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Abstract

We investigate the problem of finding the approximate nearest neighbor when the data set
points are the substrings of a given text T . The exact version of this problem is defined
as follows. Given a text T of length n, we want to build a data structure that supports
the following operation: given a pattern P , find the substring of T that is the closest to P .
Since the exact version of this problem is surprisingly difficult, we address the approximate
version, in which we are allowed to return a substring of T that is at most c times further
than the actual closest substring of T . This problem occurs, for example, in computational
biology [4, 5].

In particular, we study the case where the length of the pattern P , denoted by m, is
not known in advance, which is the most natural scenario. We present a data structure
that uses O(n1+1/c) space and has Õ

(

n1/c + mno(1)
)

query time1 when the distance between
two strings is the Hamming distance. These bounds essentially match the earlier bounds
of [12], which assumed that the pattern length m is fixed in advance. Furthermore, our data
structure can be constructed in Õ

(

n1+1/c + n1+o(1)M1/3
)

time, where M is an upper bound
for m. This time essentially matches the preprocessing time of [12] as long as the term
Õ(n1+1/c) dominates the running time, which is the case when, for example, c < 3.

We also extend our results to the case where the distances are measured according to
the l1 distance. The query time and the space bound are essentially the same, while the
preprocessing time becomes Õ

(

n1+1/c + n1+o(1)M2/3
)

.

Thesis Supervisor: Piotr Indyk
Title: Associate Professor

1We use notation f(n) = Õ(g(n)) to denote f(n) = g(n) logO(1) g(n).
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Chapter 1

Introduction

The nearest neighbor problem is defined as follows: given a set S of n points in Rm, construct

a data structure that, given any q ∈ Rm, quickly finds the point p ∈ S that has the smallest

distance to q. This problem and its decision version (the R-near neighbor) are the central

problems in computational geometry. Since the exact problem is surprisingly difficult (for

example, it is an open problem to design an algorithm for m = 3 which uses sub-quadratic

space and has logO(1) n query time), recent research has focused on designing efficient ap-

proximation algorithms. Furthermore, the approximate nearest neighbor is reducible to the

approximate R-near neighbor [15], and, therefore, we will be primarily concentrating our

attention on the latter problem. In the approximate R-near neighbor problem1, the data

structure needs to report a point within distance cR from q for some constant c > 1, but only

if there exists a point at distance R from q. We will refer to this problem as an (R, c)-near

neighbor (NN) problem.

The approximate near and nearest neighbor problems have been studied for a long time.

The approximate nearest neighbor algorithms were first discovered for the “low-dimensional”

version of the problem, where m is constant (see, e.g., [2] and the references therein). Later,

a few results were obtained for the “high-dimensional” case, where m is a parameter (see,

e.g., [18, 15, 19, 8]). In particular, the Locality-Sensitive Hashing (LSH) algorithm of [15]

1The approximate nearest neighbor problem is defined in an analogous way.
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solves the (R, c)-near neighbor problem using2 O(mn1+1/c) preprocessing time, O(mn +

n1+1/c) space and O(mn1/c) query time. By using the dimensionality reduction of [19], the

query time can be further reduced to Õ(m + n1/c), while the preprocessing time can be

reduced to Õ(mn+n1+1/c). The LSH algorithm has been successfully used in several applied

scenarios, including computational biology (cf. [6, 5] and the references therein, or [16], p.

414).

The bounds of the LSH algorithm can sometimes be even further reduced if the points in

the set S are not arbitrary, but instead are implicitly defined by a (smaller) data set. This

is the case for many of the applications of the approximate nearest neighbor problem.

Particularly interesting is the case in which S is defined as the set of m-substrings of a

sequence of numbers T [0 . . . n − 1]; we call the resulting problem an (R, c)-substring near

neighbor (SNN) problem. (R, c)-SNN problem occurs, for example, in computational biol-

ogy [4, 5]. Its exact version (i.e., when c = 1) has been a focus of several papers in the

combinatorial pattern matching area (cf. [7] and the references therein).

Obviously, one can solve (R, c)-SNN by reducing it to (R, c)-NN. Specifically, we can

enumerate all m-length substrings of T and use them as an input to the (R, c)-NN problem.

Then, if one uses the LSH algorithm to solve the near neighbor problem, then the space usage

can be reduced from O(nm + n1+1/c) to O(n1+1/c) (since one can represent the substrings

implicitly). Moreover, the preprocessing time can be reduced from O(mn1+1/c) to O(log m ·
n1+1/c) by using FFT [12].

A deficiency of this approach lies in the fact that the query pattern size m must be

fixed in advance. This assumption is somewhat restrictive in the context of searching in

sequence data. A straight-forward solution would be to build a data structure for each

possible m ∈ {0 . . .M − 1}, where M is the maximum query size. However, the space and

the preprocessing time would increase to Õ(n1+1/cM).

In this work, we give improved algorithms for the approximate substring near neighbor

problem for unknown string length m. Our algorithms achieve query time of Õ(n1/c+mno(1)),

2The bounds refer to the time needed to solve the problem in the m-dimensional Hamming space {0, 1}m;
slightly worse bounds are known for more general spaces.
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while keeping space of Õ(n1+1/c). Note that this essentially matches the query and the

space bounds for the case where m is fixed in advance. If the distances are measured

according to the Hamming metric, the preprocessing time is Õ
(

n1+1/c + n1+o(1)M1/3
)

. Thus,

our preprocessing essentially matches the bound for the case of fixed m, as long as c < 3.

If the distances are measured according to the l1 norm, we achieve the same query and

space bounds, as well as preprocessing time of Õ
(

n1+1/c + n1+o(1)M2/3
)

. For this algorithm,

we need to assume that the alphabet Σ of the text is discrete; that is, Σ = {0 . . .∆}.
Although such an assumption is not very common in computational geometry, it is typically

satisfied in practice when the bounded precision arithmetic is used.

1.1 Our Techniques

Our algorithms are based on the Locality-Sensitive Hashing (LSH) algorithm. The basic

LSH algorithm proceeds by constructing L = O(n1/c) hash tables. Each point p ∈ S is

then hashed into each table; the ith table uses a hash function gi. The query point is

hashed L times as well; the points colliding with the query are reported. For a more detailed

description of LSH, see the next section.

In order to eliminate the need to know the value of m in advance, we replace each hash

table by a trie3. Specifically, for each gi, we build a trie on the strings g1(p) . . . gL(p), where

p is a suffix of T . Searching in a trie does not require advance knowledge of the search depth.

At the same time, we show that, for the case of the Hamming distance, the LSH analysis

of [15] works just as well even if we stop the search at an arbitrary moment.

Unfortunately, constructing the trie of strings g1(p) . . . gL(p) cannot be accomplished

using the approach of [12]. In a naive algorithm, which explicitly constructs the tries,

constructing one trie would take O(Mn) time instead of the optimal Õ(n). We show how to

reduce this time considerably, to Õ(M1/3n).

In order to reduce the query and preprocessing bounds even further, we redesign the

3An implementation of LSH using a trie has been investigated earlier in [21]. However, the authors used
that approach to get a simpler algorithm for the near neighbor, not for the string near neighbor problem.
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LSH scheme. In the new scheme, the functions gi are not totally independent. Instead,

they are obtained by concatenating tuples of a smaller number of independent hash func-

tions. The smaller number of the “base” hash functions enables faster query time and

preprocessing computation. Using this approach, we achieve Õ
(

n1/c + mno(1)
)

query time

and Õ
(

n1+1/c + n1+o(1)M1/3
)

preprocessing time. This part is the most involved part of the

algorithm.

For the more general l1 norm, we assume that the numbers are integers in the range

Σ = {0 . . .∆}. One approach to solve the l1 case is to reduce it to the Hamming metric

case. Then, we replace each character from Σ by its unary representation: a character a

is replaced by a ones followed by ∆ − a zeros. Unfortunately, this reduction multiplies the

running time by a factor of ∆.

To avoid this deficiency, we proceed by using locality-sensitive hash functions designed4

specifically for the l1 norm. In particular, we compute the value of the hash function on a

point in the m-dimensional space by imposing a regular grid in Rm, and shifting it at random.

Then each point is hashed to the grid cell containing it. We show that such a hash function is

locality-sensitive. Moreover, we show that, by using pattern-matching techniques (notably,

algorithms for the less-than-matching problem [1]), we can perform the preprocessing in less

than O(Mn) time per function gi. We mention that less-than matching has been earlier used

for a geometric problem in [9].

Finally, to achieve the stated bounds for l1, we apply the technique of reusable gi func-

tions, as in the case of the Hamming distance.

