub-routine MWU(P) satisfies S ⊂ S for a b-succinct collection S with b = poly(d). Therefore,
ProcessCut(P, S, `, v) stores the b bits, E(S), in v.S. In QueryCut(q, v), the algorithm executes
D(v.S, q) to evaluate the “if” statement in QueryCut(q, v).

Lemma 7.4 and Lemma 7.5 follow from a Rayleigh quotient inequality for `p norms, which we
prove in the next subsection.

7.1 Rayleigh quotient inequality for `p spaces and proof of Lemma 7.4

Let x = (x1, . . . , xm) ∈ (Rd)m and G ∈ ∆(m). As in Section 3, let ρG(i) =
∑m
j=1 gij , and for

simplicity in notation, we will write ρ(i) = ρG(i) since the matrix G will be fixed.

30

For k ∈ [d], consider d functions Fk : R → R. We define a function F : (Rd)m → (Rd)m by
applying to allm points the functions F1, . . . , Fd coordinate-wise. In particular, for each j = 1, . . . ,m,

(F (x))j = (F1(xj1), F2(xj2), . . . , Fd(xjd)) ∈ Rd. (17)

Additionally, for any k ∈ [d], let πk : Rd → R be the projection onto the kth coordinate. We also
think of πk as acting on a sequence of points by letting πk : (Rd)m → Rm be given by:

πk(x) = (x1k, x2k, . . . , xmk) ∈ Rm. (18)

Note that πk(F (x)) = Fk(πk(x)).
We will use the Mazur map [Maz29] (see also [BL00]) between `p and `2 defined on Rd by

Mp,2(x)i = sign(xi) · |xi|p/2 for every i ∈ [d]. Note that for any x ∈ Rd, we have ‖Mp,2(x)‖22 = ‖x‖pp.
The following inequality gives a well-known estimate on the modulus of uniform continuity of the
the Mazur map: for any x, y ∈ Rd, we have

‖Mp,2(x)−Mp,2(y)‖22 ≤
p2

4 ‖x− y‖
2
p · (‖x‖pp + ‖y‖pp)

1− 2
p (19)

See Section 5.1 of [Nao14] for a proof of this inequality with the explicit constants above.
We state the following result of Matoušek [Mat97], generalized slightly to the case of non-negative

symmetric matrices, and stated in terms of Rayleigh quotients.

Lemma 7.6. For any x ∈ (Rd)m there exist d monotone functions F1, . . . , Fd : R→ R such that:

R(F (x), G, ‖ · ‖22)p/2 ≤ R(x, G, ‖ · ‖pp) · (
√

2p)p.

Proof. For k ∈ [d], we define the function Fk(x) = sign(x − zk) · |x − zk|p/2 for some numbers
z1, . . . , zd ∈ R which we specify later. Note that each Fk is monotone. Let y = (y1, . . . , ym) ∈ (Rd)m

be given by y = F (x); we will show the bound relating R(x, G, ‖ · ‖pp) and R(y, G, ‖ · ‖22).
For any coordinate k ∈ [d], let zk ∈ R be a real number such that

m∑
i=1

ρ(i)yik =
m∑
i=1

ρ(i)Fk(xik) = 0.

The existence of such a number follows by the continuity of
∑m
i=1 ρ(i)sign(xik − zk) · |xik − zk|p/2

in zk, and the fact that this function goes to +∞ as zk tends to −∞, and to −∞ as zk tends to
+∞. Let us denote then, for notational convenience, x̃i = xi − z, where z is the vector (z1, . . . , zd).
We have yi = Mp,2(x̃), so, ‖yi‖22 = ‖x̃‖pp for all i ∈ [m]. It follows from the triangle inequality and

31

Cauchy-Schwarz that

m∑
i=1

ρ(i)‖x̃i‖pp =
m∑
i=1

ρ(i)

∥∥∥∥∥∥yi −
m∑
j=1

ρ(j)yj

∥∥∥∥∥∥
2

2

≤
m∑
i=1

m∑
j=1

ρ(i)ρ(j) ‖yi − yj‖22

= 1
R(y,G, ‖ · ‖22)

m∑
i=1

m∑
j=1

gij‖yi − yj‖22.

Applying inequality (19) to each term on the right hand side, we have

m∑
i=1

ρ(i)‖x̃i‖pp ≤
1

R(y,G, ‖ · ‖22)
p2

4

m∑
i=1

m∑
j=1

gij‖x̃i − x̃j‖2p · (‖x̃i‖pp + ‖x̃j‖pp)
1− 2

p

By Hölder’s inequality, we may write

m∑
i=1

m∑
j=1

gij‖x̃i − x̃j‖2p · (‖x̃i‖pp + ‖x̃j‖pp)
1− 2

p ≤

 m∑
i=1

m∑
j=1

gij‖x̃i − x̃j‖pp

2/p m∑
i=1

m∑
j=1

gij(‖x̃i‖pp + ‖x̃j‖pp)

1− 2
p

=

 m∑
i=1

m∑
j=1

gij‖x̃i − x̃j‖pp

2/p(
2
m∑
i=1

ρ(i)‖x̃i‖pp

)1− 2
p

Combining the inequalities, and using x̃i − x̃j = xi − xj , we get

m∑
i=1

ρ(i)‖x̃i‖p ≤
1

R(y,G, ‖ · ‖22)
· p2

2(p+2)/p

 m∑
i=1

m∑
j=1

gij‖xi − xj‖p
2/p(

m∑
i=1

ρ(i)‖x̃i‖p
)1− 2

p

.

Thus, we obtain:

m∑
i=1

ρ(i)‖x̃i‖p ≤
1

R(y,G, ‖ · ‖22)p/2
· pp

2(p+2)/2 ·
m∑
i=1

m∑
j=1

gij‖xi − xj‖p. (20)

Finally, we have that:

m∑
i=1

m∑
j=1

ρ(i)ρ(j)‖xi − xj‖p =
m∑
i=1

m∑
j=1

ρ(i)ρ(j)‖x̃i − x̃j‖p ≤ 2p+1
m∑
i=1

ρ(i)‖x̃i‖p, (21)

and combining (20) and (21), we obtain the desired result.

With the Rayleigh quotient inequality from Lemma 7.6, we can easily prove Lemma 7.4.

Corollary 7.7. Let x = (x1, . . . , xm) ∈ (Rd)m be any set of m points, where:

• gij > 0 only if ‖xi − xj‖p ≤ 1, and

•
∑m
i=1

∑m
j=1 ρ(i)ρ(j)‖xi − xj‖pp ≥

(
√

2p)p

εp/2
,

32

then R(F (x), G, ‖ · ‖22) ≤ ε.

Proof. We simply note that R(x, G, ‖ · ‖pp) ≤
εp/2

(
√

2p)p
, so R(F (x), G, ‖ · ‖22) ≤ ε by Lemma 7.6.

Lemma 7.8. Let x = (x1, . . . , xm) ∈ (Rd)m be any sequence of m points where gij > 0 only if
‖xi − xj‖p ≤ 1. Then,

• either x has a 1
2 -dense `p-ball of radius R = O(p/

√
ε), or

• R(F (x), G, ‖ · ‖22) ≤ ε.

Proof. If
∑m
i=1

∑m
j=1 ρ(i)ρ(j)‖xi − xj‖pp ≥

(
√

2p)p

εp/2
, then we have R(F (x), G, ‖ · ‖22) ≤ ε, so assume

otherwise. Consider the distribution D supported on [m] given by sampling i with probability ρ(i).
Then,

E
i,j∼D

[‖xi − xj‖pp] =
m∑
i=1

m∑
j=1

ρ(i)ρ(j)‖xi − xj‖pp ≤
(
√

2p)p

εp/2
.

Then, there exists a fixed index i ∈ [m] where

E
j∼D

[‖xi − xj‖pp] ≤
(
√

2p)p

εp/2
,

and by Markov’s inequality,

Pr
j∼D

[
‖xi − xj‖pp ≥ 2 · (

√
2p)p

εp/2

]
≤ 1

2 .

Thus, we conclude that there exists an `p-ball of radius R = 21/2+1/pp√
ε

= O(p/
√
ε) around xi,

Bp(xi, R), such that
∑
xj∈Bp(xi,R)∩P ρ(j) ≥ 1

2 .

Proof of Lemma 7.4. By Lemma 7.8 applied with 2ε2, if x does not have a 1
2 -dense ball of radius

R = O(p/ε), then R(F (x), G, ‖ · ‖22) ≤ 2ε2. Then there must exist some coordinate k ∈ [d] for which

R(Fk(πk(x)), G, | · |2) = R(πk(F (x)), G, | · |2) ≤ 2ε2.

