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ABSTRACT
In this work, we consider the problems of testing whether
a distribution over {0, 1}n is k-wise (resp. (ε, k)-wise) inde-
pendent using samples drawn from that distribution.

For the problem of distinguishing k-wise independent dis-
tributions from those that are δ-far from k-wise indepen-
dence in statistical distance, we upper bound the number
of required samples by Õ(nk/δ2) and lower bound it by

Ω(n
k−1
2 /δ) (these bounds hold for constant k, and essen-

tially the same bounds hold for general k). To achieve these
bounds, we use Fourier analysis to relate a distribution’s
distance from k-wise independence to its biases, a measure
of the parity imbalance it induces on a set of variables. The
relationships we derive are tighter than previously known,
and may be of independent interest.

To distinguish (ε, k)-wise independent distributions from
those that are δ-far from (ε, k)-wise independence in sta-
tistical distance, we upper bound the number of required
samples by O

`
k log n
δ2ε2

´
and lower bound it by

Ω

„
√

k log n

2k(ε+δ)
√

log 1/2k(ε+δ)

«
. Although these bounds are an

exponential improvement (in terms of n and k) over the cor-
responding bounds for testing k-wise independence, we give
evidence that the time complexity of testing (ε, k)-wise inde-
pendence is unlikely to be poly(n, 1/ε, 1/δ) for k = Θ(log n),
since this would disprove a plausible conjecture concerning
the hardness of finding hidden cliques in random graphs.
Under the conjecture, our result implies that for, say, k =
log n and ε = 1/n0.99, there is a set of (ε, k)-wise indepen-
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dent distributions, and a set of distributions at distance
δ = 1/n0.51 from (ε, k)-wise independence, which are in-
distinguishable by polynomial time algorithms.

Categories and Subject Descriptors: F.0 [General]; G.3
[Probability and Statistics]: Distribution functions.

General Terms: Algorithms, Theory.

Keywords: k-wise independence, almost k-wise indepen-
dence, property testing, Fourier analysis, hidden-clique.

1. INTRODUCTION
A probability distribution over {0, 1}n is k-wise indepen-

dent if its restriction to any k coordinates is uniform. Simi-
larly a distribution is (ε, k)-wise independent if its restriction
to any k coordinates is ε-close to uniform, in max-norm1.
Such distributions look random “locally,” to an observer
of only k coordinates, even though they may be far from
random “globally.” Because of this key feature, k-wise and
(ε, k)-wise independent distributions are important concepts
in probability, complexity, and algorithm design [19, 21, 2,
24, 25].

Given samples drawn from a distribution over {0, 1}n, it is
natural to wonder whether the distribution generating those
samples is k-wise independent. An experimenter, for exam-
ple, who receives data in the form of a vector of n bits might
like to know whether every setting of k of those bits is equally
likely to occur, or whether some settings of k bits are more
or less likely.

In this work, we seek new ways of elucidating the struc-
ture of k-wise independent distributions, and of analyzing
a distribution’s statistical distance to k-wise independence.
We use our new understanding to develop an efficient algo-
rithm for testing k-wise independence – that is, an algorithm
that with high probability accepts distributions that are k-
wise independent and rejects distributions that are δ-far in
statistical distance from any k-wise independent distribu-
tion. We similarly study the problem of testing (ε, k)-wise
independence.

Previous work addressed the problem of testing related
properties of distributions, including uniformity [17, 8] and
independence [7, 26, 9]. To the best of our knowledge, no
previous work has addressed the problem of testing k-wise
and (ε, k)-wise independence, however the theorems in [4]
combined with a generalization of the algorithm in [17]
yield natural testing algorithms which we improve upon.

1For formal definitions, see the Preliminaries.



1.1 Our Results and Techniques
The formal definition of a testing algorithm for k-wise or

(ε, k)-wise independent distributions is given below. The
complexity of a testing algorithm is measured both in terms
of the number of samples required (sample complexity), and
the computational time needed to process those samples
(time complexity).

Definition 1.1 (Testing k-wise ((ε, k)-wise) independence).
Let 0 < ε, δ < 1, and let D be a distribution over {0, 1}n.
We say that an algorithm tests k-wise ((ε, k)-wise) indepen-
dence if, given access to a set Q ⊂ {0, 1}n of samples drawn
independently from D, it outputs: 1) “Yes” if D is a k-wise
((ε, k)-wise) independent distribution, 2) “No” if the statis-
tical distance of D to any k-wise ((ε, k)-wise) independent
distribution is at least δ. The tester may fail to give the right
answer with probability at most 1/3. We call |Q| the query
complexity of the algorithm.

In Table 1, we summarize the sample and time bounds
that our algorithms achieve, along with the lower bounds
that we prove for the associated testing problems. In in-
terpreting these results, it is useful to think of δ and ε as
constants, so that the complexity measures are functions of
only n and k. The O∗ and Ω∗ notation is defined as follows:
O∗(f) = O(f1+o(1)) and Ω∗(f) = Ω(f1−o(1)). For constant
k, one can replace the O∗ and Ω∗ in the statement of our
results with Õ and Ω respectively.

1.1.1 Testing k-wise independence
In Section 3, we present an algorithm for testing k-wise

independence. We use the notion of a bias over a set T which
is a measure of the parity imbalance of the distribution over
the set T of variables:

Definition 1.2. For a distribution D over {0, 1}n, the bias

of D over a non-empty set T ⊆ [n] is defined as biasD(T ) ,
Prx←D[⊕i∈T xi = 0]−Prx←D[⊕i∈T xi = 1]. We say biasD(T )
is an l-th level bias if |T | = l.

A well-known fact says that a distribution is k-wise in-
dependent iff its biases biasD(T ) are zero for all nonempty
sets T ⊂ [n] of size at most k.

This suggests the following simple algorithm: estimate all
the biases of the distribution over sets of size up to k and
output “Yes” iff all of those biases are small enough. We
show that this approach yields an algorithm with O∗(nk/δ2)
sample complexity and O∗(n2k/δ2) time complexity. We

also prove a sample complexity lower bound of Ω∗(n
k−1
2 /δ),

showing our upper bound is at most a quadratic factor from
optimal.

The analysis of our testing algorithm is based on The-
orem 3.1. Let ∆(D,Dkwi) denote the statistical distance
between distribution D and the set of k-wise independent
distributions Dkwi. Theorem 3.1 shows that ∆ (D,Dkwi) ≤
O

“qP
|T |≤k(bias(T ))2 logk/2 n

”
. Previously, the only non-

trivial bound on ∆(D,Dkwi) is the one implicit in [4]:
∆(D,Dkwi) ≤

P
|T |≤k |bias(T )|. In most of the interesting

cases, our new bound improves upon their result. For exam-
ple, the main upper bound result in [4] is: if all the biases of
a distribution D over non-empty subsets up to size k are at
most ε, then ∆(D,Dkwi) ≤ nk · ε. Using Theorem 3.1, this
can be improved to ∆(D,Dkwi) ≤ O((

√
n log n)k) · ε.

Our sample lower bound is based on a Random Distri-
bution Lemma (Lemma 3.6), which shows that a uniform

distribution over a random set of size O
“

(n/k)k−1

δ2

”
is al-

most surely δ-far from any k-wise independent distribution.
In contrast, the lower bound result in [4] shows that any dis-

tribution with support size O
“

nk/2

kk

”
is always 1/2-far from

any k-wise independent distribution. Our result applies to
random uniform distributions over a large range of support
sizes, and shows a tradeoff between a distribution’s support
size and its distance to k-wise independent distributions.