1.2 Preliminaries

1.2.1 Notation

For a string A ∈ Σ∗ of length |A| and a string X ∈ {0, 1}∗, we define:

4One can observe that such functions can be alternatively obtained by performing the unary mapping
into the Hamming space, and then using the bit sampling hash functions of [15], where the sampled positions
form arithmetic progression. However, this view is not useful for the purpose of our algorithm.
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• Am
i is the substring of A of length m starting at position i (if the substring runs out

of bounds of A, we pad it with 0s at the end);

• A ⊙X = (A[0] ⊙X[0], A[1]⊙X[1], . . . A[n − 1] ⊙X[n − 1]), where n = min{|A|, |X|},
and ⊙ is a product operation such that for any c ∈ Σ, c ⊙ 1 = c and c ⊙ 0 = 0.

Further, let I ⊆ {0, . . .M − 1} be a set of size k ≤ M ; we call I a projection set. For a

string A, |A| = M , we define:

• A|I is the string (Ai1Ai2 . . . Aik) of length k, where {i1, i2, . . . ik} = I, and i1 < i2 <

· · · < ik;

• XI is a string of length M with XI [i] = 1 if i ∈ I and XI [i] = 0 if i 6∈ I.

1.2.2 Problem definition

We assume that the text T [0 . . . n − 1] and the query pattern P [0 . . .m − 1] are in some

alphabet space Σ. Furthermore, for two strings A, B ∈ Σm, we define D(A, B) to be the

distance between the strings A and B (examples of the distance D are the Hamming distance

and the l1 distance). Finally, we assume that Σ ⊂ N and that |Σ| ≤ O(n) since we can reduce

the size of the alphabet to the number of encountered characters.

In our study, we focus on the following problem.

Definition 1.2.1. The (R, c)-Substring Near Neighbor (SNN) is defined as follows. Given:

• Text T [0 . . . n − 1], T [i] ∈ Σ;

• Maximum query size M ;

construct a data structure D that supports (R, c)-near substring query. An (R, c)-near sub-

string query on D is of the form:

• Input is a pattern P [0 . . .m − 1], P [i] ∈ Σ, 1 ≤ m ≤ M ;

• Output is a position i such that D(T m
i , P ) ≤ cR if there exists i∗ such that D(T m

i∗ , P ) ≤
R.

13



In the following section, we present the LSH scheme for solving the (R, c)-near neighbor

problem. LSH is our main tool for solving the (R, c)-SNN problem.

1.2.3 Locality-Sensitive Hashing

In this section we briefly describe the LSH scheme (Locality-Sensitive Hashing) from [15, 11].

The LSH scheme solves the (R, c)-near neighbor problem, which is defined below.

Definition 1.2.2. The (R, c)-near neighbor problem is defined as follows. Given a set S of n

points in the metric space (Σd, D), construct a data structure that, for a query point q ∈ Σd,

outputs a point v such that D(v, q) ≤ cR if there exists a point v∗ such that D(v∗, q) ≤ R.

We call a ball of radius r centered at v, the set B(v, r) = {q | D(v, q) ≤ r}.

Generic locality-sensitive hashing scheme

The generic LSH scheme is based on an LSH family of hash functions that can be defined as

follows.

Definition 1.2.3. A family H = {h : Σd → U} is called (r1, r2, p1, p2)-sensitive, if for any

q ∈ S:

• If v ∈ B(q, r1), then Pr[h(q) = h(v)] ≥ p1;

• If v 6∈ B(q, r2), then Pr[h(q) = h(v)] ≤ p2.

Naturally, we would like r1 < r2 and p1 > p2; that is, if the query point q is close to v,

then q and v should likely fall in the same bucket. Similarly, if q is far from v, then q and v

should be less likely to fall in the same bucket. In particular, we choose r1 = R and r2 = cR.

Since the gap between probabilities p1 and p2 might not be sufficient, we need to amplify

this gap. For this purpose, we concatenate several functions h ∈ H. In particular, for some

value k, define a function family G = {g : Σd → Uk} of functions g(v) = (h1(v), . . . , hk(v)),

where hi ∈ H. Next, for some value L, choose L functions g1, . . . , gL from G independently

at random. During preprocessing, the algorithm stores each v ∈ S in buckets gi(v), for all

14



i = 1, . . . , L. Since the total number of buckets may be large, the algorithm retains only the

non-empty buckets by resorting to hashing.

To process a query q, the algorithm searches buckets g1(q), . . . , gL(q). For each point v

found in one of these buckets, the algorithm computes the distance from q to v and reports

the point v iff D(v, q) ≤ cR. If the buckets g1(q), . . . , gL(q) contain too many points (more

than 3L), the algorithm stops after checking 3L points and reports that no point was found.

Query time is O (L(k + d)), assuming that computing one function g takes O(k + d) time,

which is the case for the LSH family we consider.

If we choose k = log1/p2
n and L = nρ, ρ = log 1/p1

log 1/p2
, then, with constant probability, the

algorithm will report a point v ∈ B(q, cR) if there exists a point v∗ ∈ B(q, R).

LSH family for the Hamming metric

Next, we present the LSH family H used for the Hamming metric.

Define an (r1, r2, p1, p2)-sensitive function h : Σd → Σ as h(v) = vi = v|{i}, where i is

drawn uniformly at random from {0 . . . d − 1}. In other words, h is a projection along a

coordinate i. Thus, a function g = (h1, . . . hk) is equal to g(v) = v|Ii
where Ii is a set of size

k, with each element being chosen from {0, . . . d − 1} at random with replacement.

In our study, we will use a slight modification of the functions g. In particular, we define

a function g as g(v) = v ⊙ XIi
, where Ii is chosen in the same way. This modification does

not affect the algorithm and its guarantees.

Note that if we set r1 = R and r2 = cR, then p1 = 1 − R/d and p2 = 1 − cR/d. With

these settings, we obtain parameters k = log n
− log(1−cR/d)

and L = O(n1/c) [15].
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Chapter 2

Achieving O(n1+1/c) space for the

Hamming distance

In this Chapter, we describe in detail our basic approach for solving the (R, c)-SNN problem.

As mentioned previously, if we know the pattern size m in advance, we can construct an

LSH data structure on the data set P = {T m
i | i = 0 . . . n − m} (note that the “dimension”

of the points is d = m). If we do not know m in advance, a straight-forward approach would

be to construct the above data structure for all possible m ∈ {0, . . .M − 1}. However, this

approach takes Õ(n1+1/c · M) space.

To reduce the space to O(n1+1/c), we employ the same technique, however, with a small

modification. For a particular i ∈ {1 . . . L}, instead of hashing strings gi(T
m
j ), we store

the strings gi(T
m
j ) in a compressed trie. Specifically, we construct a data structure DM

that represents the LSH data structure on the points P = {T M
j , j = 0 . . . n − 1}. For each

i = 1 . . . L, we construct a trie Si on the strings gi(T
M
j ), j = 0, . . . n − 1.

Observe that now we can easily perform queries for patterns of length M as follows. First,

for a given pattern P [0 . . .M − 1], and for a given i ∈ {1 . . . L}, compute gi(P ) = P ⊙ XIi
.

Using the ordinary pattern matching in a compressed trie, search for the pattern gi(P ) in

the trie Si. The search returns the set Ji of indices j corresponding to strings gi(T
M
j ), such

that gi(T
M
j ) = gi(P ). Next, we process the strings T M

j as we would in the standard LSH
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scheme: examine consecutively the strings T M
j , j ∈ Ji, and compute the distances D(T M

j , P ).

If D(T M
j , P ) ≤ cR, return j and stop. Otherwise, after we examine more than 3L strings

TM
j (over all i = 1, . . . , L), return NO. The correctness of this algorithm follows directly from

the correctness of the standard LSH scheme for the Hamming distance.

Next, we describe how to perform a query for a pattern P of length m, where m ≤ M .

For this case, it will be essential that we have constructed tries on the strings gi(T
M
j ) (instead

of hashing). Thus, for a query pattern P [0 . . .m− 1], and an i ∈ {1 . . . L}, perform a search

of gi(P ) in the trie Si. This search will return a set Ji of positions j such that gi(P ) is a

prefix of gi(T
M
j ). Next, we consider substrings T m

j , that is, the substrings of T that start at

the same positions j ∈ Ji, but are of length only m. We process the strings T m
j exactly as in

the standard LSH: examine all the strings T m
j , j ∈ Ji, and compute the distances D(T m

j , P ).

If D(T m
j , P ) ≤ cR, return j and stop. Otherwise, after we examine more than 3L strings

Tm
j (over all i = 1, . . . , L), return NO.

