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Abstract—We present a near-linear time algorithm that
approximates the edit distance between two strings within
a polylogarithmic factor. For strings of length n and every

fixed ε > 0, the algorithm computes a (log n)O(1/ε) ap-
proximation in n

1+ε time. This is an exponential improve-
ment over the previously known approximation factor,

2Õ(
√

log n), with a comparable running time [Ostrovsky
and Rabani, J. ACM 2007; Andoni and Onak, STOC
2009].

This result arises naturally in the study of a new
asymmetric query model. In this model, the input consists
of two strings x and y, and an algorithm can access y in
an unrestricted manner, while being charged for querying
every symbol of x. Indeed, we obtain our main result by
designing an algorithm that makes a small number of
queries in this model. We then provide a nearly-matching
lower bound on the number of queries.

Our lower bound is the first to expose hardness of edit
distance stemming from the input strings being “repet-
itive”, which means that many of their substrings are
approximately identical. Consequently, our lower bound
provides the first rigorous separation between edit distance
and Ulam distance.

Keywords-edit distance, sampling, query complexity,
linear-time algorithms, sublinear algorithms

I. INTRODUCTION

Manipulation of strings has long been central to com-

puter science, arising from the high demand to process

texts and other sequences efficiently. For example, for

the simple task of comparing two strings (sequences),

one of the first methods emerged to be the edit distance

(aka the Levenshtein distance) [25], defined as the mini-

mum number of character insertions, deletions, and sub-

stitutions needed to transform one string into the other.

This basic distance measure, together with its more

elaborate versions, is widely used in a variety of areas
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such as computational biology, speech recognition, and

information retrieval. Consequently, improvements in

edit distance algorithms have the potential of major

impact. As a result, computational problems involving

edit distance have been studied extensively (see [29],

[17] and references therein).

The most basic problem is that of computing the

edit distance between two strings of length n over

some alphabet. It can be solved in O(n2) time by

a classical algorithm [33]; in fact this algorithm is

a prototypical dynamic programming algorithm, see,

e.g., the textbook [12] and references therein. Hence

it is natural to ask whether we can speed up this

canonical algorithm. Despite significant research over

more than three decades, the running time has so far

been improved only slightly, to O(n2/ log2 n) [26],

which remains the fastest algorithm known to date.1

Furthermore, a near-quadratic runtime is often un-

acceptable in modern applications that must deal with

massive datasets, such as the genomic data. Hence

practitioners tend to rely on faster heuristics [17], [29].

This has motivated the quest for faster algorithms at the

expense of approximation, see, e.g., [18, Section 6] and

[19, Section 8.3.2]. Indeed, the past decade has seen a

serious effort in this direction.2 One general approach

is to design linear time algorithms that approximate edit

distance. A linear-time
√

n-approximation algorithm

immediately follows from the exact algorithm of [24],

which runs in time O(n + d2), where d is the edit

distance between the input strings. Subsequent research

improved the approximation factor, first to n3/7 [8], then

1The result of [26] applies to constant-size alphabets. It was
extended to arbitrarily large alphabets in [11], albeit with an
O(log log n)2 factor loss in runtime.

2We shall not attempt to present a complete list of results
for restricted settings (e.g., average-case/smoothed analysis, weakly-
repetitive strings, and bounded distance-regime), for variants of the
distance function (e.g., allowing more edit operations), or for related
computational problems (such as pattern matching, nearest neighbor
search, and sketching). See also the surveys of [29] and [31].



to n1/3+o(1) [10], and finally to 2Õ(
√

log n) [7] (building

on [30]). Predating some of this work was the sublinear-

time algorithm of [9] achieving nε approximation, but

only when the edit distance d is rather large.

Better progress has been obtained on variants of edit

distance, where one either restricts the input strings,

or allows additional edit operations. An example from

the first category is the edit distance on non-repetitive

strings (e.g., permutations of [n]), termed the Ulam

distance in the literature. The classical Patience Sorting

algorithm computes the exact Ulam distance between

two strings in O(n log n) time. An example in the

second category is the case of two variants of the edit

distance where certain block operations are allowed.

Both of these variants admit an Õ(log n) approximation

in near-linear time [15], [28], [14], [13].