Fourier-analytic interpretation of our bounds on
∆(D,Dkwi).

Our upper and lower bounds on ∆(D,Dkwi), together with
the proof techniques, may be of independent interest when
interpreted as Fourier-analytic inequalities for bounded func-
tions on the hypercube. The harmonic analysis of such func-
tions has been considered in the Computer Science litera-
ture, e.g., in [14]. The connection to Fourier analysis comes
from the basic fact that the biases of a distribution D are
equal to D’s Fourier coefficients (up to a normalization fac-
tor).

Bounds on ∆(D,Dkwi) may be viewed as part of the fol-
lowing general question: fix a family F of functions on the
hypercube and a subfamily H ⊂ F of functions defined via
a restriction on their Fourier coefficients. Then, for function
f ∈ F , what is the `1 distance from f to its projection in H,
i.e., `1(f, H)?2 In our case F is the set of all functions map-
ping to [0, 1] and sum up to 1 (i.e., distributions), and H
(i.e., k-wise independent distributions) further requires that
the functions have all Fourier coefficients over non-empty
subsets of size at most k to be zero. Then, for example,
Parseval’s equality gives the following bound on the `2-norm:
`2(f, H) ≥ ‖f≤k‖2 where f≤k(x) ,

P
0<|S|≤k f̂SχS(x) is the

truncation of f to the low-level Fourier spectrum (if the func-
tions were not restricted to mapping to [0, 1], then the lower
bound is attainable thus making the inequality an equality.
However, the constraint that the functions under consid-
eration are distributions makes the problem much harder).
Unfortunately, such a bound implies only very weak bounds
for the `1-norm.

In contrast, our upper bound on ∆(D,Dkwi) says that

`1(f, H) ≤ ‖f≤k‖2 · O(logk/2 n). To prove such an inequal-
ity, we proceed as follows. Given a distribution D = f , we
approximate D using a function D1, obtained by forcing all
of D’s first k-level Fourier coefficients to zero while keep-
ing all others unchanged. Although D1 is not necessarily a
probability distribution (it may map some inputs to negative
values), we show how to turn it back into a k-wise indepen-
dent distribution by “mending” it with a series of carefully
chosen, small weight, k-wise independent distributions. By
a deep result in Fourier analysis, the Bonami-Beckner in-
equality, we bound the distance incurred by the “mending”
process. Thus, we are able to bound the total `1 distance
of D to k-wise independence by the distance from D to D1

plus the “mending” cost.
Furthermore, our lower bound technique (employed by

the Random Distribution Lemma) implies that `1(f, H) ≥
‖f≤k‖2
‖f≤k‖∞

, which is already useful when we take f to be a

2The distance of a function to a set, `p(f, H), is defined to
be minh∈H ‖f − h‖p.



Table 1: Summary of Testing Results

Reference
Sample Complexity Time Complexity

Upper Lower Upper Lower

Testing k-wise independence
this paper O∗(nk

δ2 ) Ω∗(n
k−1
2

δ
) O∗(n2k

δ2 ) -

[4]† O∗(n2k

δ2 ) Ω∗(n
k
4 ) O∗(n3k

δ2 ) -

Testing (ε, k)-wise independence this paper O( k log n
δ2ε2

) Ω

0@ √
k log n

2k(ε+δ)
r

log 1
2k(ε+δ)

1A nO(k)

poly(ε,δ)
‡ nω(1) §

†These bounds can be derived from theorems in [4], though they did not explicitly consider the testing problem.
‡This can be achieved trivially.
§This lower bound applies when k = Θ(log n) and εδ = n−Θ(1). It is contingent upon a conjecture discussed below.

uniform function on a randomly chosen support. This in-
equality follows by taking the convolution of D = f with an
auxiliary function and then applying Young’s convolution
inequality to lower bound the `1-norm of D−D′, where D′

is the k-wise independent distribution closest to D.

1.1.2 Testing (ε, k)-wise independence
In Section 4, we give an algorithm for testing (ε, k)-wise in-

dependence that uses O(k log n/δ2ε2) samples, and we show

that Ω

„
√

k log n

2k(ε+δ)
√

log 1/2k(ε+δ)

«
samples are required3. The

lower bound on the sample complexity is achieved by ob-

taining an Ω
“

k log n

22kε2 log(1/2kε)

”
lower bound on the support

size of any (ε, k)-wise independent distribution which is uni-
form over its support. The proof of the lower bound uses
significantly different ideas from the lower bound for testing
k-wise independence.

In terms of n and k, the sample complexity of testing
(ε, k)-wise independence is exponentially better than that of
testing k-wise independence. However, the time complexity
of testing (ε, k)-wise independence presents another story.
Since the number of samples required by our testing algo-
rithm is only poly(log n/εδ), one would hope that the time
complexity is polynomial as well. However, we show that for
some k this is not likely to be the case. Specifically, in The-
orem 4.4 we show that for k = Θ(log n) and εδ = n−O(1),
no polynomial time tester exists for this testing problem,
under a plausible conjecture on the hardness of finding a
hidden clique in random graphs. Finding hidden cliques in
random graphs has been studied since [18, 23]. We discuss
our conjecture in detail in Section 4.

Computational indistinguishability of (ε, k)-wise in-
dependent distributions.

The initial motivation of [4] was to show that a ran-
domized algorithm requiring only k-wise independent dis-
tributions (i.e., O(k log n) random bits) can be further de-
randomized using (ε, k)-wise independent distributions (re-
quiring only O(k + log(n/ε)) random bits) by showing that
any (ε, k)-wise independent distribution is close in statis-
tical distance to some k-wise independent distribution for
ε = 1/ poly(n, 2k). They instead proved that an (ε, k)-wise
independent distribution can be at distance ≥ 1/2 from k-

3A more careful analysis can improve the sample upper
bound to O

`
k log n

2kε2δ2

´
for ε < 1/2k. We defer these details

to the full version of the paper.

wise independence even for ε as small as ε = n−k/5. One
can view their results as showing that k-wise (i.e., (0, k)-

wise) and (n−k/5, k)-wise independent distributions are far
apart information-theoretically.

Despite the large statistical distance, one can ask whether
there are (1/ poly(n, 2k), k)-wise independent distributions
that are poly-time indistinguishable from (0, k)-wise inde-
pendence, under some computational hardness assumption
(such (ε, k)-wise independent distributions should still re-
quire O(k+log(n/ε)) random bits to be useful for derandom-
ization). Although we do not answer the above question or
give a result useful for derandomization, our above hardness
of testing result yields some evidence for an affirmative an-
swer. Specifically, we show that for, say, k = log n, there is
a family of (n−0.99, k)-wise independent distributions, and a
family of (n−0.51, k)-wise independent distributions that are
poly-time indistinguishable under the aforementioned hid-
den clique conjecture. Even though any distribution from
the first family is at distance δ ≥ n−0.52 from any distri-
bution from the second family (as we show), the conjecture
implies that distinguishing a random member of the first
family from a random member of the second cannot be done
in polynomial time with a polynomial number of samples.