The correctness of this algorithm follows from the correctness of the standard LSH algo-

rithm. The argument is simple, but somewhat delicate: we argue the correctness by showing

an equivalence of our instance O to another problem instance. Specifically, we define a new

instance O′ of LSH obtained through the following steps:

1. Construct an LSH data structure on the strings T m
j ◦ 0M−m of length M , for j =

0 . . . n − 1;

2. Let L and k be the LSH parameters for the Hamming distance for distance R and

dimension M (note that these are equal to the values L and k in the original instance

O);

3. For each i = 1 . . . L, compute the strings gi(T
m
j ◦ 0M−m), j = 0 . . . n − 1;

4. Perform a search query on the pattern P ◦ 0M−m;

5. For each i = 1 . . . L, let J ′
i be the set of all indices j such that gi(P ◦ 0M−m) =

gi(T
m
j ◦ 0M−m).

18



In the above instance O′, LSH guarantees to return an i such that D(T m
i ◦ 0M−m, P ◦

0M−m) ≤ cR if there exists i∗ such that D(T m
i∗ ◦ 0M−m, P ◦ 0M−m) ≤ R. Furthermore, if we

observe that D(T m
i ◦ 0M−m, P ◦ 0M−m) = D(T m

i , P ), we can restate the above guarantee as

follows: the query P in instance I ′ will return i such that D(T m
i , P ) ≤ cR if there exists i∗

such that D(T m
i∗ , P ) ≤ R.

Finally, we note that J ′
i = Ji since the assertion that gi(P ◦ 0M−m) = gi(T

m
j ◦ 0M−m) is

equivalent to the assertion that gi(P ) is the prefix of gi(T
M
j ). Thus, our instance O returns

precisely the same answer as the instance I, that is, the position i such that D(T m
i , P ) ≤ cR

if there exists i∗ such that D(T m
i∗ , P ) ≤ R. This is the desired answer.

A small technicality is that while searching the buckets gi(P ), i = 1, . . . L, we can en-

counter positions j where j > n − m (corresponding to the the substrings T m
j that run out

of T ). We eliminate these false matches using standard trie techniques: the substrings that

run out of T continue with symbols that are outside of the alphabet Σ; in such case, a query

will match a string T M
j iff the j + |P | ≤ n. Note that we can do such an update of the trie

after the trie is constructed. This update will take only O(n logn) time per trie, thus not

affecting the preprocessing times.

Concluding, we can use the data structure DM to answer all queries of size m where

m ≤ M . The query time is O(n1/cm), whereas the space requirement is O(n ·L) = O(n1+1/c)

since a compressed trie on n strings takes O(n) space. We further improve the query time

in section 3.2.

2.1 Preprocessing for the Hamming distance

In this section, we analyze the preprocessing time necessary to construct the data struc-

ture DM . We first give a general technique that will be applied to both Hamming and l1

metrics. Then, based on this technique, we show how to achieve the preprocessing time of

O(n1+1/cM1/3 log4/3 n) for the Hamming metric. Further improvements to preprocessing are

presented in section 3.3.

In the preprocessing stage, we need to construct the tries Si, for i = 1, . . . L. Each trie Si
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is a compressed trie on n strings of length M . In general, constructing one trie Si would take

O(nM) time, yielding a preprocessing time of O(n1+1/cM). We reduce this time as follows.

Consider a compressed trie Si on n strings gi(T
M
j ), j = 0, . . . n− 1. To simplify the notation

we use Tj for TM
j . We reduce constructing the trie Si to basically sorting the strings gi(Tj).

In particular, suppose we have an oracle that can compare two strings gi(Tj1) and gi(Tj2) in

time τ . Then, we can sort the strings gi(Tj) in time O(τn log n). To construct the trie, we

need our comparison operation to also return the first position l at which the two strings

differ. In this way, we can augment the list of sorted strings with extra information: for

every two adjacent strings, we store their longest common prefix. With this information, we

obtain a suffix array on strings gi(Tj), from which we can easily compute the trie Si [20].

In conclusion, we need a comparison operation that, given two positions j1 and j2, will

produce the first position at which the strings gi(Tj1) and gi(Tj2) differ.

In the following section we describe how to implement this operation in τ = O(M1/3 log1/3 n)

time for the Hamming metric. This directly implies a O(n1+1/cM1/3 log4/3 n)-time prepro-

cessing.

2.2 O(M 1/3 log1/3 n) string comparison for the Hamming

distance

Consider some function gi. Remember that gi(Tj) = Tj ⊙ XIi
, where Ii is a set with k

elements, each element being chosen from the set {0 . . .M − 1} at random with repetition.

Let the number of different elements in I be k′ (k′ ≤ k). Furthermore, to simplify the

notation, we drop the subscripts from XIi
and Ii.

We need to implement a comparison operation, that, given two positions j1 and j2,

returns the first position at which the strings Tj1 ⊙ X and Tj2 ⊙ X differ. X = XI where

I = {i1, i2, . . . ik′}, where k elements are chosen at random from {0 . . .M−1} with repetitions

(k′ being the number of different chosen elements).

To solve this problem, we give two comparison algorithms: Comparison A runs in time
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O(
√

k′) = O(
√

k); and Comparison B runs in time O(M/k · log n). We use Comparison A

if k ≤ M2/3 log2/3 n and Comparison B if k > M2/3 log2/3 n to obtain a maximum running

time of O(M1/3 log1/3 n).

2.2.1 Comparison A

We need to compare the strings Tj1 ⊙ X and Tj2 ⊙ X according to positions {i1, i2, . . . ik′}.
Assume that i1 < i2 < . . . ik′. Then, we need to find the smallest p such that Tj1 [ip] 6= Tj2 [ip].

Partition the ordered set I = {i1, . . . ik′} into
√

k′ blocks, each of size
√

k′: I = I1 ∪ I1 ∪
. . . I√k′, where a block is Ib = {ib,1, ib,2, . . . ib,√k′} = {i√k′(b−1)+w | w = 1 . . .

√
k′}.

In this algorithm, we first find the block b at which the two strings differ, and then we

find the position within the block b at which the strings differ.

Comparison A algorithm is:

1. Step 1. Find the smallest b ∈ {1 . . .
√

k′}, for which strings Tj1 ⊙ XIb
6= Tj2 ⊙ XIb

(we

elaborate on this step below);

2. Step 2. Once we find such b, iterate over positions ib,1, ib,2, . . . , ib,
√

k′ to find the smallest

index w such that Tj1[ib,w] 6= Tj2 [ib,w]. The position ip = ib,w will be the smallest

position where the strings Tj1 ⊙ X and Tj2 ⊙ X differ.

If we are able to check whether Tj1 ⊙ XIb
= Tj2 ⊙ XIb

for any b ∈ {1 . . .
√

k′} in O(1)

time, then the algorithm above runs in O(
√

k′) time. Step one takes O(
√

k′) because there

are at most
√

k′ pairs of blocks to compare. Step two takes O(
√

k′) because the length of

any block b is
√

k′.

Next, we show the only remaining part: how to check Tj1 ⊙ XIb
= Tj2 ⊙ XIb

for any

b ∈ {1 . . .
√

k′} in O(1) time. For this, we compute Rabin-Karp fingerprints [17] for each of

the strings Tj ⊙ XIb
, b = 1 . . .

√
k′, j = 0 . . . n − 1. In particular define the fingerprint of

Tj ⊙ XIb
as

Fb[j] =
(

∑M−1
l=0 T [j + l] · XIb

[j + l] · |Σ|l
)

mod R
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If we choose R to be a random prime of value at most nO(1), then Fb[j1] = Fb[j2] ⇔
Tj1 ⊙ XIb

= Tj2 ⊙ XIb
for all b and all j1, j2 with high probability.

Thus, we want to compute the fingerprints Fb[j] for all b = 1 . . .
√

k′ and all j = 0 . . . n−
1. To accomplish this, we use the Fast Fourier Transform in the field ZR, which yields

an additional time of O(n log M
√

k′) for the entire fingerprinting. For a particular b ∈
{1, . . .

√
k′}, we compute Fb[j], j = 0 . . . n − 1, by computing the convolution of T and

U , where U [0 . . .M − 1] is defined as U [l] = (XIb
[M − 1 − l] · |Σ|M−1−l)mod R. If we

denote with C the convolution T ∗U , then C[j] =
(

∑M
l=1 T [j − M + l] · U [M − l]

)

mod R =
(

∑M−1
l=0 T [j − (M − 1) + l] · XIb

[l] · |Σ|l
)

mod R = Fb[j − (M − 1)]. Computing T ∗U takes

O(n log M) time.

Consequently, we need O(n log M) time to compute the fingerprints Fb[j] for a particular

b, and O
(

n log M
√

k′
)

time for all the fingerprints. This adds O
(

n log M
√

k′
)

time to the

time needed for constructing a compressed trie, which is O
(√

k′
)

time per a comparison

operation. Thus, computing the fingerprints does not increase the time of constructing the

desired trie.