We can apply Cheeger’s inequality (Theorem 2.2) to Fk(πk(x)) and we get that there exists a real
number t such that the set S = {j ∈ [m] : Fk(xjk) ≤ t} satisfies ΦG(S) ≤ ε. Observe that, since Fk
is a monotone function, we can equivalently write S = {j ∈ [m] : xjk ≤ F−1

k (t)}, which is the set
induced on x by H = {x ∈ X : xk ≤ F−1(t)} ∈ H. Thus, we have ΞH(X, ε) = O(p/ε).

7.2 Proof of Lemma 7.5

For the metric space (X, ‖ · ‖p), we let V ⊂ R be the set of values the coordinates of X take. In
particular, V contains all real numbers [−O(d), O(d)] with poly(d) bits of precision. Note that
|V| ≤ exp (O(d log d)).

33

Definition 7.9. Consider d tuples of values in V, V = {(vk,0, vk,1)}dk=1 ∈ (V × V)d where vk,0, vk,1 ∈
V. Then we say Box(V) ⊂ X is the set given by:

Box(V) = {y ∈ X : ∀k ∈ [d], vk,0 < yk < vk,1} .

We make the following observation.

Fact 7.10. For any V1 ∈ (V × V)d and H ∈ H, there exists V3 ∈ (V × V)d such that:

Box(V1) ∩H = Box(V3).

Consider the collection S composed of all complements of boxes in X, i.e.,

S =
{

Box(V) ⊂ X : V ∈ (V × V)d
}
.

Lemma 7.11. The collection S is b-succinct for b ≤ O(d2 log d).

Proof. For each set S ∈ S, we can write the 2d values of V which form the values of vk,0 and vk,1
for each k ∈ [d] so S = Box(V). In order to determine whether a point q ∈ S, we simply check all d
coordinates and compare them to vk,0 and vk,1 to determine if q /∈ Box(V).

Proof of Lemma 7.5. We closely follow the proof of Lemma 3.7. The proof gives an iterative
procedure which maintains a set S which is initially empty. At each iteration, points are added to
the set S. In any particular iteration, we consider a matrix G̃, which is the submatrix of G given by
the rows and columns of points in S, and rescaled so that G̃ ∈ ∆(|S|). Consider one iteration of the
procedure of Lemma 3.7, and let x = (x1, . . . , xm) ∈ (Rd)m be the points remaining in S. Suppose
there exists some V ∈ (V × V)d with S = Box(V); initially, this is true, and we will maintain this
invariant throughout the procedure.

By Lemma 7.4, either there exists an `p ball of radius O(p/ε) which is 1
2 -dense with respect to G̃,

or there exists a set H ∈ H such that Hx = {j ∈ [m] : xj ∈ H} satisfies Φ
G̃

(Hx) ≤ ε. Similarly to
Lemma 7.8, if there exists a 1

2 -dense ball with respect to G̃, then that ball is 1
4 -dense with respect to

G, and we are done. Assume then that this is not the case. Without loss of generality, ρ
G̃

(Hx) ≤ 1
2 ,

or, otherwise, we can replace H with its complement, which is also an element of H. The set S \Hx

is the intersection of Box(V) and the complement H of H, which is also induced by a box. The
proof of Lemma 3.7 then considers letting S ← S ∪ Hx, so by the above observation, S is still
represented as a box.

8 Algorithm for Schatten-p

We will first consider the case of p > 2, since we obtain slightly better dependence on α. We then
discuss the case p ∈ [1, 2]. Let (Rd×d, ‖ · ‖Sp) be the normed space over matrices x ∈ Rd×d with

norm ‖x‖Sp =
(∑d

k=1 |λk(x)|p
)1/p

, where |λ1(x)| ≥ |λ2|(x) ≥ · · · ≥ |λd| are the d eigenvalues of x.

34

Note that ‖x‖S2 = ‖x‖2, where we consider x as a vector in Rd2 . For this reason, in this section we
will identify S2 (as a norm on Rd×d) and `2 (as a norm on Rd2).

Theorem 8.1. Fix some 0 < α < 1 and p > 2. There exists a data structure solving c-ANN for Sp
with success probability 9

10 with the following guarantees:

• the approximation is c = O(p/α).

• the query time of the data structure is poly(dp) · nα, and

• the space of the data structure is poly(dp) · n1+α.

Theorem 8.1 for the case of p = O(1) actually implies Theorem 7.1, with weaker space and
query time bounds, by embedding points x ∈ `p into diagonal matrices in Sp. However, we divide
the presentation since Theorem 8.1 presents its unique set of obstacles to overcome. At a high
level, we follow a similar structure to Section 7. We consider the metric space (X, dSp) given by
N = exp(O(d log d)) points (matrices) taken by rounding all entries of matrices with ‖x‖Sp ≤ O(d)
to poly(d) many bits (see Lemma 5.3). In particular, Theorem 8.1 follows from the following lemma.

Lemma 8.2. Fix any 0 < α < 1, there exists a data structure solving c-ANN for (X, dSp) with
success probability 9

10 , approximation O(p/α), query time poly(dp) · nα and space poly(dp) · n1+α.

Similarly to Section 7, we show ΞH(X, ε) = O(p/ε) for a succinct collection H, and give an
efficient version of Lemma 3.7. We set R = Ξ(X, ε). We state the efficient version of Lemma 3.7,
whose statement is similar to the statement of Lemma 7.5; however, we will follow with a brief
discussion of the difficulties encountered in Sp.

Lemma 8.3. There exists a collection of subsets S of X which is b-succinct for b = poly(dp) such
that for any matrix G ∈ ∆(N) where gij > 0 only if ‖xi − xj‖Sp ≤ 1, either there exist a 1

4 -dense
ball of radius R with respect to G, or there exists a subset S ∈ S where:

1
3 ≤ ρG(S) ≤ 3

4 and
∑

i∈S,j /∈S
gij ≤ 2ε.

At the heart of the algorithm for `p lies a Rayleigh quotient inequality for `p spaces (Lemma 7.6)
showing that for any x ∈ (Rd)m, there exist d monotone functions F1, . . . , Fd : R → R which are
applied coordinate-wise to every point so:

R(x, G, ‖ · ‖pp) ≤ R(F (x), G, ‖ · ‖22) · (
√

2p)p.

Since the functions F1, . . . , Fd acted on the points coordinate-wise and were monotone, the proof of
Lemma 7.5 claimed that coordinate-cuts of F (x) corresponded to coordinate cuts of the original
points x. This has two advantages: 1) the querying algorithm requires no knowledge of the map
F used, and 2) the possibly unbounded unions of coordinate cuts form the complement of boxes,
which are efficiently described.

35

For the case of Sp, we give a similar inequality to Lemma 7.6. At a high level, we say that for
any x ∈ (Rd×d)m and any matrix G ∈ ∆(m), there exists a map F : Rd×d → Rd×d (which depends
on x, is not applied coordinate-wise, and is not monotone) such that:

R(x, G, ‖ · ‖pSp) ≤ (O(p))p R(F (x), G, ‖ · ‖22)p/2 + η,

where η is a small error term which depends on x, G, and F . Similarly to the case of `p, the data
structure divides the points in x according to a coordinate cut S after applying the map F . This
means that the succinct collection S must encode F in the description of the cut. In particular, the
algorithm D(E(S), q) will first evaluate F (q) (which it decodes from E(S)), and then checks some
coordinate of F (q) to determine if q ∈ S.

One issue that arises is that Lemma 3.7 may produce sets S which are given by an unbounded
union of S̃ (one for each iteration in the proof of Lemma 3.7). In the case of Lemma 7.5, these
unions formed complements of boxes, so we simply stored the box; however, storing the description
of each map F in each iteration becomes too expensive.

Therefore, the data structure must balance the number of functions F to store with the error
term η. More specifically, the data structure begins the partitioning procedure by storing the first
map F found, and continues using the same map F until the error term η becomes too large. When
the error term becomes too large, we re-compute and store a new map F . With this procedure, we
show that it suffices to store (O(d))p many maps for each set, which gives us the succinct collection.

8.1 Rayleigh quotient inequality for Sp, p > 2

Let x ∈ Rd×d be a matrix. We write |x| = (xTx)1/2 ∈ Rd×d. The map used is the natural
generalization of F from Lemma 7.6 to the setting of matrices. For z ∈ Rd×d, the map Fz applies
the (non-commutative) Mazur map from Sp into S2, or, equivalently, `2, after re-centering by the
matrix z, i.e.,

Fz(x) = Mp,2(x− z),

where Mp,q(x) = x|x|p/q−1. Here we are overloading the notation for the Mazur map from the
previous section. Note that applying the (non-commutative map) just defined to a diagonal matrix
is equivalent to applying the (commutative) map from the previous section to the vector of diagonal
entries.

We will use the following lemma of Ricard [Ric15], generalizing (19), for the specific case of
mapping Sp into `2.