2. PRELIMINARIES
We use [n] to denote the set {1, . . . , n}. For an integer

k = o(n), define Mn,k =
Pk

i=1

`
n
i

´
to be the number of non-

empty subsets of [n] of size at most k. Then Mn,k ≤ nk and
Mn,k = Ω∗(nk).

We will restrict our attention to probability distributions
over {0, 1}n which are specified by distribution functions D :
{0, 1}n → [0, 1] such that

P
x∈{0,1}n D(x) = 1. The support

of D, Supp(D), is the set of points x at which D(x) 6= 0.
Let A = {a1, . . . , am} be a multi-set of cardinality m, where
ai ∈ {0, 1}n. The uniform distribution over A, denoted UA,

is defined to be UA(x) = |{i ∈ [m]|ai = x}|
m

. We use Un to
denote the uniform distribution over {0, 1}n.

2.1 k-wise and (ε, k)-wise Independent
Distributions, and Distances

Definition 2.1 ([3]). A distribution D is (ε, k)-wise inde-
pendent if for any k indexes i1 < i2 < . . . < ik, and any vec-
tor −→v ∈ {0, 1}k of k bits,

˛̨
Prx←D [xi1xi2 . . . xik = −→v ]− 2−k

˛̨
≤

ε. When ε = 0, we say that D is k-wise independent. The
set of all k-wise independent distributions and (ε, k)-wise in-



dependent distributions are denoted by Dkwi and D(ε,k) re-
spectively.

For two distributions D1, D2, we denote their statistical
distance by ∆(D1, D2) , maxS⊆{0,1}n |Pr[D1(S)]−Pr[D2(S)]|.
It is immediate to verify that ∆(D1, D2) = 1

2

P
x |D1(x) −

D2(x)| and 0 ≤ ∆(D1, D2) ≤ 1.
The distance of a distribution D to k-wise independence,

denoted ∆(D,Dkwi), is defined to be the minimum statistical
distance of D to any k-wise independent distribution, i.e.
∆(D,Dkwi) , minD′∈Dkwi ∆(D, D′). If ∆(D,Dkwi) ≤ δ, we
say D is δ-close to k-wise independence. Otherwise, we say
D is δ-far. These concepts are defined identically for (ε, k)-
wise independence, with D(ε,k) in place of Dkwi.

2.2 The Fourier Transform and
the Bonami-Beckner Inequality

The set of functions f : {0, 1}n → R is a vector space of
dimension 2n in which the inner product between two ele-
ments f and g is defined as 〈f, g〉 = 1

2n

P
x∈{0,1}n f(x)g(x).

For each S ⊆ [n], define the character χS : {0, 1}n →
{−1, 1} as χS(x) = (−1)

P
i∈S xi . The set of 2n functions,

{χS : S ⊆ [n]}, forms an orthonormal basis for the vector
space. This implies that any function f : {0, 1}n → R can

be expanded uniquely as f(x) =
P

S⊆[n] f̂(S)χS(x), where

f̂(S) = 〈f, χS(x)〉 is the Fourier coefficient of f over set

S. The p-norm4 of f is ‖f‖p =
“

1
2n

P
x∈{0,1}n |f(x)|p

”1/p

.

Parseval’s equality, ‖f‖2
2 =

P
S⊆[n] f̂(S)2, follows directly

from the orthonormality of the basis.
For two functions f, g : {0, 1}n → R, their convolution

is defined as (f ∗ g)(x) , 1
2n

P
y∈{0,1}n f(y)g(x − y). It

is easy to show that cfg = f̂ ∗̂ĝ and f̂ ∗ g = f̂ ĝ for any
f, g : {0, 1}n → R. It is also easy to show that ‖f ∗ g‖∞ ≤
‖f‖∞‖g‖1, which is a simple special case of Young’s convo-
lution inequality.

A powerful tool in Fourier analysis over {0, 1}n is the
hyper-contractive estimate due independently to Beckner [10]
and Bonami [12]. Following is the form proved in [12]:

Theorem 2.2. Let f : {0, 1}n → R be a function that is a
linear combination of {χT : |T | ≤ k}. Then for any even

p > 2, ‖f‖p ≤
`√

p− 1
´k ‖f‖2.

2.3 Characterizing k-wise Independence Using
Biases

Up to a normalization factor, the biases are equal to the
Fourier coefficients of the distribution function D. More pre-
cisely, D̂(T ) = 1

2n biasD(T ), for T 6= ∅. Thus, we sometimes
use the terms biases and Fourier coefficients interchange-
ably. The following well-known facts relate biases to k-wise
independence:

Fact 2.3. A distribution is k-wise independent iff all the
biases over sets T ⊂ [n], 0 < |T | ≤ k, are zero. In particular,
for the uniform distribution Un, biasUn(T ) = 0 for all T .

4If f = D is a distribution, this definition differs from the
commonly used distance metrics by a normalization factor.
For example, for p = 1, ‖D‖1 = 1

2n |D|1, where |D|1 =P
x∈{0,1}n |D(x)|; and for p = 2, ‖D‖2 = 1√

2n |D|2, where

|D|2 =
qP

x∈{0,1}n |D(x)|2.

Fact 2.4. ∆(D,Dkwi) ≥ 1
2

maxT⊆[n],0<|T |≤k biasD(T ).

3. TESTING k-WISE INDEPENDENCE
In this section, we study the problem of testing whether a

distribution is k-wise independent or δ-far from from k-wise
independence. Our upper bound and lower bound results
for testing are based on new upper and lower bounds on
∆(D,Dkwi) in term of D’s first k-level biases. We present
our upper bounds in Section 3.1 and lower bounds in Sec-
tion 3.2.

3.1 Upper bounds
In this section, we first prove an upper bound on ∆(D,Dkwi),

then present our testing algorithm as well as the sample
and time complexity of our algorithm. For brevity, let b1 ,P
|S|≤k |biasD(S)| and b2 ,

qP
|S|≤k biasD(S)2. Note that

b2 ≤ b1 ≤
p

Mn,kb2 < nk/2b2.
The only previously known upper bound for ∆(D,Dkwi) is

given in [4], where it is implicitly shown that ∆(D,Dkwi) ≤
b1. Our new bound is the following.

Theorem 3.1 (Upper Bound on Distance). ∆(D,Dkwi) ≤
O

“
(log n)k/2

qP
|S|≤k biasD(S)2

”
. Consequently, ∆(D,Dkwi) ≤

O
“
(n log n)k/2

”
max|S|≤k |biasD(S)|.

Since b2 is always smaller than or equal to b1, our upper
bound is no weaker than that of [4] up to a polylogarithmic
factor. However, for many distributions of interest, b2 is
much smaller than b1 (e.g., when all the biases are roughly
of the same magnitude, as in the case of random uniform
distributions, then b2 = O∗(b1/nk/2)).

The basic ideas of our proof are the following. We first op-
erate in the Fourier space to construct a “pseudo-distribution”
D1 by forcing all the first k-level Fourier coefficients to
be zero. D1 is not a distribution because it may assume
negative values at some points. We then correct all these
negative points by a series of convex combinations of D1

with k-wise independent distributions. This insures that all
the first k-level Fourier coefficients remain zero, while in-
creasing the weights at negative points so that they assume
non-negative values. During the correction, we distinguish
between two kinds of points which have negative weights:
Light points whose magnitudes are small and heavy points
whose magnitudes are large. We use two different types of
k-wise independent distributions to handle these two kinds
of points. Using Bonami-Beckner’s inequality, we show that
only a small number of points are heavy, thus obtaining a
better bound for ∆(D,Dkwi).

