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Abstract. The problem of estimating frequency moments of a data
stream has attracted a lot of attention since the onset of streaming algo-
rithms [AMS99]. While the space complexity for approximately comput-
ing the pth moment, for p ∈ (0, 2] has been settled [KNW10], for p > 2
the exact complexity remains open. For p > 2 the current best algorithm
uses O(n1−2/p log n) words of space [AKO11,BO10], whereas the lower
bound is of Ω(n1−2/p) [BJKS04].
In this paper, we show a tight lower bound of Ω(n1−2/p log n) words for
the class of algorithms based on linear sketches, which store only a sketch
Ax of input vector x and some (possibly randomized) matrix A. We note
that all known algorithms for this problem are linear sketches.

1 Introduction

One of the classical problems in the streaming literature is that of computing
the p-frequency moments (or p-norm) [AMS99]. In particular, the question is to
compute the norm ‖x‖p of a vector x ∈ Rn, up to 1 + ε approximation, in the
streaming model using low space. Here, we assume the most general model of
streaming, where one sees updates to x of the form (i, δi) which means to add
a quantity δi ∈ R to the coordinate i of x.5 In this setting, linear estimators,
which store Ax for a matrix A, are particularly useful as such an update can be
easily processed due to the equality A(x + δiei) = Ax + A(δiei).

The frequency moments problem is among the problems that received the
most attention in the streaming literature. For example, the space complexity for
p ≤ 2 has been fully understood. Specifically, for p = 2, the foundational paper of
[AMS99] showed that Oε(1) words (linear measurements) suffice to approximate
the Euclidean norm6. Later work showed how to achieve the same space for all

5 For simplicity of presentation, we assume that δi ∈ {−nO(1), . . . , nO(1)}, although
more refined bounds can be stated otherwise. Note that in this case, a “word” (or
measurement in the case of linear sketch — see definition below) is usually O(log n)
bits.

6 The exact bound is O(1/ε2) words; since in this paper we concentrate on the case of
ε = Ω(1) only, we drop dependence on ε.



p ∈ (0, 2) norms [Ind06,Li08,KNW10]. This upper bound has a matching lower
bound [AMS99,IW03,Bar02,Woo04]. Further research focused on other aspects,
such as algorithms with improved update time (time to process an update (i, δi))
[NW10,KNW10,Li08,GC07,KNPW11].

In constrast, when p > 2, the exact space complexity still remains open.
After a line of research on both upper bounds [AMS99,IW05,BGKS06,MW10],
[AKO11,BO10,Gan11] and lower bounds [AMS99,CKS03,BJKS04,JST11,PW12],
we presently know that the best space upper bound is of O(n1−2/p log n) words,
and the lower bound is Ω(n1−2/p) bits (or linear measurements). (Very recently
also, in a restricted streaming model — when δi = 1 — [BO12] achieves an im-
proved upper bound of nearly O(n1−2/p) words.) In fact, since for p = ∞ the
right bound is O(n) (without the log factor), it may be tempting to assume that
there the right upper bound should be O(n1−2/p) in the general case as well.

In this work, we prove a tight lower bound of Ω(n1−2/p log n) for the case of
linear estimator. A linear estimator uses a distribution over m × n matrices A
such that with high probability over the choice of A, it is possible to calculate
the pth moment ‖x‖p from the sketch Ax. The parameter m, the number of
words used by the algorithm, is also called the number of measurements of
the algorithm. Our new lower bound is of Ω(n1−2/p log n) measurements/words,
which matches the upper bound from [AKO11,BO10]. We stress that essentially
all known algorithms in the general streaming model are in fact linear estimators.

Theorem 1. Fix p ∈ (2,∞). Any linear sketching algorithm for approximating
the pth moment of a vector x ∈ Rn up to a multiplicative factor 2 with probability
99/100 requires Ω(n1−2/p log n) measurements.