Despite the efforts, achieving a polylogarithmic ap-

proximation factor for the classical edit distance has

eluded researchers for a long time. In fact, this has

been the case not only in the context of linear-time

algorithms, but also in the related tasks, such as nearest

neighbor search, ℓ1-embedding, or sketching. From a

lower bounds perspective, only a sublogarithmic ap-

proximation has been ruled out for the latter two tasks

[21], [22], [4], thus giving evidence that a sublogarith-

mic approximation for the distance computation might

be much harder or even impossible to attain.

A. Results

Our first and main result is an algorithm that runs in

near-linear time and approximates edit distance within

a polylogarithmic factor. Note that this is exponentially

better than the previously known factor 2Õ(
√

log n) (in

comparable running time), due to [30], [7].

Theorem I.1 (Main). For every fixed ε > 0, there

is an algorithm that approximates the edit distance

between two input strings x, y ∈ Σn within a factor

of (log n)O(1/ε), and runs in n1+ε time.

This development stems from a principled study of

edit distance in a computational model that we call

the asymmetric query model, and which we shall de-

fine shortly. Specifically, we design a query-efficient

procedure in the said model, and then show how this

procedure yields a near-linear time algorithm. We also

provide a query complexity lower bound for this model,

which matches or nearly-matches the performance of

our procedure.

A conceptual contribution of our query complexity

lower bound is that it is the first one to expose hardness

stemming from “repetitive substrings”, which means

that many small substrings of a string may be approx-

imately equal. Empirically, it is well-recognized that

such repetitiveness is a major obstacle for designing

efficient algorithms. All previous lower bounds (in

any computational model) failed to exploit it, while

in our proof the strings’ repetitive structure is readily

apparent. More formally, our lower bound provides the

first rigorous separation of edit distance from Ulam

distance (edit distance on non-repetitive strings). Such

a separation was not previously known in any studied

model of computation, and in fact all the lower bounds

known for the edit distance hold to (almost) the same

degree for Ulam distance. These models include: non-

embeddability into normed spaces [21], [22], [4], lower

bounds on sketching complexity [4], [2], and (symmet-

ric) query complexity [9], [6].
Asymmetric Query Complexity: Before stating the

results formally, we define the problem and the model

precisely. Consider two strings x, y ∈ Σn for some

alphabet Σ, and let ed(x, y) denote the edit distance

between the two strings. The computational problem is

the promise problem known as the Distance Threshold

Estimation Problem (DTEP) [32]: distinguish whether

ed(x, y) > R or ed(x, y) ≤ R/α, where R > 0 is a

parameter (known to the algorithm) and α ≥ 1 is the

approximation factor. We use DTEPβ to denote the

case of R = n/β, where β ≥ 1 may be a function of

n.

In the asymmetric query model, the algorithm knows

in advance (has unrestricted access to) one of the strings,

say y, and has only query access to the other string, x.

The asymmetric query complexity of an algorithm is the

number of coordinates in x that the algorithm has to

probe in order to solve DTEP with success probability

at least 2/3.

We now state our upper and lower bound results. Both

exhibit a smooth tradeoff between the approximation

factor and the query complexity. For simplicity, we state

the bounds in two extreme regimes of approximation,

when α = polylog(n) and α = poly(n). (The complete

statements appear in the full version.)

Theorem I.2 (Query complexity upper bound). Let β =
β(n) ≥ 2. For every 0 < ε < 1 there is an algorithm

for DTEPβ achieving approximation α = (log n)O(1/ε)

with βnε queries into x, and running in n1+ε time.

For every integer t ≥ 2 there is an algorithm for

DTEPβ achieving approximation α = O(n1/t) with

O(logt−1 n) queries into x.

It is an easy observation that our general edit distance

algorithm in Theorem I.1 follows immediately from

the above query complexity upper bound theorem, by



running the latter for all β that are a power of 2.

Theorem I.3 (Query complexity lower bound). For a

sufficiently large constant β > 1, every algorithm that

solves DTEPβ with approximation α = α(n) ≥ 2 has

asymmetric query complexity 2Ω( log n

log α+log log n ). More-

over, for every fixed non-integer t > 1, every algorithm

that solves DTEPβ with approximation α = n1/t has

asymmetric query complexity Ω(log⌊t⌋ n).