Proof of Theorem 3.1. The following lemma bounds the `1-
distance between a function and its convex combination with
other distributions.

Lemma 3.2. Let f be a real function defined over domain
{0, 1}n such that

P
x f(x) = 1. Let D1, . . . , D` be dis-

tributions over {0, 1}n. Suppose there exist positive real

numbers w1, . . . , w` such that D′(x) , 1

1+
P`

i=1 wi
(f(x) +P`

i=1 wiDi(x)) is non-negative for all x ∈ {0, 1}n. Then
2n

2
‖f(x)−D′(x)‖1 ≤

P`
i=1 wi.

Proof. ‖f(x)−D′(x)‖1 = ‖
P`

i=i wi(D
′−Di)‖1 ≤

P`
i=i wi‖D′−

Di‖1 ≤ 2−n+1 P`
i=i wi.



We first construct a real function D1 : {0, 1}n → R based
on D but forcing all its first k-level biases to be zero. D1 is
defined by explicitly specifying all of its Fourier coefficients:

D̂1(S) =

(
0, if S 6= ∅ and |S| ≤ k

D̂(S), otherwise.

Since D̂1(∅) = D̂(∅) = 1
2n , we have

P
x D1(x) = 1. Note

that in general D1 is not a distribution because it is pos-
sible that for some x, D1(x) < 0. By Parseval’s equal-

ity, ‖D −D1‖2 = 1
2n

qP
|T |≤k biasD(T )2 = 1

2n b2. Hence by

the Cauchy-Schwarz inequality, we can upper bound the `1-
norm of D − D1 as ‖D − D1‖1 ≤ 2−n · b2. Now we define
another function D2 : {0, 1}n → R as

D̂2(S) =

(
D̂(S), if S 6= ∅ and |S| ≤ k

0, otherwise.

By the linearity of the Fourier transform, D1(x) + D2(x) =
D(x). Since D(x) ≥ 0 for all x ∈ {0, 1}n, we have D1(x) ≥
−D2(x). By the Fourier transform,

|D2(x)| =

˛̨̨̨
˛̨ 1

2n

X
1≤|S|≤k

biasD(S)χS(x)

˛̨̨̨
˛̨

≤ 1

2n

X
1≤|S|≤k

|biasD(S)| = 1

2n
b1.

Hence the magnitudes of D1(x)’s negative points are upper
bounded by 1

2n b1, i.e. D2(x) ≥ − 1
2n b1.

By the linearity of the Fourier transform, if we define a
function D′ as the convex combination of D1 with some k-
wise independent distributions so that D′ is non-negative,
then D′ will be a k-wise independent distribution, since all
the Fourier coefficients of D′ on the first k levels are zero.

If we use a uniform distribution to correct all the negative
weights of D1, then we will get an upper bound almost the
same (up to a factor of 3/2) as that of [4]. To improve
on this, we distinguish between two kinds of points where
D1 may assume negative weights: heavy points and light
points. Let λ = (2

√
log n)k. We call a point x heavy if

D1(x) ≤ −λb2/2n, and light if −λb2/2n < D1(x) < 0. For
light points, we still use a uniform distribution to correct
them; but for each heavy point, say z, we will use a special k-
wise independent distribution UBCH-z(x), constructed in [2]:

Theorem 3.3 ([2]). For any z ∈ {0, 1}n, there is a k-wise
independent distribution UBCH-z(x) over {0, 1}n such that

UBCH-z(z) = 1
| Supp(UBCH-z)| = Ω(n−bk/2c). 5

Thus, we define D′ by

D′(x) =
D1(x) + λb2Un(x) +

P
z is heavy wzUBCH-z(x)

1 + λb2 +
P

z is heavy wz
.

We set wz = | Supp(UBCH-z)|
2n b1. Since D1(x) ≥ − b1

2n , one
can check that D′(x) is non-negative for both heavy and
light points. Hence D′ is a k-wise independent distribution.

Next we bound the number of heavy points. Note that this
number is at most the number of points at which D2(x) ≥
λb2/2n. Observe that D2(x) has only the first k-level Fourier

5Note that, as shown in [13, 2], the support sizes of such
constructions are essentially optimal.

coefficients, hence we can use Bonami-Beckner’s inequality
to bound the probability of |D2(x)| assuming large values,
and thus the total number of heavy points.

First we scale D2(x) to make it of unit `2-norm. Define

f(x) = 2n

b2
D2(x). Then

‖f‖2 =
2n

b2
‖D2‖2 =

2n

b2

s
1

2n

X
x∈{0,1}n

D2(x)2

=
2n

b2

s
1

22n

X
1≤|S|≤k

biasD(S)2 = 1,

where the second to last step follows from Parseval’s equal-
ity. Now using the higher moment inequality method, we
have, for even p,

Pr[|f(x)| ≥ λ] ≤ Ex [|f(x)|p]

λp
=
‖f‖p

p

λp
.

By Theorem 2.2, ‖f‖p ≤
`√

p− 1
´k ‖f‖2 =

`√
p− 1

´k
. Plug

in λ = (2
√

log n)k and p = log n, and without loss of gener-
ality, assume that p is even, then we have

Pr[|f(x)| ≥ 2k logk/2 n] ≤ (p− 1)pk/2

λp
<

ppk/2`
2
√

log n
´pk

= (
1

2
)k log n =

1

nk
.

Therefore,

Pr

»
D1(x) ≤ −2k log

k
2 n

b2

2n

–
≤ Pr

»
D2(x) ≥ 2k log

k
2 n

b2

2n

–
≤Pr

»
|D2(x)| ≥ 2k logk/2 n

b2

2n

–
= Pr

h
|f(x)| ≥ 2k logk/2 n

i
< 1/nk.

In other words, there are at most 2n/nk heavy points.

Recall that | Supp(UBCH-z)| = O
“
nbk/2c

”
and b1 ≤ nk/2b2),

we use Lemma 3.2 to get that

2n

2
|D1 −D′|1 ≤ λb2 +

X
z heavy

w(z)

≤(2
p

log n)kb2 +
2n

nk

| Supp(UBCH-z)|
2n

b1

=(2
p

log n)kb2 + O (b2) = O
“
(log n)k/2b2

”
.

Finally, by the triangle inequality, ∆(D, D′) = 2n

2
‖D −

D′‖1 ≤ 2n

2
(‖D−D1‖1+‖D1−D′‖1) = O

“
(log n)k/2b2

”
.

Armed with Theorem 3.1, we are ready to describe our
algorithm for testing k-wise independence. The algorithm
is simple in nature: it estimates all the first k-level biases
of the distribution and returns “Yes” if they are all small.
Let Ck be the hidden constant in O (·) in the second part of
Theorem 3.1.

The analysis of Test-KWI-Closeness establishes the fol-
lowing theorem (the full proof can be found in the full ver-
sion of this paper).

Theorem 3.4 (Testing k-wise Independence Upper Bounds).
Testing k-wise independence can be solved using

O(k(log n)k+1nk/δ2) = O∗(nk

δ2 ) samples from the distribu-

tion and in time O∗(n2k

δ2 ).