2.2.2 Comparison B

For comparison B we will achieve O(M/k · log n) time with high probability.

We rely on the fact that the positions from I are chosen at random from {0, . . .M − 1}.
In particular, if we find the positions p1 < p2 < · · · < pM at which the strings Tj1 and Tj2

differ, then, in expectation, one of the first O(M/k) positions is element of the set I.

Next, we describe the algorithm more formally, and then we prove that it runs in

O(M/k log n) time, w.h.p. For this algorithm, we assume that we have a suffix tree on

the text T (which can be easily constructed in O(n log n) time; see, for example [10]).

Comparison B algorithm is:

1. Set p = 0;

2. Find the first position at which the strings Tj1+p and Tj2+p differ (we can find such
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position in O(1) time using the suffix tree on T [3]); set p equal to this position

(indexed in the original Tj1);

3. If p 6∈ I, then loop to the step 2;

4. If p ∈ I, then return p and stop.

Now, we will show that this algorithm runs in O(M/k log n) time w.h.p. Let p1 < p2 <

· · · < pM be the positions at which the strings Tj1 and Tj2 differ. Let l = 3M/k log n. Then,

Pr[p1, . . . pl 6∈ I] = (1− l/M)k = (1−3 log n/k)k ≤ exp[−3k log n/k] = n−3. The probability

that this happens for any of the
(

n
2

)

pairs Tj1 and Tj2 is at most n−1 by the union bound.

Therefore, with probability at least 1 − n−1, comparison B will make O(M/k · log n) loops,

yielding the same running time, for any pair Tj1 , Tj2.
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Chapter 3

Improved query and preprocessing

times

In the previous Chapter, we obtained the following bounds for our data structure: space of

O(n1+1/c); query time of O(n1/cm); and preprocessing time of O(n1+1/cM1/3 log4/3 n). Note

that, while the space bound matches the bound for the case when m is known in advance,

the query and preprocessing bounds are off by, respectively, Õ(m) and Õ(M1/3) factors. In

this Chapter we improve significantly these two factors.

To improve the dependence on m and M for, respectively, query and preprocessing, we

redesign the LSH scheme. We show that we can use gi functions that are not completely

independent and, in fact, we reuse some of the “base” hash functions. By doing so, we are

able to compute all the values gi(p) for a point p in parallel, reducing the time below the

original bound of O(n1/cm) needed to evaluate the original functions gi(p). Using the new

scheme, we achieve Õ(n1/c + mno(1)) query time and Õ(n1+1/c + n1+o(1)M1/3) preprocessing

time for the Hamming distance.

We describe first how we redesign the LSH scheme. Next, we explain how we use the

new scheme to achieve better query and preprocessing times.
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3.1 Reusable LSH functions

As defined in section 1.2.3, the basic LSH scheme consists of L functions gi, i = 1 . . . L, where

gi = (hi,1, hi,2, . . . , hi,k). Each function hi,j is drawn randomly from the family H, where H =
{

h : Σd → {0, 1} | h(v) = v|r, r ∈ {0, . . . d − 1}
}

; in other words, hi,j is a projection along a

randomly-chosen coordinate. The best performance is achieved for parameters k = log n
log 1/p2

and L = nρ = O(n1/c). Recall that p1 = 1 − R
d
, p2 = 1 − cR

d
, and ρ = log 1/p1

log 1/p2
.

We redesign this LSH scheme as follows. Let t be an integer (specified later), and let

w = nρ/t. Define functions uj, for j = 1 . . . w, as uj ∈ Hk/t; each uj is drawn uniformly

at random from Hk/t. Furthermore, redefine the functions gi as being t-tuples of distinct

functions uj; namely, gi = (uj1, uj2, . . . ujt
) ∈ Hk where 1 ≤ j1 < j2 < · · · < jt ≤ w. Note

that there are in total L =
(

w
t

)

functions gi. The rest of the scheme is exactly as before.

Now, we need to verify that the query time of the redesigned LSH is close to the original

bound. To this end, we have to show that there are not too many collisions with points at

distance ≥ cR. We need also to show correctness, i.e., that the algorithm has a constant

probability of reporting a point within distance cR, if such a point exists.

We can bound the number of collisions with points at distance ≥ cR by ensuring that the

number of false positives is O(L), which is achieved by choosing k as before k = log n
log 1/p2

. Since

each particular gi is indistinguishable from uniformly random on Hk, the original analysis

applies here as well.

A harder task is estimating the probability of the failure of the new scheme. A query

fails when there is a point p as distance R from the query point q, but gi(p) 6= gi(q) for all i.

The probability of this event is exactly the probability that p and q collide on no more than

t − 1 functions uj. Thus,

Pr[fail] =
∑t−1

i=0

(

w
i

)

p
i·k/t
1 (1 − p

k/t
1 )w−i =

∑t−1
i=0

(

w
i

)

w−i(1 − w−1)w−i ≤ e−w−1w
∑t−1

i=0

(

w
i

)

w−i(1 − w−1)−i

= 1
e

(

1 + ww−1(1 − w−1)−1 + w(w−1)
2

w−2(1 − w−1)−2 +
∑t−1

i=3

(

w
i

)

w−i(1 − w−1)−i
)

≤ 1
e

(

1 + (1 + 1
w−1

) + 1
2
(1 + 1

w−1
) +

∑t−1
i=3

wi

i!
w−i
)

= 1
e

(

1 + 1 + 1/2 + 3/2
w−1

+
∑t−1

i=3 1/i!
)

= 1
e

(
∑t−1

i=0 1/i! + Θ(n−ρ/t)
)

≤ 1
e

(

e − 1/t! + Θ(n−ρ/t)
)

≤ 1 + Θ(n−ρ/t) − Θ(1/t!)
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If we set t =
√

ρ log n
ln log n

, we obtain that

Pr[fail] ≤ 1 + Θ(e−
√

ρ log n ln log n) − Θ(e−t ln t+t/
√

t) = 1 − Θ(e−t ln t+t/
√

t) = 1 − Θ(1/t!)

To reduce this probability to a constant less than 1, it is enough to repeat the entire struc-

ture U = Θ(t!) = O(e
√

ρ log n ln log n) times, using independent random bits. Thus, while one

data structure has L =
(

w
t

)

≤ nρ/t! functions gi, all U structures have U · L = O (t!nρ/t!) =

O(nρ) functions gi that are encoded by only w · U = O
(

exp
[

2
√

ρ log n ln log n
])

= no(1)

independently chosen functions u ∈ Hk/t.

The query time is still O(n1/cm) since we have O(n1/c) functions gi, as well as an expected

of O(LU) = O(nρ) = O(n1/c) collisions with the non-matching points in the LSH buckets.

This redesigned LSH scheme can be employed to achieve better query and preprocessing

times as will be shown in the following sections. As will become clear later, the core of

the improvement consists in the fact that there are only O
(

exp
[

2
√

ρ log n ln log n
])

inde-

pendently chosen functions u ∈ Hk/t, and the main functions gi are merely t-tuples of the

functions u.

3.2 Query time of Õ
(

n1/c + mno(1)
)

for the Hamming

distance

To improve the query time, we identify and improve the bottlenecks existing in the current

approach to performing a query (specifically, the query algorithm from Chapter 2). In the

current algorithm, we have a trie Si per each function gi. Then, for a query P , we search the

string gi(P ) in Si (again, as mentioned in section 1.2.3, gi(·) represents in fact a bit-mask,

and the bits outside the boundaries of P are discarded).

We examine the bottlenecks in this approach and how we can eliminate them using the

new LSH scheme. Consider a query on string P . We have in total LU = O(n1/c) functions

gi (over all U data structures), each sampling at most k = O(M) bits. The query time can

be decomposed into two terms:

Ts: Time spent on computing functions gi(P ) and searching gi(P ) in the trie Si, for each
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i;

Tc: Time spent on examining the points found in the bucket gi(P ) (computing the distances

to substrings colliding with P to decide when one is a cR-NN).

Both Ts and Tc are potentially O(n1/cm). We show how to reduce Ts to

Õ
(

n1/c + m · exp
[

2
√

ρ log n ln log n
])

and Tc to Õ(n1/c + m). We analyze Tc first.

Lemma 3.2.1. It is possible to preprocess the text T such that, for a query string P of

length m, after O(m log n/ǫ2) processing of P , one can test whether |P − T m
j |H ≤ R or

|P − Tm
j |H ≥ cR for any j in O(log2 n/ǫ2) time (assuming that one of these cases holds).