We summarize in Table I our results and previous

bounds for DTEPβ under edit distance and Ulam

distance. For completeness, we also present known

results for a common query model where the algorithm

has query access to both strings (henceforth referred

to as the symmetric query model). We point out two

implications of our bounds on the asymmetric query

complexity:

• There is a strong separation between edit dis-

tance and Ulam distance. In the Ulam metric, a

constant approximation is achievable with only

O(log n) asymmetric queries (see [1], which builds

on [16]). In contrast, for edit distance, we show an

exponentially higher complexity lower bound, of

2Ω(log n/ log log n), even for a larger (polylogarith-

mic) approximation.

• Our query complexity upper and lower bounds are

nearly-matching, at least for a range of parameters.

At one extreme, approximation O(n1/2) can be

achieved with O(log n) queries, whereas approx-

imation n1/2−ε already requires Ω(log2 n) queries

(similar “phase transitions” happen at approxima-

tions around n1/t for t ∈ N). At the other extreme,

approximation α = (log n)1/ε can be achieved

using nO(ε) queries, and requires nΩ(ε/ log log n)

queries.

B. Connections of Asymmetric Query Model to Other

Models

The asymmetric query model is related to two well-

studied models, namely the communication complexity

model and the symmetric query model (where the

algorithm has query access to both strings). Specifically,

the former is less restrictive than our model (i.e., easier

for algorithms) while the latter is more restrictive (i.e.,

harder for algorithms).
Communication Complexity: In this setting, Alice

and Bob each have a string, and they need to solve the

DTEPβ problem by way of exchanging messages. The

measure of complexity is the number of bits exchanged

in order to solve DTEPβ with probability at least 2/3.

The best upper bound known is 2Õ(
√

log n) approx-

imation with constant communication via [30], [23].

The only known lower bound says that approximation

α requires Ω( log n / log log n
α ) communication [4], [2].

Our results immediately imply a one-way communi-

cation complexity for DTEPβ achieving (log n)O(1/ε)

approximation with O(βnε) communication.

Symmetric Query Complexity: In another related

model, the measure of complexity is the number of

characters the algorithm has to query in both strings

(rather than only in one of the strings). Naturally, the

query complexity in this model is at least as high as

the query complexity in the asymmetric model. This

model has been introduced (for edit distance) in [9],

and its main advantage is that it leads to sublinear-time

algorithms for DTEPβ . The algorithm of [9] makes

Õ(n1−2ε + n(1−ε)/2) queries (and runs in the same

time), and achieves nε approximation. However, it only

works for β = O(1). The best query lower bound is of

Ω(
√

n/α) for any approximation factor α > 1 for both

edit and Ulam distance [9], [6].

C. Future Directions

We study a new query model that seems to better

elucidate the hardness stemming from “repetitiveness”

of strings, obtaining eventually the first algorithm that

computes a polylogarithmic approximation for edit dis-

tance in near-linear time. We believe that our tech-

niques may foster progress on other tasks involving

edit distance, such as the nearest neighbor search. We

mention below a few natural, tangible goals for future

investigation.

Symmetric Model: Extend our results to the sym-

metric query model. A query upper bound would

likely lead to improved sub-linear time algorithms,

the problem studied in [9]. From the perspective of a

lower bound, it seems plausible that a variation of our

hard distribution gives a bound of n1/2+Ω(1/ log log n)

for polylogarithmic approximation, improving over the

state-of-the-art Ω̃(
√

n) lower bound in this model.

Embedding Lower Bounds: Is there an ω(log n)
lower bound for the distortion required to embed edit

distance into ℓ1? Such a lower bound would answer

a well-known open question [27]. Note that the core

component of our hard distribution, the shift metric (i.e.,

hamming cube augmented with cyclic shift operations),

is known to require distortion Ω(log n) [22].

Communication Complexity: Prove a communica-

tion complexity upper bound of nε for all distance

regimes, i.e., independent of β (instead of the current

β·nε), for DTEPβ with polylogarithmic approximation.

