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Abstract—A technique introduced by Indyk and Woodruff
(STOC 2005) has inspired several recent advances in data-stream
algorithms. We show that a number of these results follow eas-
ily from the application of a single probabilistic method called
Precision Sampling. Using this method, we obtain simple data-
stream algorithms that maintain a randomized sketch of an input
vector x = (x1, x2, . . . , xn), which is useful for the following
applications:

• Estimating the Fk-moment of x, for k > 2.
• Estimating the `p-norm of x, for p ∈ [1, 2], with small update

time.
• Estimating cascaded norms `p(`q) for all p, q > 0.
• `1 sampling, where the goal is to produce an element i with

probability (approximately) |xi|/‖x‖1. It extends to similarly
defined `p-sampling, for p ∈ [1, 2].

For all these applications the algorithm is essentially the same:
scale the vector x entry-wise by a well-chosen random vector, and
run a heavy-hitter estimation algorithm on the resulting vector. Our
sketch is a linear function of x, thereby allowing general updates
to the vector x.

Precision Sampling itself addresses the problem of estimating a
sum

Pn
i=1 ai from weak estimates of each real ai ∈ [0, 1]. More

precisely, the estimator first chooses a desired precision ui ∈ (0, 1]
for each i ∈ [n], and then it receives an estimate of every ai

within additive ui. Its goal is to provide a good approximation toP
ai while keeping a tab on the “approximation cost”

P
i(1/ui).

Here we refine previous work (Andoni, Krauthgamer, and Onak,
FOCS 2010) which shows that as long as

P
ai = Ω(1), a good

multiplicative approximation can be achieved using total precision
of only O(n log n).
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1. INTRODUCTION

A number of recent developments in algorithms for data
streams have been inspired, at least in part, by a technique
devised by Indyk and Woodruff [21] to obtain near-optimal
space bounds for estimating Fk moments, for k > 2.
Indeed, refinements and modifications of that technique were
used for designing better or new algorithms for applications
such as: Fk moments [6] (with better bounds than [21]),
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entropy estimation [5], cascaded norms [18], [23], Earth-
mover Distance [2], `1 sampling algorithm [29], distance to
independence of two random variables [7], and even, more
generically, a characterization of “sketchable” functions of
frequencies [9]. While clearly very powerful, the Indyk-
Woodruff technique is somewhat technically involved, and
hence tends to be cumbersome to work with.

In this paper, we show an alternative design for the Indyk-
Woodruff technique, resulting in a simplified algorithm for
several of the above applications. Our key ingredient, dubbed
the Precision Sampling Lemma (PSL), is a probabilistic
method, concerned with estimating the sum of a number of
real quantities. The PSL was introduced in [3, Lemma 3.12],
in an unrelated context, of query-efficient algorithms (in the
sense of property testing) for estimating the edit distance.

Our overall contribution here is providing a generic ap-
proach that leads to simplification and unification of a family
of data-stream algorithms. Along the way we obtain new
and improved bounds for some applications. We also give a
slightly improved version of the PSL.

In fact, all our algorithms comprise of the following two
simple steps: multiply the stream by well-chosen random
numbers (given by PSL), and then solve a certain heavy-
hitters problem. Interestingly, each of the two steps (sepa-
rately) either has connections to or is a well-studied problem
in the literature of data streams. Namely, our implementation
of the first step is somewhat similar to Priority Sampling
[16], as discussed in Section 1.3. The second step, the heavy-
hitters problem, is a natural streaming primitive, studied
at least since the work of Misra and Gries [28]. It would
be hard to list all the relevant literature for this problem
concisely; instead we refer the reader, for example, to
the survey by Muthukrishnan [30] and the CountMin wiki
site [13] and the references therein.

1.1. Streaming Applications

We now describe the relevant streaming applications in
detail. In most cases, the input is a vector x ∈ Rn, which
we maintain under stream updates. An update has the form
(i, δ), which means that δ ∈ R is added to xi, the ith
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coordinate of x.1 The goal is to maintain a sketch of x of
small size (much smaller than n), such that, at the end of the
stream, the algorithm outputs some function of x, depending
on the actual problem in mind. Besides the space usage,
another important complexity measure is the update time —
how much time it takes to modify the sketch to reflect an
update (i, δ).

We study the following problems.2 For all these problems,
the algorithm is essentially the same (see the beginning of
Section 3). All space bounds are in terms of words, each
having O(log n) bits.

• Fk moment estimation, for k > 2: The goal is to
produce a (1+ ε) factor approximation to the k-th mo-
ment of x, i.e., ‖x‖k

k =
∑n

i=1 |xi|k. The first sublinear-
space algorithm for k > 2, due to [1], gave a space
bound n1−1/k · (ε−1 log n)O(1), and further showed
the first polynomial lower bound for k sufficiently
large. A lower bound of Ω(n1−2/k) was shown in
[10], [4], and it was (nearly) matched by Indyk and
Woodruff [21], who gave an algorithm using space
n1−2/k · (ε−1 log n)O(1). Further research reduced the
space bound to essentially O(n1−2/k · ε−2−4/k log2 n)
[6], [29] (see [29] for multi-pass bounds). Indepen-
dently of our work, this bound was improved by a
roughly O(log n) factor in [8].
Our algorithm for this problem appears in Section 3.1,
and improves the space usage over these bounds. Very
recently, following the framework introduced here, [17]
reports a further improvement in space for a certain
regime of parameters.

• `p-norm estimation, for p ∈ [1,2]: The goal is to
produce a 1+ ε factor approximation to ‖x‖p, just like
in the previous problem.3 The case p = 2, i.e., `2-
norm estimation was solved in [1], which gives a space
bound of O(ε−2 log n). It was later shown in [20] how
to estimate `p norm for all p ∈ (0, 2], using p-stable
distributions, in O(ε−2 log n) space. Further research
aimed to get a tight bound and to reduce the update
time (for small ε) from Ω(ε−2) to logO(1) n (or even
O(1) for p = 2), see, e.g., [31], [26], [27], [19] and
references therein.
Our algorithm for this problem appears in Section 3.2
for p = 1 and Section 4.1 for all p ∈ [1, 2]. The
algorithm has an improved update time, over that
of [19], for p ∈ (1, 2], and uses comparable space,

1We make a standard discretization assumption that all numbers have a
finite precision, and in particular, δ ∈ {−M,−M + 1, . . . , M − 1, M},
for M = nO(1).

2Since we work in the general update framework, we will not be
presenting the literature that is concerned with restricted types of updates,
such as positive updates δ > 0.

3The difference in notation (p vs. k) is partly due to historical reasons:
the `p norm for p ∈ [1, 2] has been usually studied separately from the
Fk moment for k > 2, having generally involved somewhat different
techniques and space bounds.

O(ε−2−p log2 n). We note that, for p = 1, our space
bound is worse than that of [31]. Independently of our
work, fast space-optimal algorithms for all p ∈ (0, 2)
were recently obtained in [25].