Using this test, there is an algorithm achieving Tc = O(n1/c log2 n/ǫ2 + m log n/ǫ2). The

preprocessing of T can be accomplished in O(n log3 n/ǫ2) time.

Proof. We can approximate the distance |P − T m
j |H by using the sketching technique of [19]

(after a corresponding preprocessing). Assume for the beginning that the query P has length

m = M . In the initial preprocessing of T , we compute the sketches sk(T M
j ) for all j. Next, for

a query P , we compute the sketch of P , sk(P ); and, from the sketches sk(P ) and sk(T M
j ),

we can approximate the distance |T M
j − P |H with error c with probability 1 − n−O(1) in

O(log n/ǫ2) time (for details, see [19], especially lemma 2 and section 4). If the test reports

that a point T M
j is at a distance ≤ cR (i.e., the test does not classify the point as being at a

distance > cR), then we stop LSH and return this point as the result (note that there is only

a small probability, n−O(1), that the test reports that a point T M
j , with |P − Tji

M |H ≤ R, is

at a distance > cR).

If P is of length m < M , then we compute the sketches sk(P ) and sk(T m
j ) from O(log n)

sketches of smaller lengths. Specifically, we divide the string P into O(log m) diadic intervals,

compute the sketches for each diadic interval, and finally add sketches (modulo 2) to obtain

the sketch for the entire P . Similarly, to obtain sk(T m
j ), we precompute the sketches of

all substrings of T of length a power of two (in the T -preprocessing stage); and, for a

query P , we add the O(log m) sketches for the diadic intervals of T m
j to obtain the sketch

of Tm
j . Thus, computation of the sketch of T m

j takes O(log2 n/ǫ2) time. Precomputing
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the sketch of P takes O(m logn/ǫ2) time. With these two times, we conclude that Tc =

O(n1/c log2 n/ǫ2 + m log n/ǫ2). To precompute all the sketches of all the substrings of T of

length a power of two, we need O(n log2 M log n/ǫ2) time by applying FFT along the lines

of [14] or section 2.2.1 (since a sketch is just a tuple of dot products of the vector with a

random vector).

Next, we show how to improve Ts, the time for searching gi(P ) in the corresponding tries.

Lemma 3.2.2. Using the new LSH scheme, it is possible to match gi(P ) in the tries Si, for

all i’s, in Ts = O
(

n1/c log3/2 n + m · exp
[

2
√

ρ log n ln log n
]

)

time.

Proof. To achieve the stated time, we augment each trie Si with some additional information

that enables a faster traversal of the trie using specific fingerprints of the searched string

(i.e., gi(P )); the new LSH helps us in computing these fingerprints for gi(P ) for all tries Si

in parallel. For ease of notation, we drop the subscript i from gi and Si. Recall that S is a

trie on strings g(T M
j ), j = 1 . . . n − 1; we will drop the superscript M for T M

j as well.

We augment the trie S with additional log(M) tries S(l), l = 0 . . . log M − 1. For each l,

let fl : Σ2l → {0, . . . nO(1)} be a fingerprint function on strings of length 2l. The trie S(l) is

a trie on the following n strings: for j ∈ {0 . . . n − 1}, take the string g(Tj), break up g(Tj)

into M/2l blocks each of length 2l, and apply to each block the fingerprint function fl; thus,

the resulting string is

F
(l)
j =

〈

fl

(

g(Tj)[0 : 2l − 1]
)

, fl

(

g(Tj)[2
l : 2 · 2l − 1]

)

. . . fl

(

g(Tj)[M − 2l : M − 1]
)〉

Note that, in particular, S = S(0).

Further, for each trie S(l+1) and each node Nl+1 ∈ S(l+1), we add a refinement link pointing

to a node Nl in S(l), the node which we call the equivalent node of Nl+1. By definition, the

equivalent node of Nl+1 is the node Nl of S(l) that contains in its subtree exactly the same

leaves as the subtree of Nl+1 (a leaf in a trie is a substring Tj). Note that such node Nl

always exists. Furthermore, if str(Nl+1) denotes the substring of T corresponding to the

path from the root to Nl+1, then str(Nl+1) = str(Nl) or str(Nl+1) is a prefix of str(Nl).
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Using l tries S(0), . . . S(log M−1) and the refinement links, we can speed up searching of a

string in the trie S by using initially “rougher” tries (with higher l) for rough matching of

g(P ), and gradually switching to “finer” tries (with smaller l) for finer matching. Specifically,

for a string G = g(P ), we break up G into diadic substrings G = Gl1Gl2 . . . Glr , where Gli has

length 2li, and li’s are strictly decreasing (li > li−1). Then, we match G in S as follows. In

the trie S(l1), follow the edge corresponding to the symbol fl1(Gl1). Next, follow sequentially

the refinement links into the tries S(l1−1) . . . S(l2). In S(l2), follow the edge corresponding to

fl2(Gl2) (unless we already jumped this block while following the refinement links). Continue

this procedure until we finish it in the trie Glr , where the final node gives all the matching

substrings g(Tj). If, at any moment, one of the traversed trie edges is longer than one

fingerprint symbol or a refinement link increased str(Nl) of current node to str(Nl) ≥ |G|,
then we stop as well (since, at this moment, we matched all |G| positions of G, and the

current node yields all the matches). Note that, if we know all the fingerprints fl(Gl), then

we can match gi(P ) in the trie Si in time O(log n).

The remaining question is how to compute the fingerprints fl1(Gl1), fl2(Gl2), . . . flr(Glr)

(for each of the UL functions gi). We will show that we can compute the fingerprints for

one of the U independent sets of gi’s in Õ
(

L + m · exp
[√

ρ log n ln log n
])

; this gives a total

time of Õ
(

UL + U · m · exp
[√

ρ log n ln log n
])

= Õ
(

n1/c + m · exp
[

2
√

ρ log n ln log n
])

. To

this purpose, consider one of the U independent data structures, and some diadic substring

Glj = G[a : b], with a corresponding fingerprinting function f = flj , for which we want to

compute the fingerprints flj (Glj) = flj (gi(P )[a : b]) = f (gi(P )[a : b]) for all L functions gi

in the considered independent data structure. Remember that each of the L functions gi is

defined as a t-tuple of functions uh1
, . . . uht

, 1 ≤ h1 < h2 < · · · < ht ≤ w.

For computing the fingerprints f(gi(P )[a : b]), for all gi, we rely on the following idea: we

first compute similar fingerprints for all the functions uh, 1 ≤ h ≤ w, and then combine them

to obtain the fingerprints for the functions gi. To be able to combine easily the fingerprints

of the functions uh, we use the fingerprinting function of Rabin-Karp [17], which was already

used in section 2.2.1. With this fingerprinting function, the fingerprint for gi is just the sum
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modulo R of the fingerprints for the functions uh1
, uh2

, . . . uht
(remember that R is a random

prime for the fingerprinting function). Specifically,

f (gi(P )[a : b]) =

(

t
∑

x=1

f (uhx
(P )[a : b])

)

(mod R) (3.1)

A technicality is that a particular position in P can be sampled in several uh’s, thus con-

tributing multiple times the same term to the above sum. However, this technicality is easily

dealt with if we use t|Σ| < O(logn · |Σ|) as the base in the fingerprinting function (instead

of |Σ| as was used in section 2.2.1). With this new base, the “oversampled” position will

contribute in exactly the same way to the fingerprint of f(gi(P )[a : b]) as well as to the

fingerprints of the strings in the trie.

Finally, we can conclude that Ts = O
(

n1/c log3/2 n + m · exp
[

2
√

ρ log n ln log n
]

)

. First,

for computing the fingerprints for all substrings Gl1 , . . . , Glr , for all functions uh, h = 1 . . . w,

we need only O
(

w
∑r

j=1 lj

)

= O(mw) = O
(

m · exp
[√

ρ log n ln log n
])

time. For all U inde-

pendent data structures, this takes O(mwU) = O
(

m · exp
[

2
√

ρ log n ln log n
])

time. Once

we have the fingerprints for the functions uh, we can combine them to get all the fingerprints

for all the functions gi; this takes a total of O(log1/2 n · LU · log n) = O(n1/c log3/2 n) time

(because we need only O(t) < O(log1/2 n) time for computing a fingerprint for one function

gi once we have the fingerprints of the corresponding t functions uh).

3.3 Preprocessing time of Õ(n1+1/c + n1+o(1)M 1/3) for the

Hamming distance

We will show that to carry out the necessary preprocessing, we need Õ
(

n1+1/c + nM1/3e2
√

ρ log n ln log n
)

time. As in section 2.1, the bottleneck of the preprocessing stage is constructing the tries

Si. Furthermore, the trie augmentation from the previous section requires constructing the

tries S1
i , . . . S

(log M−1)
i . We will first explain how to construct the tries Si = S0

i in time

Õ
(

n1+1/c + nM1/3 exp
[

2
√

ρ log n ln log n
])

. Then, we present how we construct the tries
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S1
i , . . . S

(log M−1)
i from the trie S

(0)
i , for all i, in Õ(n1+1/c) time.