In other words, for any p ∈ (2,∞) there is a constant Cp such that for any
distribution on m × n matrices A with m < Cpn

1−2/p log n and any function
f : Rm×n × Rm → R+ we have

inf
x∈Rn

Pr
(

1
2
‖x‖p ≤ f(A,Ax) ≤ 2‖x‖p

)
≤ 99

100
. (1)

The proof uses similar hard distributions as in some of the previous work,
namely all coordinates of an input vector x have random small values except
for possibly one location. To succeed on these distributions, the algorithm has
to distinguish between a mixture of Gaussian distributions and a pure Gaussian
distribution. Analyzing the optimal probability of success directly seems too
difficult. Instead, we use the χ2-divergence to bound the success probability,
which turns out to be much more amenable to analysis.

From a statistical perspective, the problem of linear sketches of moments
can be recast as a minimax statistical estimation problem where one observes
the pair (Ax,A) and produces an estimate of ‖x‖p. More specifically, this is a
functional estimation problem, where the goal is to estimation some functional
(in this case, the pth moment) of the parameter x instead of estimating x directly.
Under this decision-theoretic framework, our argument can be understood as Le
Cam’s two-point method for deriving minimax lower bounds [LC86]. The idea
is to use a binary hypotheses testing argument where two priors (distributions



of x) are constructed, such that 1) the pth moment of x differs by a constant
factor under the respective prior; 2) the resulting distributions of the sketches
Ax are indistinguishable. Consequently there exists no moment estimator which
can achieve constant relative error. This approach is also known as the method
of fuzzy hypotheses [Tsy09, Section 2.7.4]. See also [BL96,IS03,Low10,CL11] for
the method of using χ2-divergence in minimax lower bound.

We remark that our proof does not give a lower bound as a function of ε (but
[Woo13] independently reports progress on this front).

1.1 Preliminaries

We use the following definition of divergences.

Definition 1. Let P and Q be probability measures. The χ2-divergence from P
to Q is

χ2(P ||Q) ,
∫ (

dP

dQ
− 1

)2

dQ

=
∫ (

dP

dQ

)2

dQ− 1

The total variation distance between P and Q is

V (P,Q) , sup
A
|P (A)−Q(A)| = 1

2

∫
|dP − dQ| (2)

The operational meaning of the total variation distance is as follows: De-
note the optimal sum of Type-I and Type-II error probabilities of the binary
hypotheses testing problem H0 : X ∼ P versus H1 : X ∼ Q by

E(P,Q) , inf
A
{P (A) + Q(Ac)}, (3)

where the infimum is over all measurable sets A and the corresponding test is
to declare H1 if and only if X ∈ A. Then

E(P,Q) = 1− V (P,Q). (4)

The total variation and the χ2-divergence are related by the following in-
equality [Tsy09, Section 2.4.1]:

2V 2(P,Q) ≤ log(1 + χ2(P ||Q)) (5)

Therefore, in order to establish that two hypotheses cannot be distinguished
with vanishing error probability, it suffices to show that the χ2-divergence is
bounded.

One additional fact about V and χ2 is the data-processing property [Csi67]:
If a measurable function f : A → B carries probability measure P on A to P ′

on B, and carries Q to Q′ then

V (P,Q) ≥ V (P ′, Q′) . (6)



2 Lower Bound Proof

In this section we prove Theorem 1 for arbitrary fixed measurement matrix A.
Indeed, by Yao’s minimax principle, we only need to demonstrate an input distri-
bution and show that any deterministic algorithm succeeding on this distribution
with probability 99/100 must use Ω(n1−2/p log n) measurements.

Fix p ∈ (2,∞). Let A ∈ Rm×n be a fixed matrix which is used to produce
the linear sketch, where m < Cpn

1−2/p log n is the number of measurements and
Cp is to be specified. Next, we construct distributions D1 and D2 for x to fulfill
the following properties:

1. ‖x‖p ≤ Cn1/p on the entire support of D1, and ‖x‖p ≥ 4Cn1/p on the entire
support of D2, for some appropriately chosen constant C.