Algorithm Test-KWI-Closeness(D,k,δ)

1. From D, draw a set Q of samples of size |Q| = O
“
k log n/δ′2

”
, where δ′ = δ

3Ck(n log n)k/2 .

2. For each non-empty subset S ⊆ [n], |S| ≤ k, use Q to estimate biasD(S) to within an additive term of δ′.

3. If maxS |biasD(S)| ≤ 2δ′ return “Yes”; else return “No”.

Figure 1: Algorithm for testing if a distribution is k-wise independent.

3.2 Lower bounds
In this section, we give a lower bound on the sample com-

plexity of our testing algorithm. However, we first motivate
our study from the perspective of real functions defined over
the boolean cube.

The upper bound given in Theorem 3.1 naturally raises
the following question: Can we give a lower bound on ∆(D,Dkwi)
in term of the first k-level biases of D? The only known an-
swer to this question we are aware of is the folklore lower
bound in Fact 2.4: ∆(D,Dkwi) ≥ 1

2
max1≤|S|≤k |biasD(S)|.

This bound is too weak for many distributions, as demon-
strated in [4], who gave a family of distributions that have

all the first k-level biases at most O
“

1

n1/5

”
, but are at least

1/2-away from any k-wise independent distribution. Their
proof is based on a min-entropy argument, which seems to
work only for distributions with small support size.

In fact, this statistical distance lower bound problem can
be put into a more general framework. Given a function f :
{0, 1}n → R, can we give a lower bound on ‖f‖1 if only the
first k-level Fourier coefficients of f are known? Hausdorff-
Young’s inequality gives ‖f‖1 ≥ ‖f̂‖∞, which is equivalent
to the bound stated in Fact 2.4. We develop a new approach
to lower bound ‖f‖1 in terms of f ’s first k-level Fourier
coefficients (details appear in the full version). Our method
works for general k and is based on convolving f with an
auxiliary function and then applying Young’s convolution
inequality. Applying our lower bound result to ∆(D,Dkwi),
we get:

Theorem 3.5 (Lower bound on distance). Given a distri-
bution D over {0, 1}n, define a family of functions Dg ⊆
R{0,1}n such that for all g ∈ Dg, the Fourier coefficients of
g satisfy:

ĝ(S) =

8><>:
0, if S = ∅ or |S| > k

sign(biasD(S)) if |S| ≤ k and biasD(S) 6= 0

±1, if |S| ≤ k and biasD(S) = 0,

where sign(x) = 1 if x > 0 and sign(x) = −1 if x < 0. Then

for all g ∈ Dg, ∆(D,Dkwi) ≥
1
2

P
|S|≤k |biasD(S)|
‖g‖∞ .

Under this framework, we prove the following lower bound
on distances between random uniform distributions and k-
wise independence, which is the basis of our sample lower
bound result, Theorem 3.9. Note that by Theorem 3.1, this
bound is almost tight as implied by our upper bound result.

Lemma 3.6 (Random Distribution Lemma). Let k > 2.

Let Q =
Mn,k

nδ2 < 2n1/3
, with δ ≤ 1. If we sample uniformly

at random Q strings from {0, 1}n to form a random multi-set
Q and let UQ(x) be the uniform distribution over Q, then for
all large enough n, PrQ[∆(UQ,Dkwi) > 0.228δ] = 1− o(1).

Proof sketch. We will follow the lower bound techniques de-
veloped in Theorem 3.5 to prove this lemma. However, for
ease of analysis, we will use different auxiliary functions. Let
D′(x) be the k-wise independent distribution with minimum
statistical distance to UQ. Define fQ(x) = UQ(x) − D′(x).

Then we have f̂Q(S) = ÛQ(S) for all S ⊆ [n], S 6= ∅ and
|S| ≤ k, and ∆(UQ,Dkwi) = 2n−1‖fQ‖1. Define gQ(x) :
{0, 1}n → R as

ĝQ(S) =

(
f̂Q(S), if S 6= ∅ and |S| ≤ k,

0, otherwise.

Also define the convolution hQ(x) , (fQ ∗ gQ)(x). Then

ĥQ(S) =

(
f̂Q(S)2, if S 6= ∅ and |S| ≤ k,

0, otherwise.

by the convolution theorem. Applying Young’s inequality,

we have that ‖fQ‖1 ≥ ‖hQ‖∞
‖gQ‖∞

. We will prove the Lemma 3.6

by proving the following two lemmas bounding ‖hQ‖∞ and
‖gQ‖∞, respectively.

Lemma 3.7. For all large enough n,

Pr
Q

»
‖hQ‖∞ ≥ 0.999

Mn,k

22nQ

–
= 1− o(1).

Lemma 3.8. Let
Mn,k

n
≤ Q < 2n1/3

. For all k > 2 and

large enough n, PrQ

»
‖gQ‖∞ ≤ 2.19

2n

q
nMn,k

Q

–
= 1− o(1).

Now it is easy to see that the Lemma follows from Lemma 3.7
and Lemma 3.8 by a simple union bound argument.

To prove the lower bound on ‖hQ‖∞ stated in Lemma 3.7,
we compute the expectation and variance of ‖hQ‖∞. Then
a simple application of Chebyshev’s inequality gives the de-
sired bound. The calculations are straightforward but rather
tedious.

The proof of Lemma 3.8 is more involved: A simple calcu-
lation shows that gQ(x) equals a summation of Q indepen-
dent random variables Y1, . . . , YQ determined by the ran-
dom subset Q, where −Mn,k ≤ Yi ≤ Mn,k. However, a
direct application of Hoeffding’s bound to the sum can only
give ‖gQ‖∞ = O (Mn,k), thus ∆(UQ,Dkwi) = Ω( 1

Q
), which

is too weak. We improve on this by noticing that the vari-
ance of Yi is small, thus Bernstein’s inequality [11] gives a
better bound. This approach gives us the desired result but
also imposes a restriction that δ = O (1/n). We overcome
this difficulty by observing that for most of the random vari-
ables, |Yi| is much smaller than Mn,k, as implied by Bonami-
Beckner’s inequality. This enables us to distinguish between
two kinds of Yi’s- those Yi’s that are small and those Yi’s
that are large- and sum them separately. All the details of
the proof can be found in the full version of this paper.



Theorem 3.9 (Sample Lower Bound). For k > 2 and δ ≤
0.228, Testing k-wise independence requires at least |Q| =

Ω
“

1
δ
· (n

k
)

k−1
2

”
samples from the distribution.

Our lower bound result rules out the possibility of polyno-
mial time testing algorithms for k = ω(1). To give an idea
of how Theorem 3.9 follows from Lemma 3.6, note that Un

is k-wise independent, and by Lemma 3.6, UQ is far from k-
wise independent. But any algorithm making o(

√
Q) queries

will not see any collisions and thus will fail to distinguish be-
tween these two distributions.

4. TESTING (ε, k)-WISE INDEPENDENCE
In this section, we study the sample and time complexity

of distinguishing whether a distribution is (ε, k)-wise inde-
pendent or is at distance at least δ from any (ε, k)-wise inde-
pendent distribution (as defined in 1.1). We call this testing
problem Test(ε, k)-independence to within distance δ (we
omit the reference to δ whenever it is clear from the con-
text). On one hand, compared to testing k-wise indepen-
dence, we prove that exponentially fewer samples suffice for
Test(ε, k)-independence. On the other hand, this expo-
nential improvement does not carry over to the time com-
plexity; we show that it is unlikely that there is a poly(n)
time algorithm for Test(ε, k)-independence.