Lemma 8.4 (Lemma 2.6 in [Ric15]). If 1 ≤ p ≤ 2 and x, y ∈ Rd×d are matrices, then:

‖Mp,2(x)−Mp,2(y)‖2 ≤ O(1) · ‖x− y‖p/2Sp
,

and
‖M2,p(x)−M2,p(y)‖Sp ≤ O(1) · ‖x− y‖2 ·

(
‖x‖2/p−1

2 + ‖y‖2/p−1
2

)
,

36

and if 2 < p and x, y ∈ Rd×d are matrices, then:

‖Mp,2(x)−Mp,2(y)‖2 ≤ O(p) · ‖x− y‖Sp
(
‖x‖p/2−1

Sp
+ ‖y‖p/2−1

Sp

)
,

and
‖M2,p(x)−M2,p(y)‖Sp ≤ O(1) · ‖x− y‖2/p2 .

For the remainder of the subsection, we consider any sequence of matrices x = (x1, . . . , xm) ∈
(Rd×d)m, as well as any matrix G ∈ ∆(m). For simplicity, we again write ρ(i) = ρG(i). We first
prove a general statement on how the values of R(x, G, ‖ · ‖pSp) and R(Fz(x), G, ‖ · ‖22) relate in
terms of the value of z. The proof follows by adapting the argument of Matoušek [Mat97] given
in Lemma 7.6 with the estimates from Ricard [Ric15] in Lemma 8.4. We state a somewhat more
general version which we need in our algorithm.

Lemma 8.5. For any z ∈ Rd×d, let δ ∈ Rd×d be the matrix given by δ =
∑m
i=1 ρ(i)Fz(xi). Then,

we have:

R(Fz(x), G, ‖ · ‖22)p/2
1− 2p−1‖δ‖p2(∑m

i=1 ρ(i)‖xi − z‖pSp
)p/2

 ≤ (O(p))p · R(x, G, ‖ · ‖pSp).

Proof. For simplicity in the notation, we let x̃ = x− z. So δ ∈ Rd×d is the matrix given by

δ =
m∑
j=1

ρ(j)Mp,2(x̃j).

Note that ‖x̃‖pSp = ‖Mp,2(x̃)‖22, so we write:

m∑
i=1

ρ(i)‖x̃i‖pSp =
m∑
i=1

ρ(i) ‖Mp,2(x̃i)‖22

=
m∑
i=1

ρ(i) ‖Mp,2(x̃i)− δ + δ‖22

≤ 2
m∑
i=1

ρ(i)

∥∥∥∥∥∥Mp,2(x̃i)−
m∑
j=1

ρ(j)Mp,2(x̃j)

∥∥∥∥∥∥
2

2

+ 2 ‖δ‖22 . (22)

We now focus on the first term of the right-hand side, where by the triangle inequality and

37

Cauchy-Schwarz, we may write:∥∥∥∥∥∥Mp,2(x̃i)−
m∑
j=1

ρ(j)Mp,2(x̃j)

∥∥∥∥∥∥
2

2

=

∥∥∥∥∥∥
m∑
j=1

ρ(j) (Mp,2(x̃i)−Mp,2(x̃j))

∥∥∥∥∥∥
2

2

≤

 m∑
j=1

ρ(j) ‖Mp,2(x̃i)−Mp,2(x̃j)‖2

2

≤
m∑
j=1

ρ(j) ‖Mp,2(x̃i)−Mp,2(x̃j)‖22 . (23)

Combining the right-hand side of (23) and (22), with the definition of R(F (x), G, ‖ · ‖22), we obtain:

m∑
i=1

ρ(i)‖x̃i‖pSp ≤ 2 · 1
R(Fz(x), G, ‖ · ‖22)

m∑
i=1

m∑
j=1

gij ‖Mp,2(x̃i)−Mp,2(x̃j)‖22 + 2‖δ‖22. (24)

Applying Lemma 8.4 for the case p > 2 to the first term on the right-hand side, as well as Hölder’s
inequality,

m∑
i=1

m∑
j=1

gij‖Mp,2(x̃i)−Mp,2(x̃j)‖22 ≤ O(p2)
m∑
i=1

m∑
j=1

gij‖x̃i − x̃j‖2Sp
(
‖x̃i‖p/2−1

Sp
+ ‖x̃j‖p/2−1

Sp

)2

≤ O(p2)

 m∑
i=1

m∑
j=1

gij‖x̃i − x̃j‖pSp

 2
p

×

 m∑
i=1

m∑
j=1

gij
(
‖x̃i‖p/2−1

Sp
+ ‖x̃j‖p/2−1

Sp

) 2p
p−2

p−2
p

= O(p2)

 m∑
i=1

m∑
j=1

gij‖xi − xj‖pSp

 2
p (m∑

i=1
ρ(i)‖x̃i‖pSp

) p−2
p

. (25)

By combining (24) and (25), and dividing by
(∑m

i=1 ρ(i)‖x̃i‖pSp
) p−2

p , we have:

(
m∑
i=1

ρ(i)‖x̃i‖pSp

) 2
p

≤ O(p2)
R(Fz(x), G, ‖ · ‖22)

 m∑
i=1

m∑
j=1

gij‖xi − xj‖pSp

 2
p

+ 2‖δ‖22(∑m
i=1 ρ(i)‖x̃i‖pSp

) p−2
p

,

38

and, therefore, we have:

m∑
i=1

ρ(i)‖x̃i‖pSp ≤

 O(p2)
R(Fz(x), G, ‖ · ‖22)

 m∑
i=1

m∑
j=1

gij‖xi − xj‖pSp

 2
p

+ 2‖δ‖22(∑m
i=1 ρ(i)‖x̃i‖pSp

) p−2
p

p
2

≤ (O(p))p

R(Fz(x), G, ‖ · ‖22)p/2
m∑
i=1

m∑
j=1

gij‖xi − xj‖pSp + 2p−1 · ‖δ‖p2(∑m
i=1 ρ(i)‖x̃i‖pSp

)p/2−1 .

Rearranging the terms, we get

R(Fz(x), G, ‖ · ‖22)p/2
1− 2p−1 · ‖δ‖p2(∑m

i=1 ρ(i)‖x̃i‖pSp
)p/2

 ≤ (O(p))p ·
∑m
i=1

∑m
j=1 gij‖xi − xj‖

p
Sp∑m

i=1 ρ(i)‖x̃i‖pSp
.

Additionally, we have:

m∑
i=1

m∑
j=1

ρ(i)ρ(j)‖xi − xj‖pSp =
m∑
i=1

m∑
j=1

ρ(i)ρ(j)‖x̃i − x̃j‖pSp ≤
m∑
i=1

m∑
j=1

ρ(i)ρ(j)
(
‖x̃i‖Sp + ‖x̃j‖Sp

)p
≤ 2p

m∑
i=1

ρ(i)‖x̃i‖pSp . (26)

Combining the inequalities and recalling the definition of R(x, G, ‖ · ‖pSp) gives the desired result.

Given Lemma 8.5, we prove the following lemma which allows us to pick a particular matrix
z ∈ Rd×d whose “error term” is small. In the case of `p we could show this by an elementary
application of the intermediate value theorem. However, in the case of Sp, our map is no longer
applied coordinatewise, and the existence of of a good z is non-trivial.

Lemma 8.6. There exists a matrix z0 ∈ Rd×d with ‖z0‖Sp ≤ 2O(p) ·maxi∈[m] ‖xi‖Sp such that

δ =
m∑
i=1

ρ(i)Fz0(xi) = 0 ∈ Rd×d.

Proof. Let R = maxi∈[m] ‖xi‖Sp . Define the following map f : Rd×d → Rd×d:

f(z) = M2,p

(
m∑
i=1

ρ(i)Mp,2(z − xi)
)
.

Claim 8.7. For every z, one has:

‖f(z)− z‖Sp ≤ O(1) ·R2/p · (‖z‖Sp +R)1−2/p.

Proof. We simply follow the computation, applying Lemma 8.4 and the triangle inequality as

39

necessary.

‖f(z)− z‖p/2Sp
=
∥∥∥∥∥M2,p

(
m∑
i=1

ρ(i)Mp,2(z − xi)
)
−M2,p(Mp,2(z))

∥∥∥∥∥
p/2

Sp

≤ 2O(p) ·
∥∥∥∥∥
m∑
i=1

ρ(i)Mp,2(z − xi)−Mp,2(z)
∥∥∥∥∥

2

= 2O(p) ·
∥∥∥∥∥
m∑
i=1

ρ(i)(Mp,2(z − xi)−Mp,2(z))
∥∥∥∥∥

2

≤ 2O(p) ·
m∑
i=1

ρ(i) · ‖Mp,2(z − xi)−Mp,2(z)‖2

≤ 2O(p) ·
m∑
i=1

ρ(i) · ‖xi‖Sp ·
(
‖z − xi‖p/2−1

Sp
+ ‖z‖p/2−1

Sp

)
≤ 2O(p) ·

m∑
i=1

ρ(i) · ‖xi‖Sp ·
(
‖z‖Sp + ‖xi‖Sp

)p/2−1

≤ 2O(p) ·R ·
(
‖z‖Sp +R

)p/2−1
,

where the second and the fifth step are due to Lemma 8.4. Thus,

‖f(z)− z‖Sp ≤ O(1) ·R2/p ·
(
‖z‖Sp +R

)1−2/p
.