Improved Time Complexity: Tighten the asymmet-

ric query complexity upper bound to 2o(ε log n) for

approximation (log n)O(1/ε). This may ultimately lead



Model Metric Approx. Complexity Remarks

Near-linear
time

Edit (log n)O(1/ε) n1+ε Theorem I.1

Edit 2Õ(
√

log n) n1+o(1) [7]

Asymmetric
query
complexity

Edit n1/t O(logt−1 n) Theorem I.2 (fixed t ∈ N, β > 1)

Edit n1/t Ω(log⌊t⌋ n) Theorem I.3 (fixed t /∈ N, β > 1)

Edit (log n)1/ε βnO(ε) Theorem I.2

Edit (log n)1/ε nΩ(ε/ log log n) Theorem I.3 (fixed β > 1)
Ulam 2 + ε Oε(β log log β · log n) [1]

Symmetric
query
complexity

Edit nε Õ(nmax{1−2ε,(1−ε)/2}) [9] (fixed β > 1)

Ulam O(1) Õ(β +
√

n) [6]

Ulam+edit O(1) Ω̃(β +
√

n) [6]

Table I
KNOWN RESULTS FOR DTEPβ AND ARBITRARY 0 < ε < 1.

to an algorithm that runs in time n1+o(1) and approx-

imates edit distance within a factor of, say, O(log2 n).
Such a goal seems plausible by perhaps a more careful

sampling.

More ambitiously, can one directly use our edit

distance characterization to compute an O(log n) ap-

proximation in subquadratic time?

II. FAST ALGORITHMS VIA ASYMMETRIC QUERY

COMPLEXITY

In this section we give an overview of our near-linear

time algorithm for estimating the edit distance between

two strings, stated in Theorem I.1. The algorithm is ob-

tained via an efficient query algorithm for the DTEPβ

problem, i.e., Theorem I.2. Here we include only an

overview of the algorithm steps, and defer the details

and proofs to the full version.

A high-level intuition for the near-linear time algo-

rithm is as follows. The classical dynamic programming

for edit distance runs in time that is the product of the

lengths of the two strings. It seems plausible that, if we

manage to “compress” one string to size nε, we may

be able to compute the edit distance in time only nε ·n.

Indeed, this is exactly what we accomplish. Specifically,

our “compression” is achieved via a sampling proce-

dure, which samples ≈ nε positions of x, and then

approximates ed(x, y) in time n1+ε. Of course, the main

challenge is, by far, sampling x so that the above is even

possible.

Our query upper bound has two major components.

The first component is a characterization of the edit

distance by a different “distance”, denoted E , which

approximates ed(x, y) well. The characterization is

parametrized by an integer parameter b ≥ 2 governing

the following tradeoff: a small b leads to a better approx-

imation, whereas a large b leads to a faster algorithm.

The second component is a sampling algorithm that

approximates E for some settings of the parameter b,

up to a constant factor, by querying a small number of

positions in x.

A. Edit Distance Characterization: the E-distance

Our characterization is based on a hierarchical de-

composition of the edit distance computation, which is

obtained by recursively partitioning the string x, each

time into b blocks. We shall view this decomposition

as a b-ary tree. Then, intuitively, the E-distance at a

node is the sum, over all b children, of the minima of

the E-distances at these children over a certain range

of displacements (possible “shifts” with respect to the

other strings). At the leaves (corresponding to single

characters of x), the E-distance is simply the Hamming

distance to corresponding positions in y. We note that

the characterization is asymmetric in the two strings.

We give a formal definition below, after we establish

some notation. We fix the arity b ≥ 2 of the tree, and let

h
def

= logb n ∈ N be the height of the tree. We denote by

x[s : s + l] the substring of x starting at s and ending

at s + l − 1 (i.e., [s : s + l] stands for the interval

{s, s + 1, . . . , s + l − 1}). For some tree level i, where

0 ≤ i ≤ h, let li
def

= n/bi be the length of blocks at that

level. Then we define Bi
def

= {1, li + 1, 2li + 1, . . .} to

be the set of starting positions of blocks at level i.

The characterization is asymmetric in the two strings

and is defined from a node of the tree to a position

u ∈ [n] of the string y. Specifically, if i = h, then the E-

distance of x[s] to a position u is 0 only if x[s] = y[u]
and u ∈ [n], and 1 otherwise. For i ∈ {0, 1, . . . h −
1} and s ∈ Bi, we recursively define the E-distance

E(i, s, u) of x[s : s + li] to a position u as follows.

Partition x[s : s + li] into b blocks of length li+1 =

li/b, starting at positions s + tj , where tj
def

= j · li+1,

j ∈ {0, 1, . . . b − 1}. Intuitively, we would expect to

define the E-distance E(i, s, u) as the summation of the

E-distances of each block x[s + tj : s + tj + li+1] to



the corresponding position in y, i.e., u+ tj . Instead, we

additionally allow each block to be displaced by some

shift rj , incurring an additional charge of |rj | in the E-

distance. The shifts rj are chosen such as to minimize

the final distance. Formally,

E(i, s, u)
def

=
b−1∑

j=0

min
rj∈Z

E(i + 1, s + tj , u + tj + rj) + |rj | .