2. Let E1 and E2 denote the distribution of Ax when x is drawn from D1 and
D2 respectively. Then V (E1, E2) ≤ 98/100.

The above claims immediately imply the desired (1) via the relationship between
statistical tests and estimators. To see this, note that any moment estimator f

induces a test for distinguishing E1 versus E2: declare D2 if and only if f(A,Ax)
2Cn1/p ≥

1. In other words,

Pr
x∼ 1

2 (D1+D2)

(
1
2
‖x‖p ≤ f(A,Ax) ≤ 2‖x‖p

)
≤ 1

2
Pr

x∼D2

(
f(A,Ax) > 2Cn1/p

)
+

1
2

Pr
x∼D1

(
f(A,Ax) ≤ 2Cn1/p

)
(7)

≤ 1
2
(1 + V (E1, E2)) ≤

99
100

, (8)

where the last line follows from the characterization of the total variation in (2).
The idea for constructing the desired pair of distributions is to use the Gaus-

sian distribution and its sparse perturbation. Since the moment of a Gaussian
random vector takes values on the entire R+, we need to further truncate
by taking its conditioned version. To this end, let y ∼ N(0, In) be a stan-
dard normal random vector and t a random index uniformly distributed on
{1, . . . , n} and independently of y. Let {e1, . . . , en} denote the standard basis
of Rn. Let D̄1 and D̄2 be input distributions defined as follows: Under the dis-
tribution D̄1, we let the input vector x equal to y. Under the distribution D̄2,
we add a one-sparse perturbation by setting x = y + C1n

1/pet with an appro-
priately chosen constant C1. Now we set D1 to be D̄1 conditioned on the event
E = {z : ‖z‖p ≤ Cn1/p}, i.e., D1(·) = D̄1(·∩E)

D̄1(E)
, and set D2 to be D̄2 conditioned

on the event F = {z : ‖z‖p ≥ 4Cn1/p}. By the triangle inequality,

V (E1, E2) ≤ V (Ē1, Ē2) + V (Ē1, E1) + V (Ē2, E2)
≤ V (Ē1, Ē2) + V (D̄1, D1) + V (D̄2, D2)

= V (Ē1, Ē2) + Pr
x∼D̄1

(‖x‖p ≥ Cn1/p) + Pr
x∼D̄2

(‖x‖p ≤ 4Cn1/p), (9)



where the second inequality follows from the data-processing inequality (6) (ap-
plied to the mapping x 7→ Ax). It remains to bound the three terms in (9).

First observe that for any i, E[|yi|p] = tp where tp = 2p/2Γ (p+1
2 )π−1/2. Thus,

E[‖y‖p
p] = ntp. By Markov inequality, ‖y‖p

p ≥ 100ntp holds with probability at
most 1/100. Now, if we set

C1 = 4 · (100tp)1/p + 10, (10)

we have (yt + C1n
1/p)p > 4p · 100ntp with probability at least 99/100, and

hence the third term in (9) is also smaller than 1
100 . It remains to show that

V (Ē1, Ē2) ≤ 96/100.

Without loss of generality, we assume that the rows of A are orthonormal
since we can always change the basis of A after taking the measurements. Let
ε be a constant smaller than 1 − 2/p. Assume that m < ε

100C2
1
· n1−2/p log n.

Let Ai denote the ith column of A. Let S be the set of indices i such that
‖Ai‖2 ≤ 10

√
m/n ≤ n−1/p

√
ε log n/C1. Let S̄ be the complement of S. Since∑n

i=1 ‖Ai‖2
2 = m, we have |S̄| ≤ n/100. Let s be uniformly distributed on S and

Ẽ2 the distribution of y + C1n
1/pes. By the convexity of (P,Q) 7→ V (P,Q) and

the fact that V (P,Q) ≤ 1, we have V (Ē1, Ē2) ≤ V (Ē1, Ẽ2) + |S̄|
n ≤ V (Ē1, Ẽ2) +

1/100. In view of (5), it suffices to show that

χ2(Ẽ2‖Ē1) ≤ c (11)

for some sufficiently small constant c. To this end, we first prove a useful fact
about the measurement matrix A.

Lemma 1. For any matrix A with m < ε
100C2

1
· n1−2/p log n orthonormal rows,

denote by S the set of column indices i such that ‖Ai‖2 ≤ 10
√

m/n. Then

|S|−2
∑

i,j∈S

eC2
1n2/p〈Ai,Aj〉 ≤ 1.03C4

1 (n−2+4/p+εm + n2/p−1
√

m) + 1

Proof. Because AAT = Im, we have

∑
i,j∈[n]

〈Ai, Aj〉2 =
∑

i,j∈[n]

(AT A)2ij = ‖AT A‖2
F = tr(AT AAT A) = tr(AT A) = ‖A‖2

F = m.