• Mixed/cascaded norms: The input is a matrix x ∈
Rn×n, and the goal is to estimate the `p(`q) norm,

defined as ‖x‖p,q =
(∑

i∈[n](
∑

j∈[n] |xi,j |q)p/q
)1/p

,
for p, q ≥ 0. Introduced in [15], this problem general-
izes the `p-norm/Fk-moment estimation questions, and
for various values of p and q, it has particular useful
interpretations, see [15] for examples. Perhaps the first
algorithm, applicable to some regime of parameters,
appeared in [18]. Further progress on the problem
was accomplished in [23], which obtains near-optimal
bounds for a large range of values of p, q ≥ 0 (see
also [29] and [18]).
We give in Section 4.2 algorithms for all parameters
p, q > 0, and obtain bounds that are tight up to
(ε−1 log n)O(1) factors. In particular, we obtain the
first algorithm for the regime q > p > 2 — no
such (efficient) algorithm was previously known. We
show that the space complexity is controlled by a
metric property, which is a generalization of the p-type
constant of `q. Our space bounds fall out directly from
bounds on this property.

• `p-sampling, for p ∈ [1,2]: Here, the goal of the
algorithm is to produce an index i ∈ [n] sampled
from a distribution Dx that depends on x, as opposed
to producing a fixed function of x. In particular, the
(idealized) goal is to produce an index i ∈ [n] where
each i is returned with probability |xi|p/‖x‖p

p. We
meet this goal in an approximate fashion: there exists
some approximating distribution D′

x on [n], where
D′

x(i) = (1± ε)|xi|/‖x‖1± 1/n2 (the exponent 2 here
is arbitrary), such that the algorithm outputs i drawn
from the distribution D′

x. Note that the problem would
be simple if the stream had only insertions (i.e., δ ≥ 0
always); so the challenge is to be able to support both
positive and negative updates to the vector x.
The `p-sampling problem was introduced in [29], where
it is shown that the `p-sampling problem is a useful
building block for other streaming problems, including
cascaded norms, heavy hitters, and moment estimation.
The algorithm in [29] uses (ε−1 log n)O(1) space.
Our algorithm for the `p-sampling problem, for p ∈
[1, 2], appears in the full paper. It improves the space to
O(ε−p log3 n). Very recently, following the framework
introduced here, [24] further improve the space bound
to a near-optimal bound, and extend the algorithm to
p ∈ [0, 1].

All our algorithms maintain a linear sketch L : Rn → RS

(i.e., L is a linear function), where S is the space bound (in
words, or O(S log n) in bits). Hence, all the updates may be



implemented using the linearity: L(x+ δei) = Lx+ δ ·Lei,
where ei is the ith standard basis vector.

1.2. Precision Sampling

We now describe the key primitive used in all our
algorithms, the Precision Sampling Lemma (PSL). It has
originally appeared in [3]. The present version is improved in
two respects: it has better bounds and is streaming-friendly.

PSL addresses a variant of the standard sum estimation
problem, where the goal is to estimate the sum σ

def=
∑

i ai

of n unknown quantities ai ∈ [0, 1]. In the standard
sampling approach, one randomly samples a set of indices
I ⊂ [n], and uses these ai’s to compute an estimate such
as n

|I|
∑

i∈I ai. Precision sampling considers a different
scenario, where the estimation algorithm chooses a sequence
of precisions ui ∈ (0, 1] (without knowing the ai’s), and then
obtains a sequence of estimates âi that satisfy |âi−ai| ≤ ui,
and it has to report an estimate for the sum σ =

∑
i ai. As

it turns out from applications, producing an estimate with
additive error ui (for a single ai) incurs cost 1/ui, hence the
goal is to achieve a good approximation to σ while keeping
tabs on the total cost (total precision)

∑
i(1/ui).4

To illustrate the concept, consider the case where 10 ≤
σ ≤ 20, and one desires a 1.1 multiplicative approximation
to σ. How should one choose the precisions ui? One ap-
proach is to employ the aforementioned sampling approach:
choose a random set of indices I ⊂ [n] and assign to them
a high precision, say ui = 1/n, and assign trivial precision
ui = 1 to the rest of indices; then report the estimate
σ̂ = n

|I|
∑

i∈I âi. This way, the error due to the adversary’s
response is at most n

|I|
∑

i∈I |âi−ai| ≤ 1, and standard sam-
pling (concentration) bounds prescribe setting |I| = Θ(n).
The total precision becomes Θ(n · |I|) = Θ(n2), which is
no better than naively setting all precisions ui = 1/n, which
achieves total additive error 1 using total precision n2. Note
that in the restricted case where all ai ≤ 40/n, the sampling
approach is better, because setting |I| = O(1) suffices;
however, in another restricted case where all ai ∈ {0, 1},
the naive approach could fare better, if we set all ui = 1/2.
Thus, total precision O(n) is possible in both cases, but by
a different method. We previously proved in [3] that one can
always choose wi randomly such that

∑
wi ≤ O(n log n)

with constant probability.
In this paper, we provide a more efficient version of

PSL (see Section 2 for details). To state the lemma, we
need a definition that accommodates both additive and
multiplicative errors.

Definition 1.1 (Approximator). Let ρ > 0 and f ∈ [1, 2].
A (ρ, f)-approximator to τ > 0 is any quantity τ̂ satisfying
τ/f − ρ ≤ τ̂ ≤ fτ + ρ. (Without loss of generality, τ̂ ≥ 0.)

4Naturally, in other application, other notions of cost may make more
sense, and are worth investigating.

The following lemma is stated in a rather general form.
Due to historical reasons, the lemma refers to precisions as
wi ∈ [1,∞), which is identical to our description above
via wi = 1/ui. Upon first reading, it may be instructive to
consider the special case f = 1, and let ρ = ε > 0 be an
absolute constant (say 0.1 to match our discussion above).

Lemma 1.2 (Precision Sampling Lemma). Fix an integer
n ≥ 2, a multiplicative error ε ∈ [1/n, 1/3], and an additive
error ρ ∈ [1/n, 1]. Then there exist a distribution W on the
real interval [1,∞) and a reconstruction algorithm R, with
the following two properties.

• Accuracy: Consider arbitrary a1, . . . , an ∈ [0, 1] and
f ∈ [1, 1.5]. Let w1, . . . , wn be chosen at random from
W pairwise independently.5 Then with probability at
least 2/3, when algorithm R is given {wi}i∈[n] and
{âi}i∈[n] such that each âi is an arbitrary (1/wi, f)-
approximator of ai, it produces σ̂ ≥ 0 which is a (ρ, f ·
eε)-approximator to σ

def=
∑n

i=1 ai.
• Cost: There is k = O(1/ρε2) such that the conditional

expectation Ew∈W [w | M ] ≤ O(k log n) for some
event M = M(w) occurring with high probability. For
every fixed α ∈ (0, 1), we have Ew∈W [wα] ≤ O(kα).
The distribution W = W(k) depends only on k.