Claim 8.8. Let r be a positive integer and h : Rr → Rr be a continuous map such that for some
norm ‖ · ‖ on Rr one has:

‖h(w)− w‖ = o(‖w‖)

as w →∞. Then h is surjective.

Proof. Let x0 ∈ Sr be an arbitrary point. Let τ : Rr → Sr \ {x0} be a homeomorphism. Consider
h̃ : Sr → Sr defined as follows: h̃(x0) = x0, and h̃ = τ ◦ h ◦ τ−1 on Sr \ {x0}. Since h(w)→∞ as
w →∞, the function h̃ is continuous. Let us show that h̃ is homotopic to the identity via:

F̃ (t, x) = tx+ (1− t)h̃(x).

It is enough to check that F̃ is continuous in (t, x0) for every 0 ≤ t ≤ 1. For this it is sufficient to
check that

F (t, w) = tw + (1− t)h(w)

converges to ∞ as x→∞ uniformly in 0 ≤ t ≤ 1. We have:

‖F (t, w)‖ = ‖w + (1− t)(h(w)− w))‖ ≥ ‖w‖ − ‖h(w)− w‖ ≥ (1− o(1))‖w‖.

40

Thus, h̃ is homotopic to the identity. This implies that h̃ is surjective, since any continuous map
Sr → Sr homotopic to the identity is surjective (see, e.g., Section 2.2 of [Hat02] for the proof).
Since h̃(x0) = x0, h is surjective as well.

Combining Claims 8.7 and 8.8, we conclude that f is surjective. Since M2,p(t) = 0 iff t = 0, we
get the existence of z0 such that

m∑
i=1

ρ(i)Mp,2(xi − z0) = 0.

From Claim 8.7 it follows that ‖z0‖Sp ≤ 2O(p) ·R, as required.

We may now state a corollary which will be used in the algorithm, which simply follows from
Lemma 8.5 and Lemma 8.6.

Corollary 8.9. There exists a matrix z0 ∈ Rd×d with ‖z0‖Sp ≤ 2O(p) maxi∈[m] ‖xi‖Sp such that:

R(Fz0(x), G, ‖ · ‖22)p/2 ≤ (O(p))p · R(x, G, ‖ · ‖pSp).

Let H be the collection of sets of the type z+M2,p({x ∈ Rd×d : xij ≥ t}) or z+M2,p({x ∈ Rd×d :
xij ≤ t}) for z ∈ Rd×d, some i, j ∈ [d], and t ∈ R. The bound ΞH(X, ε) = O(p/ε) now follows from
Corollary 8.9 in the same fashion as in the proof of Lemma 7.4.

Finally, we show that Lemma 8.6 is somewhat robust, and allows for small deviations from z0

when there are no dense balls in x.

Lemma 8.10. Suppose x does not contain a 1
2 -dense ball of radius 10p with respect to G, and all

points xi have ‖xi‖Sp ≤ O(d). Let z0 ∈ Rd×d with ‖z0‖Sp ≤ 2O(p) · d be any matrix with

δ0 =
m∑
i=1

ρ(i)Fz0(xi) satisfying ‖δ0‖2 ≤ 1,

and z ∈ Rd×d be any matrix with ‖z − z0‖2 ≤ 1
dO(p) . Then we have:

R(Fz(x), G, ‖ · ‖22)p/2 ≤ (O(p))p · R(x, G, ‖ · ‖pSp).

Proof. If there is no 1
2 -dense ball of radius 10p in x with respect to G, then

m∑
i=1

ρ(i)‖xi − z‖pSp ≥
(10p)p

2 . (27)

41

Let δ =
∑m
i=1 ρ(i)Fz(xi), then we have:

‖δ − δ0‖2 ≤
m∑
i=1

ρ(i) ‖Mp,2(xi − z)−Mp,2(xi − z0)‖2

=
m∑
i=1

ρ(i) ‖Mp,2(xi − z0 + (z0 − z))−Mp,2(xi − z0)‖2

≤ O(p)‖z0 − z‖Sp
(
‖xi − z‖p/2−1

Sp
+ ‖xi − z0‖p/2−1

Sp

)
≤ O(p) · ‖z0 − z‖Sp (O(d))p ≤ 1,

and therefore, ‖δ‖2 ≤ 2. Combining this fact, along with (27) and Lemma 8.5 gives the desired
inequality.

The following lemma follows in a similar fashion to Lemma 7.8 using Lemma 8.10.

Lemma 8.11. Let x = (x1, . . . , xm) ∈ (Rd×d)m be any set of m points where gij > 0 only if
‖xi − xj‖Sp ≤ 1, and the conditions of z0 ∈ Rd×d, δ0 ∈ Rd×d and z ∈ Rd×d in Lemma 8.10 are
satisfied. Then,

• either there exists a Sp-ball B of radius R = O(p/ε) such that
∑
xj∈Bp∩x ρ(j) ≥ 1

2 , or

• R(Fz(x), G, ‖ · ‖22) ≤ ε2.

8.2 Proof of Lemma 8.3

Let Z be the set of matrices z ∈ Rd×d with ‖z‖Sp ≤ 2O(p) · d and each entry of z rounded to
precision 1

dO(p) . In particular, we have that for every matrix z0 ∈ Rd×d with ‖z0‖Sp ≤ 2O(p) · d there
exists some matrix z ∈ Z with ‖z − z0‖Sp ≤ 1

dO(p) . Note that |Z| ≤ exp(poly(dp)). Similarly to
Subsection 7.2, we let V ⊂ R be the set of values the entries of matrices Fz(x) take when z ∈ Z and
x ∈ X, and note |V| ≤ exp(poly(dp)).

Definition 8.12. Let τ = poly(dp). We consider the collection S of subsets of X given by all sets

S =
τ⋃
t=1

S(t),

where for each t ∈ [τ], there is some V ∈ (V × V)d×d such that

S(t) = {x ∈ X : Fz(x) /∈ Box(V), z ∈ Z}.

Lemma 8.13. The collection S is b-succinct for b ≤ poly(dp).

Proof. The encoding E(S) is given by encoding the τ values of z(t) ∈ Z and V (t) ∈ (V × V)d×d

defining the sets S(t). Then, the decoding algorithm D(E(S), q) goes through each t = 1, . . . , τ , and
checks if q ∈ S(t) by checking if Fz(t)(q) ∈ Box(V (t)) in time poly(dp).

42

We have the following analogue of Lemma 7.5.

Lemma 8.14. For the collection S of subsets of X described above, we have that for any matrix
G ∈ ∆(N) where gij > 0 only if ‖xi − xj‖Sp ≤ 1, either there exists a 1

4 -dense ball of radius
R = O(p/eps), or there exists a subset S ∈ S where:

1
3 ≤ ρG(S) ≤ 3

4 and
∑

i∈S,j /∈S
gij ≤ 2ε.

Proof. We will prove the lemma via an iterative procedure similar to the one in the proof of
Lemma 7.5. We start with x containing all points in X, and use Lemma 8.6 in order to find some
z0 ∈ Rd×d with ‖z0‖Sp ≤ 2O(p) · d with δ0 = 0 ∈ Rd×d (where δ0 is defined as in Lemma 8.10).

• If there exists a 1
2 -dense ball in x of radius O(p/ε) with respect to G, we return this dense

ball, and we are done.

• Otherwise, we let z(1) ∈ Z be the matrix z0 fixed to bounded precision, and by Lemma 8.11,
R(Fz(1)(x), G, ‖ · ‖22) ≤ ε2. Thus, by Cheeger’s inequality, we may find a set S̃ = {x ∈ S :
Fz(1)(x)ij ≤ t} for some i, j ∈ [d] and t ∈ R, so that ΦG(S̃) ≤

√
2ε. If ρG(S̃) > 1

2 , we
replace S̃ with its complement. Then we let S ← S ∪ S̃. Note that by a similar argument to
Lemma 7.5, as long as the map Fz(1) is fixed, the union of sets S̃ is the complement of a box
after transforming points by Fz(1) .