Lemma 3.3.1. We can construct the tries Si = S
(0)
i for all U · L functions gi in time

O
(

n1+1/c log3/2 n + nM1/3 exp
[

2
√

ρ log n ln log n
]

log4/3 n
)

.

Proof. We again use the inter-dependence of the LSH functions in the redesigned scheme.

Consider one of the U independent data structures. In the considered independent data

structure, we have w functions uh; the functions gi are defined as t-tuples of the functions

uh. Thus, we can first construct w tries corresponding to the functions uh, 1 ≤ h ≤ w (i.e., a

trie for the function uh is the trie on the strings uh(T
M
j )); and, from these, we can construct

the tries for the functions gi. For constructing the tries for the functions uh, we can use the

algorithm from section 2.1, which will take O(w · nM1/3 log4/3 n) total time since there are

w functions uh.

Once we have the w tries corresponding to the functions uh, 1 ≤ h ≤ w, we can construct

the tries for the functions gi in O(Ln log3/2 n) time. Recall from section 2.1 that if, for two

substrings TM
j1 and TM

j2 , in time τ , we can find the first position where gi(T
M
j1 ) and gi(T

M
j2 )

differ, then we can sort and ultimately construct the trie on the strings gi(T
M
j ), for each i,

in O(τLn log n) time. Indeed, at this moment, it is straight-forward to find the first position

where gi(T
M
j1

) and gi(T
M
j2

) differ: this position is the first position where uh(T
M
j1

) and uh(T
M
j2

)

differ, for one of the t function uh that define the function gi. Thus, for two substrings T M
j1

and TM
j2

, and some function gi, we can find the first position where uh(T
M
j1

) and uh(T
M
j2

)

differ for all t functions defining gi (using the tries for the functions uh); the smallest of these

positions is the position of the first difference of gi(T
M
j1 ) and gi(T

M
j2 ). Now, we can conclude

that one “comparison” operation takes τ = O(t) = O(
√

log n) time (again, finding the first

difference of two strings in a uh’s trie can be done in O(1) time [3]). Since there is a total of

L functions gi (in one of the U independent data structures), the total time for constructing

the tries for gi’s is O(τLn log n) = O(Ln log3/2 n).

Summing up the times for constructing the uh tries and then the gi tries, we get O(wnM1/3 log4/3 n+

Ln log3/2 n) = O
(

Ln log3/2 +nM1/3 exp
[√

ρ log n ln log n
]

log4/3 n
)

.

For all U independent data structures, the total time for constructing all S
(0)
i is
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U · O
(

wnM1/3 log4/3 n + Ln log3/2 n
)

= O
(

ULn log3/2 n + nM1/3wU log4/3 n
)

=

O
(

n1+1/c log3/2 n + nM1/3 exp
[

2
√

ρ log n ln log n
]

log4/3 n
)

. This time dominates the pre-

processing time.

Next, we show how to construct the tries S1
i , . . . S

(log M−1)
i from a trie Si = S

(0)
i . We will

construct the trie S
(l)
i for some given i and l as follows. Recall that the trie S

(l)
i contains the

strings F
(l)
j =

〈

fl

(

gi(T
M
j )[0 : 2l − 1]

)

, fl

(

gi(T
M
j )[2l : 2 · 2l − 1]

)

. . . fl

(

gi(T
M
j )[M − 2l : M − 1]

)〉

(i.e., the string obtained by fingerprinting 2l-length blocks of gi(T
M
j )). As for the tries Si,

we need to find the sorted list of leaves F
(l)
j , as well as the position of the first difference of

each two consecutive F
(l)
j in the sorted list. With this information, it is easy to construct

the trie S
(l)
i [20].

Finding the sorted order of leaves F
(l)
j is straight-forward: the order is exactly the same

as the order of the leaves gi(T
M
j ) in the trie Si. Similarly, in constant time, we can find the

position where two consecutive F
(l)
j1

and F
(l)
j2

differ for the first time. If p is the position where

gi(T
M
j1 ) and gi(T

M
j2 ) differ for the first time, then F

(l)
j1

and F
(l)
j2

differ for the first time at the

position
⌊

p/2l
⌋

. Thus, constructing one trie S
(l)
i takes O(n) time. For all log n fingerprint

sizes l and for all LU functions gi, this takes time O(log n · ULn) = O(n1+1/c log n).
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Chapter 4

Extension to the l1 distance

In this Chapter, we extend our results to the l1 distance, for which we assume that the

distance between two strings A, B ∈ Σm is D(A, B) =
∑m−1

i=0 |A[i] − B[i]|.

For l1 metric, we achieve space of Õ(n1+1/c) and query time of Õ(n1/c + mno(1)), as

in the case for the Hamming metric (up to logarithmic factors). Preprocessing time is

Õ(n1+1/c +n1+o(1)M2/3), which, for c < 3/2, matches the preprocessing time of Õ(n1+1/c) for

the case then query length m is fixed in advance (up to logarithmic factors).

To achieve the stated bounds, we exhibit first an LSH family of hash functions for l1.

Then, using this LSH family, we show how we can obtain Õ(n1+1/c) space and Õ(n1/cm)

query time. In section 4.3, we discuss the basic approach to preprocessing. The final query

and preprocessing algorithms are presented in section 4.4, where we improve query time to

Õ(n1/c +mno(1)) and preprocessing time to Õ(n1+1/c +n1+o(1)M2/3), by using the redesigned

LSH scheme from section 3.1.

4.1 An LSH family for l1

In this section, we describe an LSH family for l1 distance. Let t = αR, where α > 1 will be

chosen later. We define an LSH function hu for a pattern P of length M as follows:
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hu(P ) =

(⌊

P [0] + du,0

t

⌋

,

⌊

P [1] + du,1

t

⌋

, . . .

⌊

P [M − 1] + du,M−1

t

⌋)

(4.1)

where du,j is drawn uniformly at random from {0, . . . t − 1} for 0 ≤ j < M .

The following lemma proves that the resulting function is locality-sensitive and yields an

efficient LSH family.

Lemma 4.1.1. The function hu is locality sensitive with parameters r1 = R, r2 = cR,

p1 = 1 − 1
α
, and p2 = 1 − c/α

1+c/α
. Moreover, if we set α = log n, we obtain an LSH scheme

with parameters k = O(log2 n), and L = nρ = O(n1/c).

Proof. First, we prove that for two strings A and B with D(A, B) ≤ R, we have that

Pr[hu(A) = hu(B)] ≥ 1 − 1/α = p1. Let δi = |A[i] − B[i]| for 0 ≤ i < M ; then
∑

δi ≤ R.

Thus,

Pr[hu(A) = hu(B)] = (1 − δ0/t) · (1 − δ1/t) · . . . (1 − δM−1/t) ≥ 1 − R/t = 1 − 1/α

Next, we prove that for two strings A and B with D(A, B) ≥ cR, we have that Pr[hu(A) =

hu(B)] ≤ 1 − c/α
1+c/α

= p2. Let δi = |A[i] − B[i]| for 0 ≤ i < M ; then
∑

δi ≥ cR. Thus,

Pr[hu(A) = hu(B)] = (1 − δ0/t) · (1 − δ1/t) · . . . (1 − δM−1/t) ≤ (1 − cR/tM)M

≤ e−cM/αM = e−c/α ≤ 1
1+c/α

= 1 − c/α
1+c/α

= 1 − c
1+c/α

· 1
α

We choose the standard k = log1/p2
n and L = nρ, ρ = log 1/p1

log 1/p2
. Note that we obtain

L = nρ ≤ O(n1/c′), where c′ = c 1
1+c/α

, with the same analysis as in [15]. Thus, for α = log n,

we have nρ ≤ O
(

n
1

c
(1+c/α)

)

≤ O
(

n1/c+1/ log n
)

= O(n1/c). Finally, we obtain k = O(log2 n)

and L = O(n1/c).

4.2 Achieving Õ(n1+1/c) space for l1

To achieve Õ(n1+1/c) space for l1, we deploy the same technique as we did for the Hamming

metric in Chapter 2. The only real difference is how, for a particular function gi, 1 ≤ i ≤ L,
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we represent a compressed trie similar to the one in the Hamming metric case. To accomplish

this, we define gi as a tuple of k functions hu, u = 0 . . . k − 1, much as in LSH but with the

k functions hu intertwined. In particular, for a pattern P of length |P | = M , define gi(P ) as

a kM-tuple, such that gi(P )[lk + u] =
⌊

P [l]+du,l

t

⌋

where we choose du,l uniformly at random

from {0, . . . t − 1} for all 0 ≤ u < k and 0 ≤ l < M . As we did previously, if the pattern P

is shorter than M , we cut off gi(P ) at the corresponding place.