We begin by describing our sample complexity results:

while testing k-wise independence requires Ω(n
k−1
2 ) sam-

ples, we show that O
`

k lg n
ε2δ2

´
samples suffice for testing (ε, k)-

wise independence. In particular, the sample complexity of
Test(ε, k)-independence is only poly(n/εδ), even for the
case when k = ω(1). Specifically, we show that:

Theorem 4.1 (Sample Upper Bound). For any 0 < ε, δ <
1, Test(ε, k)-independence to within distance δ can be
solved using |Q| = O

`
k log n
ε2δ2

´
samples from the distribution

D.

Theorem 4.2 (Sample Lower Bound). For ε > 1

nk/4 , 0 <

δ < 1
2k − ε, any tester solving Test(ε, k)-independence to

within distance δ requires |Q| = Ω

„
√

k log n

2k(ε+δ)
√

log 1/2k(ε+δ)

«
samples from the distribution.

We prove these theorems in Section 4.2.
We now turn to the time complexity result. In contrast to

the positive result for sample complexity, we show that the
time complexity cannot be poly (n/εδ) for k = Θ(log n), un-
der the following conjecture regarding the hardness of find-
ing a hidden clique in a random graph. In the following, let
t = t(n) be a nondecreasing function of n so that t(n) > lg3 n
(the bigger t(n), the stronger the conjecture and our result).

Conjecture 4.3 (HC-Find[t]). For n > 0, let G be a
random graph on n vertices generated by the following pro-
cess, Gn,1/2,t: connect each pair of vertices with probability
1/2, then choose a random set of t vertices, and interconnect
these vertices to form a clique (called the hidden clique).
Then there is no randomized poly(n) time algorithm that,
for all n, given G, outputs a clique of size t, with success
probability at least 1 − 1/n. (Probability is over both the
choice of G and the random coins of the algorithm.)

We discuss this conjecture in more detail in Section 4.3.1.
Assuming the conjecture, we prove the following theorem on
the time complexity of Test(ε, k)-independence.

Theorem 4.4 (Time Lower Bound). Assume conjecture
HC-Find[t(n)] holds for some t(n) ≥ lg3 n. Let k = α lg n

for a constant α ≤ 1, ε = 2α lg2 n
nα , and δ = t(nα/6)

2nα . Then
there is no poly(n) time algorithm that solves Test(ε, k)-
independence to within distance δ, even when given access
to a polynomial number of samples from the distribution.

The proof of the theorem appears in Section 4.3.2. Note
that for the above settings, Test(ε, k)-independence can

be solved in nO(k) = 2O(log2 n) time, and thus it is not a
priori clear whether one can prove such a hardness result
under a more standard conjecture, such as P 6= NP.

To prove our results on the sample and time complexity of
Test(ε, k)-independence, we study a closely related prob-
lem. Specifically, we consider the problem of distinguish-
ing between a distribution that is (ε, k)-wise independent
and a distribution that is not even (ε′, k)-wise independent
for ε′ > ε > 0; we call this problem Test(ε, k)-vs-(ε′, k)-
independence. It is somewhat easier to obtain upper and
lower bounds for the latter problem, from which we can de-
duce the bounds on the original Test(ε, k)-independence
problem.

In sections that follow, we first define the new problem
and describe its relationship to Test(ε, k)-independence.
We then prove the sample and time complexity bounds.

4.1 Relationship between Test(ε, k)-independence

and Test(ε, k)-vs-(ε′, k)-independence

As mentioned in the preliminaries, D(ε,k) denotes the set
of all (ε, k)-wise independent distributions.

Definition 4.5 (Test(ε, k)-vs-(ε′, k)-independence). Let
0 < ε < ε′ < 1, and D be a distribution over {0, 1}n. We
call a tester for Test(ε, k)-vs-(ε′, k)-independence an al-
gorithm that, given a set Q ⊂ {0, 1}n drawn i.i.d. from
D, outputs: 1) “Yes”, if D ∈ D(ε,k); and 2) “No”, if D 6∈
D(ε′,k). The tester may fail with probability at most 1/3.

The relationship between Test(ε, k)-independence and
Test(ε, k)-vs-(ε′, k)-independence is described by the fol-
lowing lemma.

Lemma 4.6. Let 0 < ε, δ < 1. If there exists a tester for
Test(ε, k)-vs-(ε+εδ, k)-independence using Q = Q(n, k, ε, δ)
samples and T = T (n, k, ε, δ) time, then there exists a tester
for Test(ε, k)-independence to within distance δ using Q
samples and T time.

Conversely, if there exists a tester for
Test(ε, k)-independence to within distance δ using Q sam-
ples and T time, then there exists a tester for Test(ε, k)-vs-
(ε + δ, k)-independence using Q samples and T time.

Proof. We break down the lemma into two key propositions
and give proof sketches for each separately (complete proofs
appear in the full version of the paper).

Proposition 4.7. Let 0 < ε, δ < 1. If ∆(D,D(ε,k)) > δ,
then D 6∈ D(ε+εδ,k).

Proof sketch. We prove the contrapositive: that if D ∈ D(ε+εδ,k),
then ∆(D,D(ε,k)) ≤ δ. Suppose D is (ε + εδ, k)-wise in-
dependent. Then construct a new distribution D′ that is
(ε, k)-wise independent and such that ∆(D, D′) ≤ δ. D′ is
a mixture of D and the uniform distribution Un.



Now, to solve the problem Test(ε, k)-independence on
distribution D, we simply invoke
Test(ε, k)-vs-(ε + εδ, k)-independence on D. The correct-
ness follows from the above proposition.

Proposition 4.8. Let 0 ≤ ε < ε′ < 1. If ∆(D,D(ε,k)) ≤
ε′ − ε then D ∈ D(ε′,k).

Proof sketch. It is easy to verify that D ∈ D(ε′,k) by consid-
ering D′ ∈ D(ε,k) such that ∆(D, D′) ≤ δ = ε′ − ε.

We solve Test(ε, k)-vs-(ε + δ, k)-independence on D by
a simple invocation to Test(ε, k)-independence on D.

This ends the proof of the lemma.

4.2 Sample Complexity Bounds
In this section, we prove upper and lower bounds on the

sample complexity of Test(ε, k)-independence.

4.2.1 Sample complexity upper bound: proof of The-
orem 4.1

We give an algorithm for Test(ε, k)-vs-(ε′, k)-independence,
and use Lemma 4.6 to derive the upper bound for Test(ε, k)-
independence. In our algorithm for Test(ε, k)-vs-(ε′, k)-
independence, we do not use biases. Note that using biases
in the natural way would introduce an approximation error
of 2Ω(k) (see [3] for relations between the parameter ε and
the biases).

Theorem 4.9 (Sample Upper Bound). Let 0 ≤ ε < ε′ <
1. Test(ε, k)-vs-(ε′, k)-independence can be solved using

Q = O
“

k log n
(ε′−ε)2

”
samples from the distribution.