Claim 8.15. Suppose ρG(S) ≤ 1
dO(p) , let G̃ be the normalized matrix restricted on rows and columns

in S, and δ0 =
∑
i∈S ρG̃(i)Fz0(xi). Then, ‖δ0‖2 ≤ 1.

Proof. We simply note that for all i ∈ S, ρ
G̃

(i) ≤ ρG(i)
1−2ρG(S) , since G̃ is given by removing from G

the rows and columns in S. Thus, we have:

‖δ0‖2 =

∥∥∥∥∥∥
m∑
i=1

ρG(i)Fz0(xi)−
∑
i∈S

ρG(i)Fz0(xi) +
∑
i∈S

(ρ
G̃

(i)− ρG(i))Fz0(xi)

∥∥∥∥∥∥
2

≤
∥∥∥∥∥
m∑
i=1

ρG(i)Fz0(xi)
∥∥∥∥∥

2
+
∑
i∈S

ρG(i)‖Fz0(xi)‖2 +
∑
i∈S

(ρ
G̃

(i)− ρG(i))‖Fz0(xi)‖2

≤ ρG(S) · dO(p) + 2ρG(S)ρ
G̃

(S) · dO(p) ≤ 1,

since
∑m
i=1 ρG(i)Fz0(xi) = 0 by Lemma 8.6, ρG(S) ≤ 1

dO(p) , and ‖Fz0(xi)‖2 ≤ dO(p) from Lemma 8.4,
as well as the fact that ‖xi‖Sp ≤ O(d) and ‖z0‖Sp ≤ 2O(p) · d.

Thus, whenever ρG(S) ≥ 1
dO(p) for the first time, we let S(1) ← S, and we recompute z0 ∈ Rd×d

from Lemma 8.6 with x as the points in X \S(1). We repeat this procedure for S(2), . . . , S(τ), where
each implication of Cheeger’s inequality corresponds to x ∈ X |S| containing the points remaining
in S with the Rayleigh quotient R(Fz(t)(x), G̃, ‖ · ‖22); thus, the sets in S(t) are the complements

43

of boxes after applying the map Fz(t) to all points. Since each S(t) has ρG(S(t)) ≥ 1
dO(p) and once

ρG(S) > 1
3 we stop, τ ≤ dO(p).

Lemma 7.5 implies the following space partitioning result by an argument analogous to the proof
of Theorem 3.6.

Theorem 8.16. Let 0 < ε < 1, 2 < p <∞ and R > 0. Consider any dataset P ⊂ Rd of n d× d
matrices lying in BSp(0, R) = {x ∈ Rd×d | ‖x‖Sp ≤ R}. Either there is an Sp-ball of radius O(p/ε)
containing Ω(n) points from P , or there exists a distribution D over sets S ⊆ Rd×d such that:

1. For every u, v ∈ BSp(0, R) with ‖u− v‖Sp ≤ 1, a random set S ∼ D separates u and v with
probability at most ε.

2. For every set S from the support of D, the number of points in P lying in S is between Ω(n)
and

(
1− Ω(1)

)
· n.

3. Every set S in the support of D is the union of poly(dp) sets of the type {x ∈ Rd×d : Fz(x) 6∈ B},
where ‖z‖Sp = 2O(p)d and B is a box in Rd2.

8.3 The case of 1 ≤ p ≤ 2

Lemma 8.17. Let 1 ≤ p ≤ 2. For any z ∈ Rd×d, let δ ∈ Rd×d be the matrix given by δ =∑m
i=1 ρ(i)Fz(xi). Then, we have:

R(Fz(x), G, ‖ · ‖22)
(

1− 2‖δ‖22∑m
i=1 ρG‖xi − z‖

p
p

)
≤ O(1) · R(x, G, ‖ · ‖pSp).

Proof. This proof is very similar to the proof of Lemma 8.5. We simply note that we may use
Lemma 8.4 for the case 1 ≤ p ≤ 2. In particular, this means that up to (24), both proofs follow the
same inequalities. Using Lemma 8.4, we conclude:

m∑
i=1

ρ(i)‖x̃i‖pSp ≤
2

·R(Fz(x), G, ‖ · ‖22)

m∑
i=1

m∑
j=1

gij ‖Mp,2(x̃i)−Mp,2(x̃j)‖22 + 2‖δ‖22.

≤ O(1)
R(Fz(x), G, ‖ · ‖22)

m∑
i=1

m∑
j=1

gij ‖xi − xj‖pSp + 2‖δ‖22,

which by (26), gives the desired inequality after rearranging the terms.

Lemma 8.18. There exists a matrix z0 ∈ Rd×d with ‖z0‖Sp ≤ O(1) ·maxi∈[m] ‖xi‖Sp, such that

δ =
m∑
i=1

ρ(i)Fz0(xi) = 0 ∈ Rd×d.

44

Proof. Similarly to the proof of Lemma 8.6, let f : Rd×d → Rd×d be the map given by:

f(z) = M2,p

(
m∑
i=1

ρ(i)Mp,2(z − xi)
)
.

We will similarly prove that this map is surjective to conclude that there exists some z0 with∑m
i=1 ρ(i)Mp,2(z − xi) = 0. We have:

‖f(z)− z‖Sp =
∥∥∥∥∥M2,p

(
m∑
i=1

ρ(i)Mp,2(z − xi)
)
−M2,p(Mp,2(z))

∥∥∥∥∥
Sp

≤ O(1)
∥∥∥∥∥
m∑
i=1

ρ(i)Mp,2(z − xi)−Mp,2(z)
∥∥∥∥∥

2
(28)

×

∥∥∥∥∥
m∑
i=1

ρ(i)Mp,2(z − xi)
∥∥∥∥∥

2/p−1

2
+ ‖Mp,2(z)‖2/p−1

2

 , (29)

where we used Lemma 8.4. We first bound the term in (28).∥∥∥∥∥
m∑
i=1

ρ(i)Mp,2(z − xi)−Mp,2(z)
∥∥∥∥∥

2
≤

m∑
i=1

ρ(i) ‖Mp,2(z − xi)−Mp,2(z)‖2 (30)

≤ O(1)
m∑
i=1

ρ(i)‖xi‖p/2Sp
, (31)

where we used the triangle inequality in (30) and Lemma 8.4 in (31). We now bound both summands
in (29). The first term of (29) has:

∥∥∥∥∥
m∑
i=1

ρ(i)Mp,2(z − xi)
∥∥∥∥∥

2/p−1

2
≤
(

m∑
i=1

ρ(i)‖Mp,2(z − xi)‖2

)2/p−1

(32)

≤
(
O(1)

m∑
i=1

ρ(i)‖z − xi‖p/2Sp

)2/p−1

(33)

≤ O(1)

(m∑
i=1

ρ(i)‖z − xi‖Sp

)p/22/p−1

(34)

≤ O(1)
(
‖z‖1−p/2Sp

+R1−p/2
)
. (35)

In (32), we used the triangle inequality, followed by Lemma 8.4 in (33). Then we used the fact
that 1

2 ≤
p
2 ≤ 1 and concavity of tp/2 in (34). Finally, (35) follows from the triangle inequality. The

second term of (29) has:

‖Mp,2(z)‖2/p−1
2 ≤

(
O(1) · ‖z‖p/2Sp

)2/p−1

≤ O(1) · ‖z‖1−2/p
Sp

, (36)

45

by Lemma 8.4. Putting (28) and (29) together with (31), (35), and (36), we obtain:

‖f(z)− z‖Sp ≤ O(1) ·R+O(1) ·Rp/2 · ‖z‖1−p/2Sp
.

Thus, we may similarly apply Claim 8.8 to conclude the lemma.

Note that there is a slight difference in the dependence on the powers of the Rayleigh quotients.
Thus, we derive the following lemma, which shows that ΞH(X, ε) = O(1/ε2/p).

Lemma 8.19. Suppose x = (x1, . . . , xm) ∈ (Rd)m be any set of m points where gij > 0 only if
‖xi − xj‖p ≤ 1, and the conditions of z0 ∈ Rd×d, δ0 ∈ Rd×d and z ∈ Rd×d in Lemma 8.10 are
satisfied. Then,

• either there exists a Sp-ball B of radius R = O(1/ε1/p) such that
∑
xj∈Bp∩x ρ(j) ≥ 1

2 , or

• R(Fz(x), G, ‖ · ‖22) ≤ ε.

Proof. Suppose
∑m
i=1

∑m
j=1 ρ(i)ρ(j)‖xi−xj‖pp ≥ C/ε for a high enough constant, then R(Fz(x), G, ‖·

‖22) ≤ ε; so assume otherwise. In the same way as in the proof of Lemma 7.8 and Lemma 8.10, we
may conclude there exists a 1

2 -dense ball with respect to G of radius O(1/ε1/p).

Thus, using the same partitioning procedure as in Lemma 8.3, we obtain the following theorem.