We emphasize that the probability 2/3 above is over the
choice of {wi}i∈[n] and holds (separately) for every fixed
setting of {ai}i∈[n]. In the case where R is randomized,
the probability 2/3 is also over the coins of R. Note also
that the precisions wi are chosen without knowing ai, but
the estimators âi are adversarial — each might depend on
the entire {ai}i∈[n] and {wi}i∈[n], and their errors might be
correlated.

In our implementation, it turns out that the reconstruction
algorithm uses only âi’s which are (retrospectively) good
approximation to ai — namely âi � 1/wi — hence the
adversarial effect is limited. For completeness, we also
mention that, for k = 1, the distribution W = W(1) is
simply 1/u for a random u ∈ [0, 1]. We present the complete
proof of the lemma in Section 2.

It is natural to ask whether the above lemma is tight. In
the full paper, we show a lower bound on Ew∈W [w] in the
considered setting, which matches our PSL bound up to a
factor of 1/ε. We leave it as an open question what is the
best achievable bound for PSL.

1.3. Connection to Priority Sampling

We remark that (our implementation of) Precision Sam-
pling has some similarity to Priority Sampling [16], which
is a scheme for the following problem.6 We are given a
vector x ∈ Rn

+ of positive weights (coordinates), and we

5That is, for all i < j, the pair (wi, wj) is distributed as W2.
6The similarity is at the more technical level of applying the PSL in

streaming algorithms, hence the foregoing discussion actually refers to
Sections 2 and 3.



want to maintain a sample of k weights in order to be
able to estimate sums of weights for an arbitrary subset
of coordinates, i.e.,

∑
i∈I xi for arbitrary sets I ⊆ [n].

Priority Sampling has been shown to attain an essentially
best possible variance for a sampling scheme [32].

The similarity between the two sampling schemes is the
following. In our main approach, similarly to the approach
in Priority Sampling, we take the vector x ∈ Rn, and
consider a vector y where yi = xi/ui, for ui chosen at
random from [0, 1]. We are then interested in heavy hitters
of the vector y (in `1 norm). We obtain these using the
CountSketch/CountMin sketch [11], [14]. In Priority Sam-
pling, one similarly extracts a set of k heaviest coordinates
of y. However, one important difference is that in Priority
Sampling the weights (and updates) are positive, thus mak-
ing it possible to use Reservoir sampling-type techniques to
obtain the desired heavy hitters. In contrast, in our setting
the weights (and updates) may be negative, and we need
to extract the heavy hitters approximately and hence post-
process them differently.

See also [12] and the references therein for streaming-
friendly versions of Priority Sampling and other related
sampling procedures.

2. PROOF OF THE PRECISION SAMPLING LEMMA

In this section we prove the Precision Sampling Lemma
(Lemma 1.2). Compared to our previous version of PSL
from [3], this version has the following improvements: a
better bound on Ew∈W [w] (hence better total precision), it
requires the wi’s to be only pairwise independent (hence
streaming-friendly), and a slightly simpler construction and
analysis via its inverse u = 1/w. In the full paper we show
a lower bound for the total precision.

The probability distribution W . Fix k = ζ/ρε2 for
sufficiently large constant ζ > 0. The distribution W takes
a random value w ∈ [1,∞) as follows: pick i.i.d. samples
u1, . . . , uk from the uniform distribution U(0, 1), and set
w

def= maxj∈[k] 1/uj . Note that W depends on k only.

The reconstruction algorithms. The randomized recon-
struction algorithm R′ gets as input {wi}i∈[n] and {âi}i∈[n]

and works as follows. For each i ∈ [n], sample k i.i.d.
random variables, ui,j ∈ U(0, 1) for j ∈ [k], conditioned
on the event {wi = maxj∈[k] 1/ui,j}. Now define the
“indicators” si,j ∈ {0, 1/k}, for each i ∈ [n], j ∈ [k], by
setting

si,j
def=

{
1/k if ui,j ≤ âi/t for t

def= 4/ε;
0 otherwise.

Finally, algorithm R′ sets s
def=

∑
i∈[n],j∈[k] si,j and reports

σ̂
def= s t as an estimate for σ =

∑
i ai. A key observation

is that altogether, i.e., when we consider both the coins
involved in the choice of wi from W as well as those used

by algorithm R′, we can think of ui,1, . . . , ui,k as being
chosen i.i.d. from U(0, 1). Observe also that whenever âi

is a (1/wi, f)-approximator to ai, it is also a (ui,j , f)-
approximator to ai for all j ∈ [k].

We now build a more efficient deterministic algorithm R
that performs at least as well as R′. Specifically, R does not
generate the ui,j’s (from the given wi’s), but rather sets si

def=
E

[∑
j∈[k] si,j | minj∈[k] ui,j = 1/wi

]
and s

def=
∑

i∈[n] si.
A simple calculation yields an explicit formula, which is
easy to compute algorithmically:

si =

{
1
k + k−1

k · âiwi/t−1
wi−1 ; if âiwi/t ≥ 1

0 otherwise.

We proceed to the analysis of this construction. We will first
consider the randomized algorithm R′, and then show that
derandomization can only decrease the error.

Proof of Lemma 1.2: We first give bounds on the
moments of the distribution W . Indeed, recall that by
definition w

def= maxj∈[k]
1
uj

. We define the event M to be
that w ≤ n5; note that Pr[M ] ≥ 1− k ·n−5 ≥ 1−O(n−2).
Conditioned on M , each uj ∈ U(n−5, 1), and we have
E

[
1
uj

]
= 1

1−n−5

∫ 1

n−5
1
x dx = ln(n5)

1−n−5 . Thus

Ew∈W [w | M ] ≤ E
[∑

j∈[k]
1
uj
| M

]
≤ O(k log n).

Now fix α ∈ (0, 1). It is immediate that E [1/uα] =
O(1/(1 − α)). We can similarly prove that Ew∈W [wα] ≤
O(kα/(1 − α)), but the calculation is technical, and we
include its proof in Appendix A.

We now need to prove that σ̂ is an approximator to σ,
with probability at least 2/3. The plan is to first compute the
expectation of si,j , for each i ∈ [n], j ∈ [k]. This expectation
depends on the approximator values âi, which itself may
depend (adversarially) on wi, so instead we give upper and
lower bounds on the expectation E [si,j ] ≈ ai

tk . Then, we
wish to apply a concentration bound on the sum of si,j , but
again the si,j might depend on the random values wi, so we
actually apply the concentration bound on the upper/lower
bounds of si,j , and thereby derive bounds on s =

∑
si,j .