(1)

The E-distance from x to y is just the E-distance from

x[1 : n + 1] to position 1, i.e., E(0, 1, 1).
We illustrate the E-distance for b = 4 in Fig. 1.

Notice that without the shifts (i.e., when all rj = 0),

the E-distance is exactly equal to the Hamming distance

between the corresponding strings. Hence allowing the

shifts rj is what differentiates the E-distance from the

Hamming distance.

x[s+li+1:s+2li+1]x[s:s+li+1] x[s+3li+1:s+4li+1]

r2 r3

x[s+2li+1:s+3li+1]

x

︸ ︷︷ ︸

x[s:s+li]

y[u:u+li]
︷ ︸︸ ︷

y

r0 r1

Figure 1. Illustration of the E-distance E(i, s, u) for b = 4. The
pairs of blocks of the same shading are the blocks whose E-distance
is used for computing E(i, s, u).

We prove that the E-distance between x and y is

an O(bh) = O( b
log b log n) approximation to ed(x, y).

Intuitively, the characterization manages to break-up

the edit distance computation into independent distance

computations on smaller substrings. The independence

is crucial here as it removes the need to find a global

alignment between the two strings, which is one of

the main reasons why computing edit distance is hard.

We note that while the high-level approach of recur-

sively partitioning the strings is somewhat similar to

the previous approaches from [9], [30], [7], the technical

development here is quite different. The previous hierar-

chical approaches all relied on the following recurrence

relation for the approximation factor α:

α(n) = c · α(n/b) + O(b),

for some c ≥ 2. It is easy to see that one obtains α(n) ≥
2Ω(

√
log n) for any choice of b ≥ 2. In contrast, our

characterization achieves no multiplicative factor loss,

i.e., c = 1 and hence α(n) = O(bh). Some of the ideas

behind the design and analysis of the characterization

were inspired from [3].

We note that, for b = 2, the E-distance is only

an O(log n) approximation to ed(x, y). However, we

do not know how to compute or approximate it well

in better than quadratic time (one can easily compute

a 1 + ε approximation to E-distance in Õε(n
2) time

via a dynamic programming). Instead, we show that,

using the sampling algorithm (described next), we can

compute a 1 + ε approximation to E-distance for b =
(log n)O(1/ε) in n1+ε time.

B. Sampling Algorithm

We now describe the ideas behind our sampling

algorithm. The sampling algorithm approximates the

E-distance between x and y up to a constant factor.

The query complexity is Q ≤ β · (log n)O(h) = β ·
(log n)logb n for distinguishing E(0, 1, 1) > n/β from

E(0, 1, 1) ≤ n/(2β). For the rest of this overview, it is

instructive to think about the setting where β = n0.1.

The idea of the algorithm is to prune the E-

characterization tree, and in particular prune the children

of each node. If we retain only polylog n children for

each node, we would obtain Q ≤ (log n)O(h) leaves at

the bottom, which correspond to the claimed sampled

positions in x. The main challenge is how to perform

this pruning.

A natural approach is to uniformly sample polylog n
out of b children at each node, and use high con-

centration bounds to argue that the summation in the

Equation (1) may be approximated only from the E-

distance estimates of the sampled children. Note that,

since we use the minimum operator at each node, we

have to aim, at each node, for an estimate that holds

with high probability.

How much do we have to sample at each node? The

“rule of thumb” for a Chernoff-type bound to work well

is as follows. Suppose we have quantities a1, . . . am ∈
[0, ρ] respecting an upper bound ρ > 0, and let σ =
∑

j∈[m] aj . Suppose we sample several j ∈ [m] to form

a set J . Then, in order to estimate σ well (up to a small

multiplicative factor) from aj for j ∈ J , we need to

sample essentially a total of |J | ≈ ρ
σ ·m log m positions

j ∈ [m]. We call this Uniform Sampling Lemma (see

Lemma II.2 for a complete statement).

With the above “sampling rule” in mind, we can

readily see that, at the top of the tree, until a level i,
where li = n/β, there is no pruning that may be done

(with the notation from above, we have ρ ≥ li = n/β
and σ = n/β). Then, we hope to prune the tree at the

subsequent levels.