Theorem 8.20. Fix some 0 < α < 1 and p ∈ [1, 2]. There exists a data structure solving c-ANN
for Sp with success probability 9

10 with the following guarantees:

• the approximation c = O(1/α2/p).

• the query time of the data structure is poly(d) · nα, and

• the space of the data structure is poly(d) · n1+α.

9 Lower bounds

9.1 General norms do not admit succinct collections

The goal of this section is to rule out algorithms for general norms which proceed by a generalization
of the simple algorithm from Section 7. In particular, statements of the form of Lemma 7.5 cannot
be true for general norms unless, the collection S has high description complexity, or the collection
S depends on the norm.

Fix a dimension d to at least a large enough constant. We let X ⊂ Sd−1 be a set of points with
the following properties:

• The set |X| = N = 2d0.1 , and

• For every x1, x2 ∈ X, we have |〈x1, x2〉| ≤ 1
d1/4 .

46

The set exists by Lemma 6.2 of [ANN+17]. Our lower bound is captured by the following theorem.

Theorem 9.1 (No succinct collections exist). Let b = 2do(1), R = d1/4

10 , and some γ ≥ 2−d0.01.
For any collection S of subsets of X = {x1, . . . , xN} of size |S| ≤ 2b, there exists a normed space
(Rd, ‖ · ‖) and a matrix G ∈ ∆(N) where gij > 0 only if ‖xi − xj‖ ≤ 1, satisfying the following:

• there is no γ-dense ball of radius R with respect to G;

• for any S ∈ S, if δ = min{ρG(S), ρG([N] \ S)} ≥ 2−d0.01, we have that
∑
i∈S,j 6∈S gij = Ω(δγ).

Proof. We choose the norm (Rd, ‖ · ‖) randomly and prove that any fixed set S ∈ S works only
with extremely low probability. By a union bound, this implies there exists a norm satisfying the
conditions of the theorem.

Consider constructing the norm (Rd, ‖ · ‖) as follows: we pick a random subset C ⊂ [N] of size
γN − 1. For any y ∈ Rd, we let:

‖y‖ = d1/4

2 ·max
i/∈C
|〈xi, y〉|.

For any i, j ∈ C, ‖xi−xj‖ ≤ ‖xi‖+‖xj‖ ≤ 1. If i /∈ C and j ∈ X with i 6= j, ‖xi−xj‖ ≥ d1/4

2 (1− 1
d1/4).

We let G ∈ ∆(N) be the matrix given by:

gij =

1
N ·

1
|C| i, j ∈ C

1
N i = j /∈ C
0 o.w

.

We note that there are no γ-dense balls of radius R with respect to G. This is because a ball of
radius R with more than 1 point must contain no points from [N] \C, and ρG(C) ≤ 1

N (γN − 1) < γ.
Now, consider any S ∈ S, and let δ = ρG(S) ≤ 1

2 (otherwise, we consider X \ S). By Chernoff
bound, we have γδ

2 · N ≤ |S ∩ C| ≤
3γδ
2 · N with probability at least 1 − e−Ω(γδN). In that case,

whenever i ∈ S ∩ C and j ∈ C \ S, the edge (i, j) is cut with gij = 1
N ·

1
|C| . Thus,

∑
i∈S,j 6∈S

gij ≥ |S ∩ C| · (|C| − |S ∩ C|) ·
1
N
· 1
|C|
≥ γδ

2 ·N
(
γN − 1− 3δγ

2 ·N
) 1
γN2 ≥ Ω(δγ).

We can union bound over all S ∈ S to conclude that for all S ∈ S,
∑
i∈S,j /∈S gij = Ω(γδ) since

b� γδN when γ, δ ≥ 2−d0.01 .

In order to interpret Theorem 9.1, we compare it to Lemma 7.5. Lemma 7.5 claims that for any
set of points X and G ∈ ∆(|X|) (with gij > 0⇒ ‖xi−xj‖p ≤ 1), there is a Ω(1)-dense ball of radius
O(pε), or there exists a balanced set from a collection of 2O(d log d) sets which cuts an ε-fraction of
edges with respect to G. In the notation of Theorem 9.1, this corresponds to setting γ and δ to
constants; in this case, if there are no Ω(1)-dense balls of radius R, Ω(1)-fraction of edges are cut
with respect to G when R = Ω(d1/4). The notable fact is that we cannot tradeoff R and the fraction

47

of edges cut, as we do in Lemma 7.5. At a high level, this rules out logO(1) d-ANN for any norm by
balanced sets or Ω(1)-dense balls from a fixed succinct collections. These include hyperplane cuts,
coordinate cuts, and box cuts.

Theorem 9.1 does not apply to partitions which depend on the norm. For example, Theorem 9.1
does not rule out the collection of balls in the norm, i.e., S = {BX(x, r) : x ∈ X, r ∈ [poly(d)]}. It
also does not rule out succinct cuts after applying a norm-dependent transformation, which occurs
in Lemma 8.3.

9.2 Lower bound for random partitions

Let G = (V,E) be a degree-m spectral expander with |V | = N vertices, and let (V, dG) be the
metric space where i, j ∈ V , dG(i, j) is the length of the shortest path between i and j. Consider
the distributions D supported on datasets, and for a dataset P consider the distribution Q(P)
supported on queries, where:

• P ∼ D where P is an n-point dataset, and q ∼ Q(P) is a query.

• P = {p1, . . . , pn} ∼ D has pi ∼ V uniformly for each i ∈ [n],

• q ∼ Q(P) is sampled by first picking i ∼ [n] and choosing q to be a neighbor of pi uniformly
at random. Let p∗ = pi ∈ P denote the near-neighbor of q.

Definition 9.2. We say the dataset P ⊂ V is c-separated in (V, dG) if

min
p1,p2∈P
p1 6=p2

dG(p1, p2) ≥ c.

Lemma 9.3. Consider a small constant 0 < γ1 ≤ 1
2 logm , and let N ≥ n5 and c ≤ γ1 logN , then

when P ∼ D, P is c-separated with probability at least 0.99.

Proof. For each point v ∈ V , the set BG(v, c) = {x ∈ V : dG(v, x) ≤ c} contains |BG(v, c)| ≤
mc ≤ Nγ1 logm points in V . Since n2 � N1−γ1 logm, with high probability over (P, q) ∼ D, P is
c-separated.

Lemma 9.4. Let δ ≥ n−o(1) and γ2 > 0 be any fixed constant. Let S be a collection of 2n1−γ2

partitions of V . With probability 0.99 over P ∼ D, every S ∈ S satisfies the following:

• Setting p2(S) = Pru,v∼V [S(u) = S(v)], we have:

Pr
i,j∼[n]

[S(pi) = S(pj)] ≥ p2(S)− δ + 1
n
,

• and Prq∼Q(P)[S(p∗) = S(q)] ≤ 1− λ2(LG) (1− p2(S)) + δ,

48

Proof. Consider a fixed S ∈ S which partitions V into t ≥ 2 parts, S1, . . . , St ⊂ V , where αk = |Sk|
N

for k ∈ [t]. Note that

p2(S) = E
P

 Pr
i,j∼[n]
i 6=j

[S(pi) = S(pj)]

 =
t∑

k=1
α2
k.

For any fixed dataset P , changing the value of one point pj changes Pri,j∼[n]
i 6=j

[S(pi) = S(pj)] by at

most 2
n . Therefore, letting

p2(S, P) = Pr
i,j∼[n]
i 6=j

[S(pi) = S(pj)] ,

we obtain by McDiarmid’s inequality that:

Pr
Pi

[|p2(S, P)− p2(S)| ≥ δ] ≤ 2e−
δ2n

2 .

Note that Pri,j∼[n][S(pi) = S(pj)] = p2(S, P) + 1
n , since with probability 1/n, i = j. Additionally,

since the sparsity of a cut is lowerbounded by λ2(LG),

Pr
(u,v)∼E

[S(u) 6= S(v)] = 2|∂S|
Nm

=
∑t
k=1 |∂Sk|
Nm

≥ 1
Nm

λ2(LG)
t∑

k=1

((αiNm)(Nm− αiNm)
Nm

)
≥ λ2(LG) (1− p2(S)) .

For i ∈ [n] and v ∈ V , let Xi,v be the indicator random variable that pi = v. Then,

E
P∼Q

[
Pr

q∼Q(P)
[S(p∗) 6= S(q)]

]
= 1
n ·m

∑
(u,v)∈∂S

n∑
i=1

(Pr[Xi,u = 1] + Pr[Xi,v = 1])

≥ λ2(LG) (1− p2(S)) .

Finally, letting
p∗(S, P) = Pr

q∼Q(P)
[S(p∗) 6= S(q)],

since changing a dataset point changes p∗(S, P) by at most 1
n , we apply McDiarmid’s inequality

again to obtain:
Pr
P∼D

[|p∗(S, P)− λ2(LG) (1− p2(S))| ≥ δ] ≤ 2e−2δ2n.