Formally, we define random variables si,j , si,j ∈
{0, 1/k}. We set si,j = 1/k iff ui,j ≤ fai/(t − 1), and 0
otherwise. Similarly, we set si,j = 1/k iff ui,j ≤ ai/f(t+1),
and 0 otherwise. We now claim that

si,j ≤ si,j ≤ si,j . (1)

Indeed, if si,j = 1/k then ui,j ≤ âi/t, and hence, using
the fact that âi is a (ui,j , f)-approximator to ai, we have
ui,j ≤ fai/(t − 1), or si,j = 1/k. Similarly, if si,j = 0,
then ui,j > âi/t, and hence ui,j > ai/f(t + 1), or si,j =
0. Notice for later use that each of {si,j} and {si,j} is a
collection of nk pairwise independent random variables. For
ease of notation, define σ̂ = t

∑
i,j si,j and σ̂ = t

∑
i,j si,j ,

and observe that σ̂ ≤ σ̂ ≤ σ̂.



We now bound E [si,j ] and E
[
si,j

]
. For this, it suffices to

compute the probability that si,j and si,j are 1/k. For the
first quantity, we have:

Pr
[
si,j = 1

k

]
= Pr

[
ui,j ≤ fai

t−1

]
= fai

t−1 ≤ eε/2f · ai

t , (2)

where we used the fact that t − 1 ≥ e−ε/2t. Similarly, for
the second quantity, we have:

Pr
[
si,j = 1

k

]
= Pr

[
ui,j ≤ ai

f(t+1)

]
= ai

f(t+1) ≥ e−ε/2f−1·ai

t .

(3)
Finally, using Eqn. (1) and the fact that E [s] =∑
i,j E [si,j ], we can bound the expectation and variance of

σ̂ = st as follows:

e−ε/2f−1·σ ≤ t
∑
i,j

E
[
si,j

]
≤ E [σ̂] ≤ t

∑
i,j

E [si,j ] ≤ eε/2f ·σ,

(4)
and, using pairwise independence, Var [σ̂],Var

[
σ̂
]
≤ t2 ·∑

i,j k−2 ·eε/2 · fai

t ≤ 4tk−1σ. Recall that we want to bound
the probability that σ̂ and σ̂ deviate (additively) from their
expectation by roughly εσ + ρ, which is larger than their
standard deviation O(

√
tk−1σ) = O(

√
ρεσ).

Formally, to bound the quantity σ̂ itself, we distinguish
two cases. First, consider σ > ρ/ε. Then for our parameters
k = ζ/ρε2 and t = 4/ε,

Pr
[
σ̂ > eε/2fσ · (1 + ε/2)

]
≤ Pr

[
σ̂−E

[
σ̂
]

> ε/2 · eεfσ
]

≤ Var[σ̂]
(ε/2·eεfσ)2 ≤

4tk−1σ
ε2σ2/4 ≤

O(ρ/εζ)
σ ≤ 0.1

for sufficiently large ζ. Similarly, Pr[σ̂ < f−1e−ε/2σ ·
e−ε/2] ≤ 0.1.

Now consider the second case, when σ ≤ ρ/ε. It holds

Pr
[
σ̂ > feε/2σ + ρ

]
≤ Pr

[
σ̂ − E

[
σ̂
]

> ρ
]

≤ Var[σ̂]
ρ2 ≤ 4tk−1·ρ/ε

ρ2 ≤ 0.1.

Similarly, we have Pr[σ̂ < f−1e−ε/2σ − ρ] ≤ 0.1. This
completes the proof that σ̂ is a (ρ, feε)-approximator to σ,
with probability at least 2/3.

Finally, we argue that switching to the deterministic
algorithm R only decreases the variances without affect-
ing the expectations, and hence the same concentration
bounds hold. Formally, denote our replacement for si

by s′i = Eui,j

[∑
j∈[k] si,j | maxj∈[k] 1/ui,j = wi

]
, and

note it is a random variable (because of wi). Define
s′i = E

[∑
j∈[k] si,j | maxj∈[k] 1/ui,j = wi

]
, and by apply-

ing conditional expectation to Eqn. (1), we have si ≤ s′i.
We now wish to bound the variance of

∑
i s′i. By the law

of total variance, and using the shorthand ~w = {wi}i,

Var [
∑

i si] = E [Var [
∑

i si | ~w]] + Var [E [
∑

i si | ~w]].
(5)

We now do a similar calculation for
∑

i s′i, but since each
s′i is completely determined from the known ~w, the first
summand is just 0 and in the second summand we can
change each s′i to si, formally

Var [
∑

i s′i] = E [Var [
∑

i s′i | ~w]] + Var [E [
∑

i s′i | ~w]]

= Var [E [
∑

i si | ~w]]. (6)

Eqns. (5) and (6) imply that in the deterministic algorithm
the variance (of the upper bound) can indeed only decrease.
The analysis for the lower bound is analogous, using s′i. As
before, using the fact that the s′i are pairwise independent
(because the wi are) we apply Chebyshev’s inequality to
bound deviation for the algorithm R′s actual estimate σ̂ =
t
∑

i s′i.

3. APPLICATIONS I: WARM-UP

We now describe our streaming algorithms that use the
Precision Sampling Lemma (PSL) as the core primitive. We
first outline two generic procedures that are used by several
of our applications. The current description leaves some
parameters unspecified: they will be fixed by the particular
applications. These two procedures are also given in pseudo-
code as Alg. 1 and Alg. 2.

As previously mentioned, our sketch function is a linear
function L : Rn → RS mapping an input vector x ∈ Rn

into RS , where S is the space (in words). The algorithm is
simply a fusion of PSL with a heavy hitters algorithm [11],
[14]. We use a parameter p ≥ 1, which one should think of
as the p in the `p-norm estimation problem, and p = k in
the Fk moment estimation. Other parameters are: ρ ∈ (0, 1)
(additive error), ε ∈ (0, 1/3) (multiplicative error), and m ∈
N (a factor in the space usage).

The sketching algorithm is as follows. We start by initial-
izing a vector of wi’s using Lemma 1.2: specifically we draw
wi’s from W = W(k) for k = ζ

ρε2 . We use l = O(log n)
hash tables {Hj}j∈[l], each of size m. For each hash table
Hj , choose a random hash function hj : [n] → [m], and
Rademacher random variables gj : [n] → {−1,+1}. Then
the sketch Lx is obtained by repeating the following for
every hash table j ∈ [l] and index i ∈ [n]: hash index
i ∈ [n] to find its cell hj(i), and add to this cell’s contents
the quantity gj(i) · xiw

1/p
i . Overall, S = lm.

The estimation algorithm E proceeds as follows. First
normalize the sketch Lx by scaling it down by an input pa-
rameter r ∈ R+. Now for each i ∈ [n], compute the median,
over the l hash tables, of the pth power of cells where i falls
into. Namely, let x̂i be the median of |Hj(hj(i))|p/rwi over
all j ∈ [l]. Then run the PSL reconstruction algorithm R on
the vectors {x̂i}i∈[n] and {wi}i∈[n], to obtain an estimate
σ̂ = σ̂(r). The final output is r · σ̂(r).

We note that it will always suffice to use pairwise inde-
pendence for each set of random variables {wi}i, {gj(i)}i,



and {hj(i)}i for each j ∈ [l]. For instance, it suffices to
draw each hash function hj from a universal hash family.