Proof. The algorithm proceeds in a straight-forward way:
first, using the samples Q, compute a distribution D̃ that is
an approximation to D, and then check whether D̃ is closer
to being (ε, k)-wise independent, or is closer to not even
being (ε′, k)-wise independent. Specifically, given the multi-

set of queries Q, construct a distribution D̃ : {0, 1}d → [0, 1]

that is uniformly distributed on Q, i.e., D̃(x) = UQ(x) =
|{i∈[|Q|] | qi=x}|

|Q| , where Q = {q1, . . . q|Q|}. Then we can com-

pute the minimum ε̃ such that D̃ is (ε̃, k)-wise independent.

If ε̃ ≤ ε+ε′

2
, then we declare D is (ε, k)-wise independent,

and, if ε̃ > ε+ε′

2
, we declare that D is not (ε′, k)-wise inde-

pendent.
The correctness of the algorithm follows via the Chernoff

bound.

4.2.2 Sample complexity lower bound: proof of The-
orem 4.2

In this section we study the lower bound on sample com-
plexity for the problem Test(ε, k)-independence to within
distance δ.

We first study the minimum support size of a uniform dis-
tribution D which is (ε, k)-wise independent, lower-bounding

it by Ω

„
k

(2kε)2 log 1
2kε

log n

«
. We apply this bound to dis-

tributions that are (ε + δ, k)-wise independent and deduce,
via Lemma 4.6, the minimum support size for distributions
δ-close to (ε, k)-wise independence. The rest of the proof for
the query complexity lower bound follows closely the one for
testing k-wise independence, appearing in Theorem 3.9.

To prove our bound on the minimum support, we use the
following theorem that appears in [1].

Theorem 4.10 ([1]). Let B be an n by n real matrix with
bi,i = 1 for all i and |bi,j | ≤ ε for all i 6= j. If the rank of B

is d, and 1√
n
≤ ε ≤ 1

2
, then d > Ω

“
1

ε2 log 1
ε

log n
”

.

Theorem 4.11 (Minimum Support Size). Let 1

nk/4 < ε <
1
2k . The minimum support size of a uniform distribution D

which is (ε, k)-wise independent is Ω

„
k

22kε2 log 1
2kε

log n

«
.

Proof. Consider a uniform distribution D that is (ε, k)-wise
independent. Assume that D is given as a binary s × n
matrix MD where s is the support size. A restriction of MD

to a subset ∅ 6= I ⊂ [n], |I| ≤ k is denoted as MD,I and it is
an s× |I| matrix that contains the relevant columns of MD.

For ∅ 6= I ⊂ [n], |I| ≤ k
2
, consider the sum modulo 2

of the columns of MD,I and obtain a vector vM,I of length
s. The weight of vM,I is denoted as w(vM,I) and it refers
to the number of 1’s in vM,I . The number of different sets
I, ∅ 6= I ⊂ [n], |I| ≤ k

2
is Θ(nk/2). Consider a matrix C

of dimension s by Θ(nk/2) whose columns are all possible
vectors vM,I . The matrix J is a matrix of all 1’s. Let C′ =
J − C.

From the definition of (ε, k)-wise independence, it follows
that for every ∅ 6= I, I ′ ⊂ [n], |I|, |I ′| ≤ k

2
, I 6= I ′, we have˛̨̨

2w(vM,I⊕vM,I′ )−s

s

˛̨̨
≤ 2kε.

Consider now a matrix B of dimension Θ(nk/2) by Θ(nk/2),
where its rows and columns are indexed by different sets I,

and BI,I′ =
2w(vM,I⊕vM,I′ )−s

s
. Note that B = [2(Ct · C +

C′
t · C′) − sJ ]/s. Since the rows of C and the all 1 row

span the rows of C′ and of J , and the rank of C is clearly at
most s, the rank of B is at most s + 1. From the definition
of (ε, k)-wise independence we obtain that BI,I′ = 1 and

|BI,I′ | ≤ 2kε for I 6= I ′. Hence by Theorem 4.10 we obtain

Rank(B) > Ω

„
k

22kε2 log 1
2kε

log n

«
.

However, as mentioned above, s + 1 ≥ Rank(B). Hence
we obtain the claimed lower bound on s.

Corollary 4.12. Let 1

nk/4 < ε < 1
2
, 0 < δ < 1

2k − ε.
The minimum support of a uniform distribution D for which

∆(D,D(ε,k)) ≤ δ is Ω

„
k log n

22k(ε+δ)2 log 1
2k(ε+δ)

«
.

Proof sketch. The proof follows by applying Proposition 4.8,
and the theorem above.

The above corollary implies Theorem 4.2. We defer the
proof of the theorem to the full version of the paper.

4.3 Time Complexity Bounds
In this section, we discuss the plausibility of the hidden

clique conjecture (Conjecture 4.3), and present the proof of
the time complexity lower bound, Theorem 4.4, based on
this conjecture.

4.3.1 The Hidden Clique Conjecture
The problem of finding a hidden clique in a random graph

has been open since the works of [18, 23]. For t = o(
√

n),
there is no known polynomial time algorithm that finds even



a (1 + ε) log2 n clique, for any constant ε > 0. When t ≥
Ω(
√

n), [5] and [15] exhibit polynomial time algorithms that
do find the hidden clique of size t.

Conjecture 4.3 is a generalization of the conjecture of the
hardness of the problem of finding a (1+ ε) log2 n clique in a
random graph from Gn,1/2 = Gn,1/2,0 (i.e., without inserting
any hidden clique) [20, 18]. This problem is a long-standing
open question raised by [22] (see also the survey of [16] and
the references therein). Although a random graph Gn,1/2

has a clique of size (2−o(1)) log2 n with high probability [6],
there is no known polynomial time algorithm that finds even
a clique of size (1 + ε) log2 n for constant ε > 0 (a simple
greedy algorithm finds a (1−o(1)) log2 n clique, w.h.p.). The
failure to exhibit such a polynomial time algorithm led to
the conjecture that there is no algorithm able to find a (1 +
ε) log2 n clique in polynomial time [18, 20]. Furthermore, the
problem of finding a clique of size 3

2
log2 n in a random graph

has been proposed as a “hard problem” for cryptographic
purposes [20].

4.3.2 Time complexity lower bound: proof of Theo-
rem 4.4

Proof of Theorem 4.4. Below we show that if conjecture HC-
Find[t] holds, then the running time of any tester for
Test(ε, k)-vs-(ε′, k)-independence is super-polynomial in

n for k = α lg n, for any constant α ≤ 1, and ε = 2α lg2 n
nα =

n−O(1), ε′ = t(nα/6)
nα = n−O(1). The theorem then follows by

applying Lemma 4.6.
To prove the theorem, we first prove that the conjecture

HC-Find[t] implies the following conjecture on the hard-
ness of deciding whether a hidden clique is present or not
in a random graph. The conjecture is also parametrized by
the minimum size of the hidden clique, t = t(n), a non-
decreasing function of n.

Conjecture 4.13 (HC-Decide[t]). For n > 0, let G be
a random graph on n vertices that is generated via either
Gn,1/2 or Gn,1/2,t′ , where t′ ≥ t(n) may be chosen adversar-
ially. Then there is no polynomial time algorithm that for
any n, given G, can output whether G came from Gn,1/2 or

Gn,1/2,t′ , with success probability at least 1 − 1/n3. (Proba-
bility is over both the choice of G and the random coins of
the algorithm.)

We prove the following lemma in Section 4.3.3.