By the setting of δ and γ2, we may union bound over all S ∈ S.

49

Theorem 9.5. There exists a positive ε > 0 such that the following holds. For every positive
integers d, k there exists a distribution D over n-point datasets in `d∞, where n = dk, such that the
following holds for c = Ω (log d).

• With probability at least 0.99, a dataset sampled according to D is pairwise (c+ 1)-separated;

• Let R to be a collection of partitions of Rd of size |R| ≤ 2n1−Ω(1). Then, with probability
at least 0.99 over the dataset P sampled according to D, there is no random partition RP
supported on the partitions from R that has the following two properties:

– For every q ∈ Rd, for which there exists p ∈ P with ‖p− q‖∞ ≤ 1, one has

Pr[a partition sampled from RP separates p and q] ≤ ε;

– For every q ∈ Rd, one has:

Pr[a partition sampled from RP separates p and q, where p ∈ P uniformly] ≥ 1/10.

We take a 3-regular expander G with N = n100 = d100k vertices and embed it into `d∞ with
distortion O(k) using the result from [Mat97]. We assume that all the edges have length at most 1,
and the distances are contracted by a factor at most O(k). Then a dataset is obtained by sampling
n independent images of the vertices of G = (V,E).

The diameter of G is Θ(logN) = Θ(k log d). If we sample n vertices, then with high probability
they will be Ω(k log d)-separated. After the embedding, the corresponding points are (c + 1)-
separated, since the distortion is O(k). Consider the following distribution of the queries: we choose
uniformly one of the n datapoints, and choose a random adjacent vertex of G. Clearly, the marginal
distribution of the queries is uniform.

Consider a fixed partition P ∈ R of Rd, which induces a partition of the image of G under
the embedding. Define p∗2(P) = Prx,y∼V [P(x) = P(y)], and p∗1(P) = Prx ∼ V , y ∼ neighbor of x[P(x) =
P(y)]. Then, using that G is an expander, we can show that p1 ≤ 1− Ω(1−√p2).

Now consider a subsampled dataset P ∼ D. Define p1(P, P) and p2(P, P) similar to p∗1(P) and
p∗2(P), but we sample vertices in P , not in the whole V .

By the McDiarmid inequality, p2(P, P) is within additive 0.001 from p∗2(P) with probability at
least 1 − 2−Ω(n). At the same time, 1 − p1(P, P) is within a factor of three from 1 − p∗1(P) with
probability at least 1− 2−Ω(n). Combining with the above estimate for p∗1 and p∗2, we have that with
probability at least 1− 2−Ω(n), we cannot have both p2(P, P) ≤ 9/10 and p1(P, P) ≥ 1− ε for a
sufficiently small ε > 0.

Taking union bound over the whole collection R, we get that with high probability for all the
partitions we have the above statement. Thus, by Yao’s min-max principle, we get the required
statement.

To get a lower bound Ω(p) for the `p space, we do exactly the same as above, but we embed an
expander with distortion O

(
logN
p

)
, and thus the diameter we are getting is Ω(p).

50

10 Acknowledgments

We thank Richard Peng and Tselil Schramm for useful discussions.
The first-named author was supported in part by the Simons Foundation (#491119), NSF grants

CCF-1617955, CCF-1740833, and Google Research Award. The second-named author was supported
in part by the NSF grant CCF-1412958, the Packard Foundation and the Simons Foundation. The
third-named author was supported in part by the NSF grant CCF-1740425 and NSERC Discovery
Grant. The fourth-named author was supported in part by the Simons Junior Fellowship. The fifth-
named author was supported in part by the NSF grants CCF-1563155, CCF-1420349, CCF-1149257,
CCF-1423100), and the NSF Graduate Research Fellowship (DGE-16-44869).

The work was done in part while the third-named author was visiting Simons Institute for the
Theory of Computing and while the fourth-named author was a graduate student at MIT and a
postdoc at Columbia University. This work was was carried out under the auspices of the Simons
Algorithms and Geometry (A&G) Think Tank.

References
[AHK12] Sanjeev Arora, Elad Hazan, and Satyen Kale. The Multiplicative Weights Update Method: a

Meta-Algorithm and Applications. Theory of Computing, 8(1):121–164, 2012.

[AI06] Alexandr Andoni and Piotr Indyk. Near-Optimal Hashing Algorithms for Approximate Nearest
Neighbor in High Dimensions. In Proceedings of the 47th Annual IEEE Symposium on Foundations
of Computer Science (FOCS ’2006), pages 459–468, 2006.

[AI17] Alexandr Andoni and Piotr Indyk. Nearest Neighbors in High-Dimensional Spaces. In Jacob E.
Goodman, Joseph O’Rourke, and Csaba D. Tóth, editors, Handbook of Discrete and Computational
Geometry, pages 1133–1153. CRC Press LLC, 2017.

[AIK09] Alexandr Andoni, Piotr Indyk, and Robert Krauthgamer. Overcoming the `1 Non-Embeddability
Barrier: Algorithms for Product Metrics. In Proceedings of the 20th ACM-SIAM Symposium on
Discrete Algorithms (SODA ’2009), pages 865–874, 2009.

[AINR14] Alexandr Andoni, Piotr Indyk, Huy L. Nguyen, and Ilya Razenshteyn. Beyond Locality-Sensitive
Hashing. In Proceedings of the 25th ACM-SIAM Symposium on Discrete Algorithms (SODA ’2014),
pages 1018–1028, 2014. Available as arXiv:1306.1547.

[AIR18] Alexandr Andoni, Piotr Indyk, and Ilya Razenshteyn. Approximate nearest neighbor search in
high dimensions. In Proceedings of ICM 2018 (to appear), 2018.

[AKR15] Alexandr Andoni, Robert Krauthgamer, and Ilya Razenshteyn. Sketching and Embedding are
Equivalent for Norms. In Proceedings of the 47th ACM Symposium on the Theory of Computing
(STOC ’2015), pages 479–488, 2015. Available as arXiv:1411.2577.

[ALRW17] Alexandr Andoni, Thijs Laarhoven, Ilya Razenshteyn, and Erik Waingarten. Optimal Hashing-
based Time–Space Trade-offs for Approximate Near Neighbors. In Proceedings of the 28th
ACM-SIAM Symposium on Discrete Algorithms (SODA ’2017), pages 47–66, 2017. Available as
arXiv:1608.03580.

[And09] Alexandr Andoni. Nearest Neighbor Search: the Old, the New, and the Impossible. PhD thesis,
MIT, 2009.

51

[And10] Alexandr Andoni. Nearest neighbor search in high-dimensional spaces. Invited talk at the Work-
shop on Barriers in Computational Complexity II, http://www.mit.edu/~andoni/nns-barriers.
pdf, 2010.

[ANN+17] Alexandr Andoni, Huy L. Nguyen, Aleksandar Nikolov, Ilya Razenshteyn, and Erik Waingarten.
Approximate Near Neighbors for General Symmetric Norms. In Proceedings of the 49th ACM
Symposium on the Theory of Computing (STOC ’2017), pages 902–913, 2017. Available as
arXiv:1611.06222.

[AR15] Alexandr Andoni and Ilya Razenshteyn. Optimal Data-Dependent Hashing for Approximate
Near Neighbors. In Proceedings of the 47th ACM Symposium on the Theory of Computing
(STOC ’2015), pages 793–801, 2015. Available as arXiv:1501.01062.

[AR16] Alexandr Andoni and Ilya Razenshteyn. Tight Lower Bounds for Data-Dependent Locality-
Sensitive Hashing. In Proceedings of the 32nd International Symposium on Computational
Geometry (SoCG ’2016), pages 9:1–9:11, 2016. Available as arXiv:1507.04299.

[Bal97] Keith Ball. An Elementary Introduction to Modern Convex Geometry, volume 31 of MSRI
Publications. Cambridge University Press, 1997.

[BBC+17] Jaroslaw Blasiok, Vladimir Braverman, Stephen R. Chestnut, Robert Krauthgamer, and Lin F.
Yang. Streaming Symmetric Norms via Measure Concentration. In Proceedings of the 49th ACM
Symposium on the Theory of Computing (STOC ’2017), 2017. Available as arXiv:1511.01111.

[BG15] Yair Bartal and Lee-Ad Gottlieb. Approximate Nearest Neighbor Search for `p-Spaces (2 < p <∞)
via Embeddings. Available as arXiv:1512.01775, 2015.

[BKL06] Alina Beygelzimer, Sham Kakade, and John Langford. Cover Trees for Nearest Neighbor. In
Proceedings of the 23rd International Conference on Machine Learning (ICML ’2006), pages
97–104, 2006.