Finally, we remark that, while the reconstruction Alg. 2
takes time Ω(n), one can reduce this to time m ·
(ε−1 log n)O(1) by using a more refined heavy hitter sketch.
We discuss this issue later in this section.

Algorithm 1: Sketching algorithm for norm estimation.
Input is a vector x ∈ Rn. Parameters p, ε, ρ, and m are
specified later.

Generate {wi}i∈[n] as prescribed by PSL, using1

W = W(k) for k = ζρ−1ε−2.
Initialize l = O(log n) hash tables H1, . . . ,Hl, each of2

size m. For each table Hj , choose a random hash
function hj : [n] → [m] and a random
gj : [n] → {−1,+1}.
for each j ∈ [l] do3

Multiply x coordinate-wise with the vectors4

{w1/p
i }i∈[n] and gj , and hash the resulting vector

into the hash table Hj . Formally,
Hj(z) ,

∑
i:hj(i)=z gj(i) · w1/p

i · xi.

Algorithm 2: Reconstruction algorithm for norm estima-
tion. Input consists of l hash tables Hj , precisions wi for
i ∈ [n], and a real r > 0. Other parameters, p, ε, ρ,m,
are as in Alg. 1.

For each i ∈ [n], compute1

x̂i = medianj∈[l]

{ |Hj(hj(i))/r|p
wi

}
.

Apply PSL reconstruction algorithm R to vector2

(x̂1, . . . x̂n) and (w1, . . . wn), and let σ̂ be its output.
Explicitly, for each i ∈ [n], if x̂iwi ≥ t , 4/ε, then set
si , 1

k + k−1
k · x̂iwi/t−1

wi−1 (recall k = ζρ−1ε−2 from
PSL), otherwise si , 0; then, let σ̂ = t

∑
i si.

Output r · σ̂.3

3.1. Estimating Fk Moments for k > 2
We now present the algorithm for estimating Fk moments

for k > 2, using the PSL Lemma 1.2. To reduce the clash
of parameters, we refer to the problem as “Fp moment
estimation”.

Theorem 3.1. Fix n ≥ 8, p > 2, and 0 < ε < 1/3. There
is a randomized linear function L : Rn → RS , with S =
O(n1−2/p ·p2ε−2−4/p log n), and a deterministic estimation
algorithm E : RS → R, such that for every x ∈ Rn, with
probability at least 0.51, its output E(L(x)) approximates
‖x‖p

p within factor 1 + ε.

Proof of Theorem 3.1: Our linear sketch L is Alg. 1,
and the estimation algorithm E is Alg. 2, with the following

choice of parameters. Let ρ = ε/4
np/2−1 . Let W = W(k),

for k = ζρ−1ε−2, be from PSL Lemma 1.2. Define
ω = 9Ew∈W

[
w2/p

]
, and note that ω ≤ O(ρ−2/pε−4/p)

by Lemma 1.2. Finally we set m = α · O(ρ−2/pε−4/p) so
that m ≥ αω, where α = α(p, ε) > 1 will be determined
later.

In Alg. 2, we set r to be a factor 1− 1/p approximation
to ‖x‖2, i.e., (1−1/p)‖x‖2 ≤ r ≤ ‖x‖2. Note that such r is
easy to compute (with high probability) using, say, the AMS
linear sketch [1], with O(p2 log n) additional space. Thus,
for the rest, we will just assume that ‖x‖2 ∈ [1 − 1/p, 1]
and set r = 1.

The plan is to apply PSL Lemma 1.2 where each unknown
value ai is given by |xi|p, and each estimate âi is given by
x̂i. For this purpose, we need to prove that the x̂i’s are good
approximators. We thus let F2 =

∑n
i=1(xiw

1/p
i )2. Note

that E [F2] = ‖x‖22 · Ew∈W
[
w2/p

]
≤ ω/9, and hence by

Markov’s inequality, with probability at least 8/9 we have
F2 ≤ ω.

Claim 3.2. Assume that F2 ≤ ω. Then with high probability
(say ≥ 1−1/n2) over the choice of the hash tables, for every
i ∈ [n] the value x̂i is a (1/wi, e

ε)-approximator to |xi|p.

Proof: We shall prove that for each i ∈ [n] and
j ∈ [l], with probability ≥ 8/9 over the choice of hj and
gj , the value |Hj(hj(i))|p

wi
is a (1/wi, e

ε)-approximator to
|xi|p. Recall that each x̂i is the median of |Hj(hj(i))|p/wi

over l = O(log n) values of j, we get by applying a
Chernoff bound that with high probability it is a (1/wi, e

ε)-
approximator to |xi|p. The claim then follows by a union
bound over all i ∈ [n].

Fix i ∈ [n] and j ∈ [l], let Y , Hj(hj(i)). For
f ∈ [n], define yf = gj(f) · xfw

1/p
f if hj(f) = hj(i)

and 0 otherwise. Then Y = yi + δ where δ ,
∑

f 6=i yf .
Ideally, we would like that |Y |p ≈ |yi|p = |xi|pwi,
i.e., the effect of the error δ is small. Indeed, E

[
δ2

]
=

E
[
(
∑

f 6=i yf )2
]

= 1
m

∑
f 6=i(xfw

1/p
f )2 ≤ F2/m. Hence,

by Markov’s inequality, |δ| ≤
√

9F2/m ≤ 3/
√

α with
probability at least 8/9.

We now argue that if this event |δ| ≤ 3/
√

α occurs,
then |Hj(hj(i))|p

wi
= |Y |p

wi
=

∣∣gj(i)xi + δ/w
1/p
i

∣∣p is a good
approximator to |xi|p. Indeed, if |δ|/w

1/p
i ≤ ε

2p |xi|, then
clearly |Y |p

wi
= (1± ε

2p )p|xi|p. Otherwise, since |δ| ≤ 3/
√

α,
we have that∣∣∣|Y |p − |xiw

1/p
i |p

∣∣∣ ≤ (|xiw
1/p
i |+ |δ|)p − |xiw

1/p
i |p

≤ ( 2p
ε |δ|+ |δ|)p − ( 2p

ε |δ|)
p

≤ |δ|p · (2p/ε)p ·
(
(1 + ε

2p )p − 1
)

≤ (6p)p · ε1−p/αp/2.

If we set α = (6p)2/ε2−2/p, then we obtain that |Y |p
wi

is
a (1/wi, e

ε)-approximator to |xi|p, with probability at least



8/9. We now take median over O(log n) hash tables and
apply a union bound to reach the desired conclusion.

We can now complete the proof of Theorem 3.1. Apply
PSL (Lemma 1.2) with ai = |xi|p and âi = x̂i’s. By
Hölder’s inequality for p/2 and the normalization r = 1, we
have ‖x‖p

p ≥ ‖x‖
p
2/np/2−1 ≥ ρ/ε, and thus additive error ρ

transforms to multiplicative error 1+ε. It remains to bound
the space: S ≤ O(m log n) = O(αρ−2/pε−4/p log n) =
O(p2/ε2−2/p ·ε−6/pn1−2/p · log n) = O(p2n1−2/p ·ε−2−4/p ·
log n).