We construct a trie Si on the strings gi(T
M
j ), 0 ≤ j < n, as in the case of the Hamming

distance. A query is performed exactly as described in the Chapter 2 with gi(P ) being

trimmed after km elements (m = |P |). Query time is O(Lkm) = O(n1/cm log2 n); this

time can be further improved to Õ(n1/c + mno(1)) using the redesigned LSH scheme from

section 3.1 as is described in section 4.4.1. Space requirement is O(n1+1/c) since, as before,

a compressed trie on n strings takes only O(n) space.

In the following section, we describe how we construct the tries Si on the strings gi(T
M
j ),

0 ≤ j < n.

4.3 Preprocessing time of Õ(n1+1/cM 2/3) for l1

In this section, we show the basic approach to preprocessing for l1, achieving Õ
(

n1+1/cM2/3
)

time. The final preprocessing algorithm is described in section 4.4.2, where we achieve

Õ
(

n1+1/c + nMno(1)
)

time.

We show how to construct a trie Si in time Õ
(

nM2/3
)

, and, since there L = O(n1/c)

tries to construct, we obtain the stated bound. As in section 2.1, we construct a trie Si by

sorting the strings gi(T
M
j ). Once again, we implement the following comparison operation:

given two positions j1 and j2, produce the first position at which the strings gi(T
M
j1

) and

gi(T
M
j2 ) differ. To simplify the exposition, we duplicate k times each character of T to obtain

T ′; thus, the length of T ′ is nk = O(n log2 n). Now, gi(T
′
j)[l] is defined simply as

⌊

T ′

j [l]+dl

t

⌋

,

where we choose dl uniformly at random from {0, . . . t − 1} for 0 ≤ l < kM . We can do

similar transformation on the pattern P when we search gi(P ) in the trie. Let n′ = nk and

M ′ = Mk. As before, we will refer to T ′
j
M ′

as T ′
j .
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The algorithm for the comparison is practically the same with the Comparison A from

section 2.2.1. We divide each pattern T ′
j into B = M ′1/3 blocks each of size W = M ′2/3 (the

asymmetry stems from the fact that it will be harder to compute the fingerprints).

To check the blocks for equality fast, we use fingerprints. Call Fb[j], 0 ≤ b < B, 0 ≤ j <

n′, a fingerprint of the block gi(T
′
j)[Wb . . .Wb+W −1]. Formally, our fingerprints satisfy the

following property: for two positions j1, j2, gi(T
′
j1)[Wb . . .Wb+W −1] = gi(T

′
j2)[Wb . . .Wb+

W − 1] iff Fb[j1] = Fb[j2] (w.h.p.).

If we can compute such fingerprints Fb[j] in time Õ(n′M ′2/3), then we have a Õ(n′M ′2/3)-

time algorithm for constructing the compressed trie. We can implement the desired compari-

son operation in Õ(M2/3) time by first finding the block b for which blocks gi(T
′
j1

)[Wb . . .Wb+

W − 1] and gi(T
′
j2

)[Wb . . .Wb + W − 1] differ (using the fingerprints Fb[j1] and Fb[j2]), and

then finding the position of the first difference within the block b by scanning the block.

Fingerprinting takes Õ(n′M ′2/3) and sorting takes O(n lognM ′2/3) time. Total time would

be, therefore, Õ(n′M ′2/3).

Next, we show how we can compute fingerprints Fb[j] for a fixed block b and all 0 ≤ j < n′,

in time Õ(n′M ′1/3). Since there are B = M ′1/3 blocks in total, this immediately yields a

Õ(n′M ′2/3)-time algorithm for computing all the fingerprints Fb[j], 0 ≤ b < B, 0 ≤ j < n′.

Lemma 4.3.1. We can compute fingerprints Fb[j] for a fixed block b and all 0 ≤ j < n′,

in time Õ(n′M ′1/3). Additionally, each fingerprint Fb[j] has a description length of only

κ = O(log n).

Proof. Define Fb[j] as a tuple of κ = O(log n) fingerprints F
(f)
b [j], 1 ≤ f ≤ κ, where F

(f)
b [j]

is defined as:

F
(f)
b [j] =

W−1
∑

l=0

β
(f)
l · gi(T

′
j)[Wb + l]

where, 0 ≤ l < W , 1 ≤ f ≤ κ, and β
(f)
l is drawn uniformly at random from {0, 1}.

We prove that these fingerprints are correct and then we show how we compute them in

Õ(n′M ′1/3) time.
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First, note that, for two positions j1 6= j2, if gi(T
′
j1)[Wb . . .Wb+W−1] 6= gi(T

′
j2)[Wb . . .Wb+

W−1], then F
(f)
b [j1] = F

(f)
b [j2] with probability at most 1/2. Therefore, if gi(T

′
j1

)[Wb . . .Wb+

W − 1] 6= gi(T
′
j2)[Wb . . .Wb + W − 1], then Fb[j1] 6= Fb[j2] with high probability.

Next, we show how to compute these fingerprints in Õ(n′M ′1/3) time. Specifically, we

need to show that we can compute fingerprints F
(f)
b for a fixed f in Õ(n′M ′1/3) time.

Fix some value f . We will seek to simplify the expression for gi(T
′
j)[Wb+l] =

⌊

T ′

j [Wb+l]+dWb+l

t

⌋

.

Define xj =
⌊

T ′[j]
t

⌋

, and yj = T ′
j − xjt. Then gi(T

′
j)[Wb + l] = xj+Wb+l +

⌊

yj+Wb+l+dWb+l

t

⌋

=

xj+Wb+l +
⌊

t+yj+Wb+l−θWb+l

t

⌋

, where θl = t − dl, 1 ≤ θl ≤ t. Let χj,l be 1 if yj+Wb+l ≥
θWb+l and 0 if yj+Wb+l < θWb+l. With all these notations, we can write gi(T

′
j)[Wb + l] as

gi(T
′
j)[Wb + l] = xj+Wb+l + χj,l.

We can compute F
(f)
b as

F
(f)
b [j] =

W−1
∑

l=0

β
(f)
l · gi(T

′
j)[Wb + l] =

W−1
∑

l=0

β
(f)
l · (xj+Wb+l + χj,l) = σ

(1)
j + σ

(2)
j

where σ
(1)
j =

∑W−1
l=0 β

(f)
l xj+Wb+l and σ

(2)
j =

∑W−1
l=0 β

(f)
l χj,l.

We can compute σ
(1)
j for all 0 ≤ j < n′ via FFT as in section 2.2.1 in time O(n′ log M ′).

To compute σ
(2)
j , we use the less-than matching problem [1]. Call LT [j] the number of

positions l in which yj+Wb+l ≥ θ
(f)
Wb+l, where we define θ

(f)
l as: θ

(f)
Wb+l = θWb+l if β

(f)
l = 1; and

θ
(f)
Wb+l = t if β

(f)
l = 0. Then σ

(2)
j = LT [j]. But LT [j] is precisely the array computed by the

less-than matching problem [1] (shifted by Wb positions). Thus, we can compute the array

σ
(2)
j = L[j] in O(n′W 1/2 log1/2 W ) time.

To conclude, we can compute Fb for a fixed b, in O(n′W 1/2 log1/2 W ·κ) = O(nM1/3 log4+1/6 n)

time. To compute Fb for all b, we need O(nM2/3 log4+5/6 n). This time overweights the time

for sorting. Total preprocessing time is L · O(nM2/3 log4+5/6 n) = O(n1+1/cM2/3 log4+5/6 n).
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4.4 Improved query and preprocessing times for l1

Using the redesigned LSH described in section 3.1, we can reduce query time to

Õ
(

n1/c + me2
√

ρ log n ln log n
)

and preprocessing time to Õ
(

n1+1/c + nM2/3e2
√

ρ log n ln log n
)

. The

ideas are similar to those from Chapter 3.

4.4.1 Query time of Õ(n1/c + mno(1))

As in section 3.2, query time can be decomposed into two terms:

Ts: Time spent on computing functions gi(P ) and searching gi(P ) in the trie Si, for each

i;

Tc: Time spent on examining the points found in the bucket gi(P ) (computing the distances

to substrings colliding with P to decide when one is a cR-NN).