We consider the following relaxation: let x1, . . . , x|S|2 ≥ 0 where
∑

i x2
i ≤

C4
1n4/p ·m and xi ≤ ε log n. We now upper bound |S|−2

∑|S|2
i=1 exi . We have

|S|−2

|S|2∑
i=1

exi = |S|−2

|S|2∑
i=1

1 + xi +
∑
j≥2

xj
i

j!


≤ 1 + |S|−2

|S|2∑
i=1

xi + |S|−2

|S|2∑
i=1

x2
i

∑
j≥2

(maxi∈[n2] xi)j−2

j!

≤ 1 + |S|−2

√
|S|2

∑
i

x2
i + |S|−2(C4

1mn4/p)
(

eε log n

(ε log n)2

)
≤ 1 + 1.03C2

1

√
mn2/p−1 + 1.03C4

1n−2+4/p+εm.

The last inequality uses the fact that 99n/100 ≤ |S| ≤ n. Applying the above
upper bound to x(i−1)|S|+j = C2

1n2/p|〈Ai, Aj〉| ≤ C2
1n2/p‖Ai‖ · ‖Aj‖ ≤ ε log n,

we conclude the lemma.

We also need the following lemma [IS03, p. 97] which gives a formula for
the χ2-divergence from a Gaussian location mixture to a standard Gaussian
distribution:

Lemma 2. Let P be a distribution on Rm. Then

χ2(N(0, Im) ∗ P ||N(0, Im)) = E[exp(〈X, X ′〉)]− 1 ,

where X and X ′ are independently drawn from P .

We now proceed to proving an upper bound on the χ2-divergence between
Ē1 and Ẽ2.

Lemma 3.

χ2(Ẽ2‖Ē1) ≤ 1.03C4
1 (n−2+4/p+εm + n2/p−1

√
m)

Proof. Let pi = 1/|S| ∀i ∈ S be the probability t = i. Recall that s is the
random index uniform on the set S = {i ∈ [n] : ‖Ai‖2 ≤ 10

√
m/n}. Note

that Ay ∼ N(0, AAT ). Since AAT = Im, we have Ē1 = N(0, Im). Therefore
A(y + C1n

1/p) ∼ Ẽ2 = 1
|S|

∑
i∈S N(Ai, Im), a Gaussian location mixture.

Applying Lemma 2 and then Lemma 1, we have

χ2(Ẽ2‖Ē1) =
∑

i,j∈S

pipje
C2

1n2/p〈Ai,Aj〉 − 1

≤ 1.03C4
1 (n−2+4/p+εm + n2/p−1

√
m).

Finally, to finish the lower bound proof, since ε < 1−2/p we have n−2+4/p+εm+
n2/p−1

√
m = o(1), implying (11) for all sufficiently large n and completing the

proof of V (E1, E2) ≤ 98/100.



3 Discussions

While Theorem 1 is stated only for constant p, the proof also gives lower bounds
for p depending on n. At one extreme, the proof recovers the known lower bound
for approximating the `∞-norm of Ω(n). Notice that the ratio between the
`(ln n)/ε-norm and the `∞-norm of any vector is bounded by eε so it suffices
to consider p = (lnn)/ε with a sufficiently small constant ε. Applying the Stir-
ling approximation to the crude value of C1 in the proof, we get C1 = Θ(

√
p).

Thus, the lower bound we obtain is Ω(n1−2/p(log n)/C2
1 ) = Ω(n).

At the other extreme, when p → 2, the proof also gives super constant
lower bounds up to p = 2 + Θ(log log n/ log n). Notice that ε can be set to
1− 2/p−Θ(log log n/ log n) instead of a positive constant strictly smaller than
1− 2/p. For this value of p, the proof gives a polylog(n) lower bound. We leave
it as an open question to obtain tight bounds for p = 2 + o(1).
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