[BL00] Yoav Benyamini and Joram Lindenstrauss. Geometric Nonlinear Functional Analysis. Vol. 1,
volume 48 of American Mathematical Society Colloquium Publications. American Mathematical
Society, Providence, RI, 2000.

[Cha02] Moses Charikar. Similarity Estimation Techniques from Rounding Algorithms. In Proceedings of
the 34th ACM Symposium on the Theory of Computing (STOC ’2002), pages 380–388, 2002.

[Che69] Jeff Cheeger. A Lower Bound for the Smallest Eigenvalue of the Laplacian. In Proceedings of the
Princeton conference in honor of Professor S. Bochner, pages 195–199, 1969.

[Chu96] F. R. K. Chung. Laplacians of graphs and Cheeger’s inequalities. In Combinatorics, Paul Erdős
is eighty, Vol. 2 (Keszthely, 1993), volume 2 of Bolyai Soc. Math. Stud., pages 157–172. János
Bolyai Math. Soc., Budapest, 1996.

[Cla99] Kenneth L. Clarkson. Nearest neighbor queries in metric spaces. Discrete and Computational
Geometry, 22(1):63–93, 1999.

[Glu81] Efim D. Gluskin. Diameter of the Minkowski Compactum is Approximately Equal to n. Functional
Analysis and Its Applications, 15(1):57–58, 1981.

[Hat02] Allen Hatcher. Algebraic Topology. Cambridge University Press, 2002.

[HR10] Moritz Hardt and Guy N. Rothblum. A multiplicative weights mechanism for privacy-preserving
data analysis. In 51th Annual IEEE Symposium on Foundations of Computer Science, FOCS
2010, October 23-26, 2010, Las Vegas, Nevada, USA, pages 61–70. IEEE Computer Society, 2010.

[IM98] Piotr Indyk and Rajeev Motwani. Approximate Nearest Neighbors: Towards Removing the Curse
of Dimensionality. In Proceedings of the 30th ACM Symposium on the Theory of Computing
(STOC ’1998), pages 604–613, 1998.

[Ind01] Piotr Indyk. On Approximate Nearest Neighbors under `∞ Norm. Journal of Computer and
System Sciences, 63(4):627–638, 2001.

52

http://www.mit.edu/~andoni/nns-barriers.pdf
http://www.mit.edu/~andoni/nns-barriers.pdf

[Ind02] Piotr Indyk. Approximate Nearest Neighbor Algorithms for Fréchet Distance via Product Metrics.
In Proceedings of the 18th ACM Symposium on Computational Geometry (SoCG ’2002), pages
102–106, 2002.

[Ind04] Piotr Indyk. Approximate Nearest Neighbor under Edit Distance via Product Metrics. In
Proceedings of the 15th ACM-SIAM Symposium on Discrete Algorithms (SODA ’2004), pages
646–650, 2004.

[IT03] Piotr Indyk and Nitin Thaper. Fast Color Image Retrieval via Embeddings. Workshop on
Statistical and Computational Theories of Vision (at ICCV), 2003.

[Joh48] Fritz John. Extremum Problems with Inequalities as Subsidiary Conditions. In Studies and Essays
Presented to R. Courant on his 60th Birthday, January 8, 1948, pages 187–204. Interscience
Publishers, Inc., New York, N. Y., 1948.

[KL04] Robert Krauthgamer and James R. Lee. Navigating Nets: Simple Algorithms for Proximity
Search. In Proceedings of the 15th ACM-SIAM Symposium on Discrete Algorithms (SODA ’2004),
pages 798–807, 2004.

[KR02] David R. Karger and Matthias Ruhl. Finding Nearest Neighbors in Growth-Restricted Metrics.
In Proceedings of the 34th ACM Symposium on the Theory of Computing (STOC ’2002), pages
741–750, 2002.

[LNW14] Yi Li, Huy L. Nguyên, and David P. Woodruff. On Sketching Matrix Norms and the Top Singular
Vector. In Proceedings of the 25th ACM-SIAM Symposium on Discrete Algorithms (SODA ’2014),
pages 1562–1581, 2014.

[LW16a] Yi Li and David P. Woodruff. On Approximating Functions of the Singular Values in a Stream.
In Proceedings of the 48th ACM Symposium on the Theory of Computing (STOC ’2016), pages
726–739, 2016.

[LW16b] Yi Li and David P. Woodruff. Tight Bounds for Sketching the Operator Norm, Schatten Norms,
and Subspace Embeddings. In Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques, 19th International Workshop, APPROX ’2016, and 20th International
Workshop, RANDOM ’2016, pages 39:1–39:11, 2016.

[LW17] Yi Li and David P. Woodruff. Embeddings of Schatten Norms with Applications to Data Streams.
In Proceedings of the 44th International Colloquium on Automata, Languages and Programming
(ICALP ’2017), pages 60:1–60:14, 2017.

[Mat97] Jiří Matoušek. On Embedding Expanders into `p Spaces. Israel Journal of Mathematics, 102:189–
197, 1997.

[Maz29] S. Mazur. Une remarque sur l’homÃľomorphie des champs fonctionnels. Studia Mathematica,
1(1):83–85, 1929.

[Mil99] Peter Bro Miltersen. Cell Probe Complexity – a Survey. In Advances in Data Structures, 1999.

[MN14] Manor Mendel and Assaf Naor. Nonlinear Spectral Calculus and Super-Expanders. Publications
Mathématiques de l’IHÉS, 119(1):1–95, 2014.

[MN15] Manor Mendel and Assaf Naor. Expanders with Respect to Hadamard Spaces and Random
Graphs. Duke Mathematical Journal, 164(8):1471–1548, 2015.

[Nao14] Assaf Naor. Comparison of Metric Spectral Gaps. Analysis and Geometry in Metric Spaces,
2:1–52, 2014.

[Nao17] Assaf Naor. A Spectral Gap Precludes Low-Dimensional Embeddings. In Proceedings of the 33rd
International Symposium on Computational Geometry (SoCG ’2017), pages 50:1–50:16, 2017.

[Nao18] Assaf Naor. Metric dimension reduction: a snapshot of the Ribe program. In Proceedings of ICM
2018 (to appear), 2018.

53

[Ngu14] Huy L. Nguyên. Algorithms for High Dimensional Data. PhD thesis, Princeton University, 2014.
Available as http://arks.princeton.edu/ark:/88435/dsp01b8515q61f.

[NPS18] Assaf Naor, Gilles Pisier, and Gideon Schechtman. Impossibility of Dimension Reduction in
the Nuclear Norm. In Proceedings of the 29th ACM-SIAM Symposium on Discrete Algorithms
(SODA ’2018), 2018.

[NR06] Assaf Naor and Yuval Rabani. On Approximate Nearest Neighbor Search in `p, p > 2. Manuscript,
available on request, 2006.

[NS07] Assaf Naor and Gideon Schechtman. Planar Earthmover is not in L1. SIAM Journal on Computing,
37(3):804–826, 2007.

[OR07] Rafail Ostrovsky and Yuval Rabani. Low Distortion Embedding for Edit Distance. Journal of
the ACM, 54(5):23:1–23:16, 2007.

[Raz17] Ilya Razenshteyn. High-Dimensional Similarity Search and Sketching: Algorithms and Hardness.
PhD thesis, Massachusetts Institute of Technology, 2017.

[Ric15] Éric Ricard. Hölder Estimates for the Noncommutative Mazur Map. Archiv der Mathematik,
104(1):37–45, 2015.

[Spi15] Daniel A. Spielman. Conductance, the Normalized Laplacian, and Cheeger’s Inequality. Lecture
Notes, 2015.

[Yao81] Andrew Chi-Chih Yao. Should tables be sorted? Journal of the ACM, 28(3):615–628, 1981.

54

http://arks.princeton.edu/ark:/88435/dsp01b8515q61f

	Introduction
	ANN for general distance functions
	Main results
	Techniques
	Related work
	Lower bounds
	Open problems
	Organization of the paper

	Preliminaries
	Partitioning general metrics
	Cutting modulus of a metric space
	Partitioning theorems
	Partitioning with the (R,)-ball-or-cut property
	Inner multiplicative weights update
	Outer multiplicative weights update: proof of Theorem 3.6

	Cell-probe data structure for general metrics
	Discretizing the space
	Bounding the cutting modulus of a normed space
	Algorithm for p
	Rayleigh quotient inequality for p spaces and proof of Lemma 7.4
	Proof of Lemma 7.5

	Algorithm for Schatten-p
	Rayleigh quotient inequality for Sp, p > 2
	Proof of Lemma 8.3
	The case of 1 p 2

	Lower bounds
	General norms do not admit succinct collections
	Lower bound for random partitions

	Acknowledgments