Using the redesigned LSH scheme, we can reduce Ts to Õ
(

n1/c + m · exp
[

2
√

ρ log n ln log n
])

and Tc to Õ(n1/c) as demonstrated by the lemmas below. The lemmas are l1 equivalents of

the lemmas from section 3.2. We analyze Tc first.

Lemma 4.4.1. We can preprocess the text T such that, for a query string P of length m,

after Õ(m) processing of P , we can detect whether |P − T m
j |1 ≤ R or |P − T m

j |1 > cR

for any j in O(log n/ǫ2) time (assuming that one of this cases holds). This implies that

Tc = Õ(n1/c + m). The preprocessing of T can be accomplished in Õ(n).

Proof. We approximate the distance |P −T m
j |1 by using the sketching technique of [13] (after

a corresponding preprocessing). Assume for now that the query P has length m = M . In

the initial preprocessing of T , we compute sketches sk(T M
j ) for all i. Next, for a query

P , we compute the sketch sk(P ) of P ; and, from the sketches sk(P ) and sk(T M
j ), we can

approximate the distance |T M
j − P |1 with error c with probability 1 − n−O(1) in O(log n/ǫ2)

time (for details, see [13], especially section 3). If the test reports that a point T M
j is at

distance ≤ cR (i.e., the test does not classify the point T M
j as being at distance > cR), then
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we stop LSH and report this point as the result (note that there is only a small probability,

n−O(1), that the test reports that a point T M
j , with |P − T M

j |1 ≤ R, is at distance > cR).

The remaining details are exactly the same as in the lemma 3.2.1: if P is of length

m < M , then we compute the sk(P ) and sk(T m
j ) from O(log n) sketches of smaller length.

Specifically, we divide the string P into O(log m) diadic intervals, compute the sketches for

each diadic interval, and finally add sketches to obtain the sketch for the entire P . Similarly,

to obtain sk(T m
j ), we precompute the sketches of all substrings of T of length a power of

two (in the T -preprocessing stage); and, for a query P , we add the O(logm) sketches for

the diadic intervals of T m
j to obtain the sketch of T m

j . Thus, computation of the sketch of

Tm
j takes O(log2 n/ǫ2) time. Precomputing the sketch of P takes O(m logn/ǫ2) time. With

these two times, we conclude that Tc = Õ(n1/c + m). To precompute all the sketches of all

the substrings of T of length a power of two, we need Õ(n) time by applying FFT along the

lines of [14] or section 2.2.1 (since a sketch is just a tuple of dot products of the vector with

a random vector).

Lemma 4.4.2. Using the new LSH scheme, it is possible to match gi(P ) in the tries Si, for

all i’s, in Ts = Õ
(

n1/c + m · exp[2
√

ρ log n ln log n]
)

time.

Proof. The algorithm is very similar to the one in the lemma 3.2.2: compute O(log M)

fingerprints of gi(P ) by combining the same fingerprints for functions uh; then search each

gi(P ) using these fingerprints and additional tries S(l). The only nuance is that we treat

uh as having k/t basic LSH functions intertwined as described in section 4.1. Moreover, for

functions uh, we consider we have k positions per symbol in the string (even though only k/t

of these are filled by uh). This view allows an easy combination of fingerprints of severals

uh’s into the fingerprint of a function gi. For ease of notation, we drop the subscript i from gi

and Si. Recall that S is a trie on strings g(T M
j ), j = 1 . . . n− 1; we will drop the superscript

M for TM
j as well.

Formally, we have the following three modifications to the algorithm from 3.2.2.

1. For the fingerprinting function fl, we use the same fingerprinting function as in the

lemma 3.2.2, but we consider fl as acting on Σ2lk, where Σ = {0, . . . , ∆ − 1}, with ∆
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being the maximum value of a coordinate1. Furthermore, we define the fingerprint F
(l)
j

as

F
(l)
j =

〈

fl

(

g(Tj)[0 : 2lk − 1]
)

, fl

(

g(Tj)[2
lk : 2 · 2lk − 1]

)

. . . fl

(

g(Tj)[M − 2lk : M − 1]
)〉

2. We need to introduce the following modification to the layout of the functions uh.

Suppose uh = (s1, s2, . . . sk/t), where each sw is a function from the LSH family for l1

(as in equation 4.1). Then, we write uh(P ) as the vector

〈0k−k/t, s1(P [1]), s2(P [1]), . . . sk/t(P [1]),

0k−k/t, s1(P [2]), s2(P [2]), . . . sk/t(P [2]),
...

0k−k/t, s1(P [m]), s2(P [m]), . . . sk/t(P [m])〉

3. Finally, we compute the fingerprints fl(gi(P )) from the fingerprints fl(uh(P )) in a way

that is different from that in equation 3.1. Specifically, for a fingerprinting function

f = fl, a function gi = (uh1
, uh2

, . . . , uht
), a diadic interval Gl = G[a : b], we have that

f(gi(P )[a : b]) =

(

t
∑

x=1

|Σ|k−x·k/t · f (uhx
(P )[a : b])

)

(mod R)

All the other details are precisely the same as in the lemma 3.2.2. We obtain the same

running time as in the lemma 3.2.2, multiplied by k = O(log2 n).

4.4.2 Preprocessing time of Õ(n1+1/c + n1+o(1)M2/3)

Final preprocessing algorithm for l1 is very similar to the preprocessing algorithm for Ham-

ming distance described in section 3.3.

Again, there are two steps: constructing all tries Si = S0
i , and then, constructing all tries

S
(l)
i , for l > 0. For constructing the tries Si = S0

i , we first construct the tries corresponding

1As mentioned in the introduction, lm1 is discretized to [0, ∆]m.
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to the functions uh; this takes time Õ
(

U · w · nM2/3
)

= Õ
(

nM2/3 exp[2
√

ρ log n ln log n]
)

time (by using the algorithm from section 4.3). The tries for functions uh enable us to find

in O(1) time the first difference of uh(Tj1) and uh(Tj2) for any j1, j2. Thus, for a function

gi = (uh1
, . . . uht

), if p is the smallest index of the first differences of uhx
(Tj1) and uhx

(Tj2),

x = 1 . . . t, then p is also the position where gi(Tj1) and gi(Tj2) differ for the first time. With

this comparison operation, we can construct the tries Si = S0
i in time Õ(n1+1/c).

The construction of the tries S
(l)
i , for l > 0, is the same as in section 3.3.

The resulting preprocessing time is Õ
(

n1+1/c + nM2/3 exp[2
√

ρ log n ln log n]
)

.
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Chapter 5

Conclusions and Future Work

5.1 Our Contributions

In this thesis, we have investigated the problem of finding the approximate nearest neighbor

when the data set points are the substrings of a given text T . In particular, we focused on

the case when m, the length of the query pattern P , is not known in advance; this scenario

is the most natural in the context of pattern matching.

We have shown a data structure that achieves space and query bounds that essentially

match the bounds of [12], which assumed that the pattern length m is given in advance. For

preprocessing, when the string distance is measured according to the Hamming distance,

the data structure needs Õ
(

n1+1/c + nM1/3no(1)
)

time. This preprocessing time essentially

matches the preprocessing in the case of m given in advance, as long as c < 3.

Similar data structure exists for l1. While the space and query bounds are essentially

the same, preprocessing is only slightly worse, Õ
(

n1+1/c + nM2/3no(1)
)

time. Again, this

preprocessing time essentially matches that in the case of given m, for c < 3/2.

For achieving the stated bounds, we deploy two core ideas1. In the first step, we replace

the hash tables containing LSH buckets by tries; the tries have the advantage over the hash

tables in that the tries support variable-length queries. Using the tries, we achieve the stated

1As mentioned previously, using tries for LSH was also proposed by [21], but they used the tries for a
different problem and not for (R, c)-SNN.
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space bound. Further, in the second step, we redesign the LSH scheme such that it uses

a smaller number of independent functions, thus, allowing us to compute some of the LSH

functions in parallel. With this redesign, we improve the query and the preprocessing times

to the stated bounds.

5.2 Future Work

The most immediate open question is to improve preprocessing times of our data structures.

Currently, preprocessing times are Õ
(

n1+1/c + nM1/3no(1)
)

for Hamming and Õ
(

n1+1/c + nM2/3no(1)
)

for l1. When these times will reach a bound of Õ
(

n1+1/c
)

, our data structures will essentially

match all the bounds obtained for the case when m is given in advance.

A more general open question would ask whether we could achieve bounds that are even

better than the bounds of [12] for the case when m is given in advance. Although such an

improvement might be possible, it would also imply a better algorithm for the approximate

nearest neighbor problem, since we can likely reduce (R, c)-NN to (R, c)-SNN. A better

algorithm for (R, c)-NN would certainly be of great interest, as this problem is one of the

core problems in high-dimensional computational geometry.
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