3.2. Estimating `1 Norm

To further illustrate the use of the Alg. 1 and 2, we now
show how to use them for estimating the `1 norm. In a later
section, we obtain similar results for all `p, p ∈ [1, 2], except
that the analysis is more involved.

We obtain the following theorem. For clarity of presenta-
tion, the efficiency (space and runtime bounds) are discussed
separately below.

Theorem 3.3. Fix n ≥ 8 and 8/n < ε < 1/8. There is
a randomized linear function L : Rn → RS , with S =
O(ε−3 log2 n), and a deterministic estimation algorithm E :
RS → R, such that for every x ∈ Rn, with probability at
least 0.51, its output E(L(x)) approximates ‖x‖1 within
factor 1 + ε.

Proof: The sketch function L is given by Alg. 1, with
parameters p = 1, ρ = ε/8, and m = Cε−3 log n for
a constant C > 0 defined shortly. Let W = W(k) for
k = ζρ−1ε−2 be obtained from the PSL Lemma 1.2. Define
ω = 10Ew∈W [w | M ], where event M = M(w) satisfies
Pr[M ] ≥ 1−O(n−2). Note that ω ≤ O(ε−3 log n). We set
constant C such that m ≥ 3ω.

The estimation procedure is just several invocations of
Alg. 2 for different values of r. For the time being, assume
we hold an overestimate of ‖x‖1, which we call r ≥ ‖x‖1.
Then algorithm E works by applying Alg. 2 with this
parameter r.

Let F1 =
∑n

i=1 |xiwi|/r. Note that E [F1 | ∩iM(wi)] =
‖x‖1/r ·Ew∈W [w | M(w)] ≤ ω/10, and hence by Markov’s
inequality, F1 ≤ ω ≤ m/3 with probability at least 9/10−
O(n/n2) ≥ 8/9. Call this event Er, and assume henceforth
it indeed occurs.

To apply the PSL, we need to prove that each x̂i in Alg. 2
is a good approximator to xi. Fix i ∈ [n] and j ∈ [l]. We
claim that, conditioned on Er, the with probability at least
2/3, |Hj(hj(i))|

rwi
is a (1/wi, 1)-approximator of |xi|. Indeed,

Hj(hj(i))
rwi

= 1
r gj(i)xi + 1

rwi

∑
f 6=i:hj(f)=hj(i)

gj(f)wfxf ,
and thus,

E
[∣∣∣ |Hj(hj(x))|

rwi
− |xi|

r

∣∣∣] ≤ 1
rwi

∑
f 6=i

1
m |xfwf | ≤ F1

mwi
≤ 1

3wi
.

Hence, by Markov’s inequality, |Hj(hj(x))|
rwi

is a
(1/wi, 1)-approximator of |xi|/r with probability

at least 2/3. By a Chernoff bound, their median
x̂i = medianj∈[l]

{ |Hj(hj(i))|
rwi

}
is a (1/wi, 1)-approximator

to |xi|/r with probability at least 1 − n−2. Taking a
union bound over all i ∈ [n] and applying the PSL
(Lemma 1.2), we obtain that the PSL output, σ̂ = σ̂(r) is
an (ε/8, eε)-approximator to ‖x‖1/r, with probability at
least 2/3− 1/9− 1/n2 ≥ 0.6.

Now, if we had r ≤ 4‖x‖1, then we would be done as rσ̂
would be a (ε‖x‖1/2, eε)-approximator to ‖x‖1, and hence a
1+2ε multiplicative approximator (and this easily transforms
to factor 1+ε by suitable scaling of ε). Without such a good
estimate r, we try all possible values r that are powers of 2,
from high to low, until we make the right guess. Notice that
it is easy to verify that the current guess r is sufficiently large
that we can safely decrease it. Specifically, if r > 4‖x‖1 then
rσ̂ < eε‖x‖1+εr/8 ≤ (r/4)·[1+3ε/2+ε/2] = (1+2ε)r/4.
However, if r ≤ 2‖x‖1 then rσ̂ ≥ e−ε‖x‖1−εr/8 ≥ (r/2) ·
[1 − ε − ε/4] > (1 + 2ε)r/4. We also remark that, while
we repeat Alg. 2 for O(log n) times (starting from r =
nO(1) suffices), there is no need to increase the probability
of success as the relevant events Er = {

∑
i |xiwi| ≤ rm/3}

are nested and contain the last one, where r/‖x‖1 ∈ [1, 4].

3.3. The Running Times

We now briefly discuss the runtimes of our algorithms: the
update time of the sketching Alg. 1, and the reconstruction
time of the Alg. 2.

It is immediate to note that the update time of our
sketching algorithm is O(log n): one just has to update
O(log n) hash tables. We also note that we can compute
a particular wi in O(log n) time, which is certainly doable
as wi may be generated directly from the seed used for the
pairwise-independent distribution. Furthermore, we note that
we can sample from the distribution W = W(k) in O(1)
time (see, e.g., [22]).

Now we turn to the reconstruction time of Alg. 2. As
currently described, this runtime is O(n log n). One can
improve the runtime by using the CountMin heavy hitters
(HH) sketch of [14], at the cost of a O(log( log n

ε )) factor
increase in the space and update time. This improvement is
best illustrated in the case of `1 estimation. We construct
the new sketch by just applying the Θ(t/m)-HH sketch
(Theorem 5 of [14]) to the vector x ·w (entry-wise product).
The HH procedure returns at most O(m/t) coordinates i,
together with (1/wi, e

ε)-approximators x̂i, for which it is
possible that x̂iwi ≥ t (note that, if the HH procedure does
not return some index i, we can consider 0 as being its
approximator). This is enough to run the estimation proce-
dure E from PSL, which uses only i’s for which x̂iwi ≥ t.
Using the bounds from [14], we obtain the following guar-
antees. The total space is O(ε−1 log n log( log n

ε ) · m/t) =
O(m log n · log( log n

ε )) = O(ε−3 log2 n · log( log n
ε )). The



update time is O(log n · log( log n
ε )) and reconstruction time

is O(log2 n · log( log n
ε )).

To obtain a similar improvement in reconstruction time for
the Fk-moment problem, one uses an analogous approach,
except that one has to use HH with respect to the `2 norm,
instead of the `1 norm (considered in [14]).

4. APPLICATIONS II: BOUNDS VIA p-TYPE CONSTANT

In this section, we show further applications of the PSL
to streaming algorithms. As in Section 3, our sketching
algorithm will be linear, following the lines of the generic
Alg. 1.