Lemma 4.14. For t(n) > Ω(log n), if HC-Find[t(n)] holds,
then HC-Decide[t(n)/3] also holds.

Given this lemma, it is now sufficient to give a reduc-
tion from the problem of distinguishing between Gm,1/2 and
Gm,1/2,t′ to the problem Test(ε, k)-vs-(ε′, k)-independence,

where t′ ≥ t, m = 2k−1 = nΩ(1), ε = 2α lg2 n
nα , ε′ = t(nα/6)

nα .
Let T be a tester that decides whether D ∈ Dε,k or D 6∈
Dε′,k with error probability ≤ n−4 (we can amplify the suc-
cess probability by running the tester T for O(log n) times,
each with a new set of samples Q).

Suppose we are given a graph G on m = 2k−1 vertices,
generated either via Gm,1/2 or Gm,1/2,t′(m). Let A be the ad-
jacency matrix of G with the diagonal entries set randomly
to 0 or 1. From the matrix A ∈ Mm,m, we construct a new
matrix B ∈ Mm,n by appending n−m columns to the right,
where each new entry is randomly chosen from {0, 1}. We
view matrix B as describing a distribution DB : {0, 1}n →

[0, 1] defined to be uniform on the set of the m rows of B:

DB(x) = |{i|Bi=x}|
m

, where Bi is the ith row of B.
We claim that, with high probability, if G ∈ Gm,1/2, then

DB ∈ D(ε,k), and, conversely, if G ∈ Gm,1/2,t′ , then DB 6∈
D(ε′,k). These properties immediately imply the reduction
to the tester for Test(ε, k)-vs-(ε′, k)-independence: gener-
ate the sample set Q by drawing samples according the dis-
tribution DB and feed it to the tester. If the tester returns
“Yes” (i.e., DB ∈ D(ε,k)), return G ∈ Gm,1/2. Otherwise
(i.e., DB 6∈ D(ε′,k)), return G ∈ Gm,1/2,t(m).

Next we prove that if G ∈ Gm,1/2 then w.h.p. DB ∈
D(ε,k), and if G ∈ Gm,1/2,t(m) then DB 6∈ D(ε′,k). To simplify
the argument, for a matrix B, we define a parameter gk(B)
that roughly corresponds to the minimum ε̃ such that DB

is (ε̃, k)-wise independent:

Definition 4.15. Let k be such that 1 ≤ k ≤ n. For
a matrix B ∈ Mm,n({0, 1}) and −→v ∈ {0, 1}k, we define
a (k,−→v )-repetition to be a set of distinct columns C =
{i1, i2, . . . , ik} and a set of distinct rows R, such that R =
{r ∈ [m] | Bri1Bri2 . . . Brik = −→v }. We define gk(B) to be
the maximum value of |R|/m, over all (k,−→v )-repetitions for
all choices of −→v ∈ {0, 1}k.

Note that when gk(B) ≥ 2 · 2−k, the minimum ε̃ for which
DB ∈ D(ε̃,k) is ε̃ = gk(B)− 2−k.

Now, on one hand, if G ∈ Gm,1/2, then B is a random 0/1
matrix, and by an easy union bound calculation, gk(B) ≤

k lg n
(k−lg m)m

with probability at least 1 − O
“
(2e/k)k

”
≥ 1 −

n−4. Thus, since gk(B) ≥ 1/m = 2 · 2−k, we conclude that

DB ∈ D(ε,k), where ε ≤ k lg n
(k−lg m)m

− 2−k ≤ 2α lg2 n
nα . This is

the only part where the reduction can fail.
On the other hand, if G ∈ Gm,1/2,t′ , then B contains a

clique of size t′ ≥ t(m) and thus a (k, 1k)-repetition with

|R| ≥ t(m)−1
2

, implying that gk(B) ≥ t(m)−1
2m

. Thus DB 6∈
D(ε′,k), where ε′ = t(m)−1

2m
− 2−k = t(nα/2)−2

nα ≥ t(nα/2)
nα .

The total error probability is at most n−4 from the tester,
plus n−4 from the above reduction. This finishes the proof
of Theorem 4.4.

4.3.3 Hardness of hidden clique: finding vs deciding

Proof of Lemma 4.14. The proof is by contradiction. Sup-
pose, for any n ≥ n0, we can distinguish in polynomial time
whether a graph G is drawn from Gn,1/2 or Gn,1/2,t/3, with

probability at least 1−1/2n2. Let M be such a distinguisher.
In figure 2, we describe the algorithm that, for n ≥ 3n0,

given a graph G from Gn,1/2,t, finds a clique of size t in
G using the distinguisher M . Our algorithm is somewhat
similar to the algorithm BasicFind used in [15] to find a
hidden clique of size t = Ω(

√
n).

The intuition behind the algorithm is the following. Let K
be the planted clique in G. If v is in K, then after removing
v and the neighborhood Nv, we remove the entire clique K,
and the remaining graph Gv is a random graph from Gnv,1/2.
If v 6∈ K, then after removing v and Nv, we have deleted at
most 2t/3 of the clique with high probability, and thus the
graph Gv is a random graph with a hidden clique of size at
least t/3, i.e., chosen from Gnv,1/2,t′ for some t′ > t/3.

More formally, consider first any vertex v such that v 6∈ K.
Then we can view Gv as being generated via the following
random process. Pick integer nv as the number of vertices



1. Let C = ∅ (representing the current clique).

2. For each vertex v of the graph G,

3. Let Gv = G \ {v} \ Nv be the graph obtained by removing v together with v’s neighbors. Let nv be the
number of vertices in Gv .

4. If M(Gv) outputs “Gnv,1/2”, then put v into the set C. Do nothing if M(Gv) outputs “Gnv,1/2,t/3”.

5. Output C.

Figure 2: Algorithm for finding a hidden clique using a distinguisher M(Gv) that decides whether Gv is from
Gnv,1/2 or from Gnv,1/2,t/3.

in the graph obtained by starting with n vertices, deleting
the vertex v, and then deleting each vertex with probability
1/2. Then pick integer t′ as follows: take nv red vertices and
n − 1 − nv blue vertices, then draw randomly t(n) vertices
(without repetitions); set t′ to be the number of red ver-
tices that were drawn. Finally generate Gv via the process
Gnv,1/2,t′ . Note that Pr[nv ≤ 0.4n] ≤ e−Ω(n), and Pr[t′ ≤
t(nv)/3] ≤ Pr[t′ ≤ t(n)/3] ≤ e−Ω(t(n)). Thus, M , run on Gv,

will output “Gnv,1/2,t” with probability 1−e−Ω(t(n))−n−2/2.
Now consider any vertex v ∈ K. Then we can view Gv

as being generated as follows. Pick nv according to the
following distribution: start with n vertices, delete vertex v
and t(n) − 1 other vertices (the other vertices of the clique
K), and then delete each remaining vertex with probability
1/2; the size of the surviving graph gives nv. Finally, we
generate Gv via the process Gnv,1/2. Note that Pr[nv ≤
n/3] ≤ e−Ω(n). Thus, M , run on Gv, will output “Gnv,1/2”

with probability 1− e−Ω(n) − n−2/2.
By the union bound over all vertices v, with probability

at least 1 − 1/n, the algorithm M gives the right answer
for all of the n vertices v. Thus, we output C = K with
probability at least 1− 1/n.
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