An important ingredient for our intended applications will
be a variation of the notion of p-type of a Banach space (or,
more specifically, the p-type constant). This notion will give
a bound on the space usage of our algorithms, and hence we
will bound it in various settings. Below we state the simplest
such bound, which is a form of the Khintchine inequality.

Lemma 4.1. Fix p ∈ [1, 2], n ≥ 1 and x ∈ Rn. Suppose
that for each i ∈ [n] we have two random variables, gi ∈
{−1,+1} chosen uniformly at random, and χi ∈ {0, 1}
chosen to be 1 with probability α ∈ (0, 1) (and 0 otherwise).
Then

E
[∣∣∣ ∑

i giχixi

∣∣∣p] ≤ α‖x‖p
p.

Furthermore, suppose each family of random variables
{gi}i and {χi}i is only pairwise independent and the two
families are independent of each other. Then, with probabil-
ity at least 7/9, we have that∣∣∣∣∣∑

i

giχixi

∣∣∣∣∣
p

≤ 32+pα‖x‖p
p.

The proof of this lemma appears in the full paper.

4.1. `p-norm for p ∈ [1, 2]

We now use Alg. 1 and 2 to estimate the `p norm for
p ∈ [1, 2]. We use Lemma 4.1 to bound the space usage.

Theorem 4.2. Fix p ∈ [1, 2], n ≥ 6, and 0 < ε < 1/8. There
is a randomized linear function L : Rn → RS , with S =
O(ε−2−p log2 n), and a deterministic estimation algorithm
E, such that for every x ∈ Rn, with probability at least
0.51, E(L(x)) is a factor 1 + ε approximation to ‖x‖p

p.

Proof: Our sketch function L is given by Alg. 1. We
set ρ = ε/8. Let W = W(k) for k = ζρ−1ε−2 obtained
from the PSL (Lemma 1.2). Define ω = 10Ew∈W [w | M ],
where event M = M(w) satisfies Pr[M ] ≥ 1 − O(n−2).
Note that ω ≤ O(ε−3 log n). We set m = αω for a constant
α > 0 to be determined later.

We now describe the exact reconstruction procedure,
which will be just several invocations of the algorithm 2 for
different values of r. As in Theorem 3.3, we guess r > 0
starting from the highest possible value and halving it each

time, until we obtain a good estimate: ‖x‖p ≤ r ≤ 4‖x‖p

(alternatively, one could prepare for all possible r’s). To
simplify the exposition, let us just assume in the sequel that
r = 1 and thus 1/4 ≤ ‖x‖p ≤ 1.

Let Fp =
∑n

i=1 |xi|pwi. Note that E [Fp | ∩iM(wi)] =
‖x‖p

p · Ew∈W [w | M(w)] ≤ ω/10, and hence by Markov’s
inequality, Fp ≤ ω with probability at least 8/9. Call this
event E and assume henceforth it occurs. To apply PSL,
we need to prove that every x̂i from Alg. 2 is a good
approximator to xi.

Claim 4.3. Assume Fp ≤ ω and fix i ∈ [n]. If α ≥
32+pε1−p, then with high probability, x̂i is a (1/wi, e

ε)-
approximator to |xi|p.

Proof: Fix j ∈ [l]; we shall prove that |Hj(hj(i))|p is a
(1, 1 + ε)-approximator to |xi|pwi, with probability at least
2/3. Then we would be done by Chernoff bound, as x̂i is a
median over l = O(log n) independent trials j ∈ [l].

For f ∈ [n], define yf = gj(f) · xiw
1/p
i if hj(f) = hj(i)

and yf = 0 otherwise. Define Y , Hj(hj(i)) = yi + δ,
where δ =

∑
f 6=i yf . We apply Lemma 4.1 to conclude that

E [|δ|p] ≤ Fp/m, and hence |δ|p ≤ 3ω/m ≤ 3/α with
probability at least 2/3. Assume henceforth this is indeed
the case.

Now we distinguish two cases. First, suppose |xiw
1/p
i | ≥

2
ε ·|δ|. Then |Y |p = (1±ε/2)|xi|pwi. Otherwise, |xiw

1/p
i | <

2
ε · |δ|, and then∣∣∣|Y |p − |xiw

1/p
i |p

∣∣∣ ≤ (|xiw
1/p
i |+ |δ|)p − |xiw

1/p
i |p

≤ |δ|p · ((2/ε + 1)p − 2/ε)
≤ |δ|p · (2/ε)p · (1 + pε− 1)
≤ p2p · 3 · ε1−p/α.

Thus, if we set α ≥ 32+p(1/ε)p−1, then in both cases
|Y |p is a (1, eε)-approximator to |xi|pwi (under the event
that occurs with probability at least 2/3).

We can now complete the proof of Theorem 4.2. Applying
Lemma 1.2, we obtain that its output, σ̂ = σ̂(r), is a
(ε/8, e2ε)-approximator to ‖x‖p, with probability at least
2/3− 1/9− 1/n2 ≥ 0.51.

4.2. Mixed and cascaded norms

We now show how to estimate mixed norms such as the
`p,q norms. In the latter case, the input is a matrix x ∈
Rn1·n2 , and the `p,q norm is ‖x‖p,q = (

∑
i ‖xi‖p

q)
1/p, where

xi is the ith row in the matrix.
We show a more general theorem, for the norm `p(X),

which is defined similarly for a general Banach space X; the
`p,q norms will be just particular cases. To state the general
result, we need the following definition.

Definition 4.4. Fix p ≥ 1, n, κ ∈ N, ω > 0, δ ∈ [0, 1),
and let X be a finite dimensional Banach space. The the
generalized p-type, denoted α(X, p, n, κ, ω, δ), is the biggest



constant α > 0 satisfying the following: For each i ∈ [n],
let gi ∈ {−1,+1} be a random variable drawn uniformly
at random, and let χi ∈ {0, 1} be a random variable that is
equal 1 with probability 1/α and 0 otherwise. Furthermore,
each family {gi}i and {χ}i is κ-wise independent, and the
two families are independent of each other. Then, for every
x1, . . . xn ∈ X satisfying

∑
i∈[n] ‖xi‖p

X ≤ ω,

Pr
[∥∥∑

i∈[n] giχixi

∥∥p

X
≤ 1

]
≥ 1− δ.

Theorem 4.5. Fix p ≥ 1, n ≥ 2, and 0 < ε < 1/3. Let X be
a Banach space admitting a linear sketch LX : X → RSX ,
with space SX = SX(ε), and let EX : RSX → R be its
reconstruction procedure.

Then there is a randomized linear function L : Xn → RS ,
and an estimation algorithm E which, for any x ∈ Xn,
given the sketch Lx, outputs a factor 1 + ε approximation
to ‖x‖p,X , with probability at least 0.51.

Furthermore, S ≤ SX(ε/2) ·
α(X, p, n, κ, O(pε−4 log n), 2/3) · O(log n), where κ
is such that each function gj and hj is κ-wise independent.

We note that the result for `p,q norms will follow by
proving some particular bounds on the parameter α, the
generalized p-type. We discuss these implications after the
proof of the theorem.

Proof of Theorem 4.5: Our sketch function L is given
by algorithm 1, with one notable modification. xi’s are now
vectors from X and the hash table cells hold sketches given
by sketching function LX up to 1 + ε/2 approximation. In
particular, each cell of hash table Hj(z) =

∑
i:hj(i)=z gj(i) ·

w
1/p
i · LXxi. Furthermore, abusing notation, we use the

notation ‖Hj(z)‖q for some z ∈ [m] to mean the result
of the E-estimation algorithm on the sketch Hj(z) (since it
is a 1 + ε/2 approximation, we can afford such additional
multiplicative error).

We set ρ = ε/8. Let W = W(k) by for k =
ζρ−1ε−2 obtained from the PSL Lemma 1.2. Define ω =
10Ew∈W [w | M ], where event M = M(w) satisfies
Pr[M ] ≥ 1 − O(n−2). Note that ω ≤ O(ε−3 log n). We
set m later.

We now describe the exact reconstruction procedure,
which will be just several invocations of the algorithm 2 for
different values of r. As in Theorem 3.3, we guess r starting
from high and halving it each time, until we obtain a good
estimate — ‖x‖p,X ≤ r ≤ 4‖x‖p,X (alternatively, one could
prepare for all possible r’s). For simplified exposition, we
just assume that 1/4 ≤ ‖x‖p,X ≤ 1 and r = 1 in the rest.

Let Fp,X =
∑n

i=1 ‖xiw
1/p
i ‖p

X . Note that
E [Fp,X | ∩M(wi)] = ‖x‖p

X · Ew∈W [w | M(w)] ≤ ω/10,
and hence Fp,X ≤ ω with probability at least 8/9
by Markov’s bound. Call this event E . To apply PSL,
we need to prove that x̂i’s from Alg. 2 are faithful
approximators. For this, we prove that, for appropriate

choice of α = α(p, X, ε, n), for each j ∈ [l], ‖Hj(hj(i))‖p
X

is a (1, 1 + ε)-approximator to ‖xi‖p
Xwi, with probability

at least 2/3. This would imply that, since x̂i is a median
over O(log n) independent trials, x̂i is a (1/wi, 1 + ε)-
approximator to ‖xi‖p

X . Once we have such a claim, we
apply Lemma 1.2, and conclude that the output, σ̂ = σ̂(r),
is a (ε/8, 1 + 2ε)-approximator to ‖x‖p,X , with probability
at least 2/3− 1/9− 1/n ≥ 0.51.

Claim 4.6. Fix p ≥ 1 and ω ∈ R+. Let m =
α(X, p, κ, 3pω/ε, 2/3), the generalized p-type of X .

Assume Fp,X ≤ ω and fix i ∈ [n], j ∈ [l]. Then
‖Hj(hj(i))‖p

X is a (1, 1+ε)-approximator to ‖xi‖p
Xwi with

probability at least 2/3.

Proof: For f ∈ [n], define yf = gj(f) · xiw
1/p

if hj(f) = hj(i) and yf = 0 otherwise. Then, a ,∑
f∈[n]:hj(f)=hj(i)

gj(i)xi = yi + δ, where δ =
∑

f 6=i yf .
Then, by the definition of generalized p-type of X , whenever
m ≥ α(X, p, κ, ω · 3p

ε , 2/3), we have that ‖δ‖X ≤ ε/3, with
probability at least 2/3.

Now we distinguish two cases. First, suppose
‖xiw

1/p
i ‖X ≥ 2p

ε · ‖δ‖X . Then ‖a‖p
X ≈ (1 ± ε)‖xi‖p

Xwi.
Otherwise, if ‖xiw

1/p
i ‖X < 2p

ε · ‖δ‖X , then

‖a‖p
X ≤

(
‖xiw

1/p
i ‖X + ‖δ‖X

)p

≤ (2p‖δ‖X/ε + ‖δ‖X)p

≤ ‖δ‖p
X · (2p/ε + 1)p ≤ 1.

Hence, we conclude that ‖a‖p
X (and thus ‖Hj(hj(i))‖p

X ) is
a (1, 1 + ε)-approximator to ‖xi‖p

Xwi, with probability at
least 2/3.

The claim concludes the proof of Theorem 4.5.
Note that the space is S = O(SX(ε/2) ·
α(X, p, κ,O(pε−4 log n), 2/3) · log n).

We now show the implications of the above theorem. For
this, we present the following lemma, whose proof appears
in the full paper.

Lemma 4.7. Fix n, m ∈ N, ω ∈ R+, and a finite
dimensional Banach space X . We have the following bounds
on the generalized p-type:

(a)) if 0 < p ≤ q ≤ 2, then α(`m
q , p, n, 2, ω, 2/3) ≤ O(ω).

(b)) if p, q ≥ 2, we have that α(`m
q , p, n, 2q, ω, 2/3) ≤

92qO(1)ω2/p · n1−2/p, and if q ≥ 2 and p ∈ (0, 2),
then α(`m

q , p, n, 2q, ω, 2/3) ≤ 92qO(1)ω2/p.
(c)) for p ≥ 1, we have that α(X, p, n, 2, ω, 2/3) ≤

O(n1−1/pω1/p), and for p ∈ (0, 1), we have that
α(X, p, n, 2, ω, 2/3) ≤ O(ω1/p).

Combining Theorem 4.5 and Lemma 4.7, also using
Theorem 3.1, we obtain the following linear sketches for
`p,q norms, which are optimal up to (ε−1 log n)O(1) factors
(see, e.g., [23]).



Corollary 4.8. There exist linear sketches for `n1
p (`n2

q ), for
n1, n2 ≤ n and p, q ≥ 1, with the following space bounds
S.

For 0 < p ≤ q ≤ 2, the bound is S = (ε−1 log n)O(1).
If q ≥ 2, p ∈ (0, 2), then S = n

1−2/q
2 · (pqε−1 log n)O(1).

If p, q ≥ 2, then S = n
1−2/p
1 n

1−2/q
2 · (pqε−1 log n)O(1).

If p ≥ 1, q ∈ (0, p), then S = n
1−1/p
1 · (ε−1 log n)O(1).

If p ∈ (0, 1), q ∈ (0, p), then S = (ε−1 log n)O(1).
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APPENDIX

Claim A.1. For k ≥ 1, suppose uj are drawn uniformly at
random from [0, 1]. Then, for any α ∈ (0, 1), we have that
Euj

[(maxj 1/uj)
α] ≤ O

(
kα

1−α

)
.

Proof: We compute the expectation directly:

Euj [(maxj 1/uj)
α] =

∫ 1

0

u−α · k(1− u)k−1 du

≤
∫ 1/k

0

k · u−α du+
∫ 1

1/k

kα · k(1− u)k−1 du

= k ·
[

u1−α

1−α

]1/k

0
+ kα

[
− (1− u)k

]1

1/k
≤ O( kα

1−α ).