However, it turns out that such pruning is not possible

as described. Specifically, consider a node v at level

i and its children vj , for j = 0, . . . b − 1. Suppose

each child contributes a distance aj to the sum E at

node v (in Equation (1), for fixed u). Then, because

of the bound on length of the strings, we have that

aj ≤ li+1 = (n/β)/b. At the same time, for an average

node v, we have
∑b−1

j=0 aj ≈ li/β = n/β2. By the

Uniform Sampling Lemma from above, we need to take

a sample of size |J | ≈ n/(βb)
n/β2 · b log b = β log b. If β

were constant, we would obtain |J | ≪ b and hence

prune the tree (and, indeed, this approach works for

β ≪ b). However, once β ≫ b, such pruning does not

seem possible. In fact, one can give counter-examples

where such pruning approach fails to approximate the

E-distance.

To address the above challenge, we develop a way

to prune the tree non-uniformly. For different nodes

we will sample its children at different, well-controlled

rates. In fact, for each node we will assign a “precision”

w with the requirement that a node v, at level i, with

precision w, must estimate its E-distances to positions

u up to an additive error li/w. The pruning and assign-

ment of precision will proceed top-bottom, starting with

assigning a precision 4β to the root node. Intuitively,

the higher the precision of a node v, the denser is the

sampling in the subtree rooted at v.

Technically, our main tool is the Precision Sampling

Lemma, which we use to assign the necessary precisions

to nodes. It may be stated as follows (see Lemma II.3

for a more complete statement). The lemma says that

there exists some distribution W and a reconstruction

algorithm R such that the following two conditions

hold:

• Fix some aj ∈ [0, 1] for j ∈ [m], with σ =
∑

j aj .

Also, pick wj i.i.d. from the distribution W for

each j ∈ [m]. Let âj be estimators of aj , up to

an additive error of 1/wj , i.e., |aj − âj | ≤ 1/wj .

Then the algorithm R, given âj and wj for j ∈ [m],
outputs a value that is inside [σ − 1, σ + 1], with

high probability.

• Ew∈W [w] = polylog m.

To internalize this statement, fix σ = 10, and consider

two extreme cases. At one extreme, consider some set

of 10 j’s such that aj = 1, and all the others are 0.

In this case, the previous uniform sampling rule does

not yield any savings (to continue the parallel, uniform

sampling can be seen as having wj = m for the sampled

j’s and wj = 1 for the non-sampled j’s). Instead, it

would suffice to take all j’s, but approximate them up

to “weak” (cheap) precision (i.e., set wj ≈ 100 for all

j’s). At the other extreme is the case when aj = 10/m
for all j. In this case, sampling would work but then

one requires a much “stronger” (expensive) precision,

of the order of wj ≈ m. These examples show that one

cannot choose all wj to be equal. If wj’s are too small,

it is impossible to estimate σ. If wj’s are too big, the

expectation of w cannot be bounded by polylog m, and

the sampling is too expensive.

The above lemma is somewhat inspired by the

sketching/streaming technique introduced by Indyk and

Woodruff [20], used for the Fk moment estimation.

In [20], they partition elements aj by weight level,

and then perform corresponding sampling in each level.

Although related, our approach to the above lemma

differs: for example, we avoid any definition of the

weight level (which was usually the source of some

additional complexity of the use of the [20] technique).

In fact, in a follow-up work [5], we show that the

Precision Sampling technique naturally gives a different,

arguably simpler, generic algorithm for a number of

streaming problems, including Fk moment estimation.

In our E-distance estimation algorithm, we use both

uniform and Precision Sampling lemmas at each node

to both prune the tree and assign the precisions to the

sampled children. We note that the lemmas may be used

to obtain a multiplicative (1 + ε′)-approximation for

arbitrary small ε′ > 0 for each node. To obtain this, it

is necessary to use ε ≈ ε′/ log n, since over h ≈ log n
levels, we collect a multiplicative approximation factor

of (1 + ε)h, which remains constant only as long as

ε = O(1/h).

We give precise description of the algorithms in

Figures 1 and 2. We also give the formal statements of

the two sampling lemmas that are applied, recursively,

at each node of the tree.

The first lemma, on uniform sampling, is a restate-

ment of the Chernoff/Hoeffding bounds in a suitable

regime. We use the following approximation notion that

captures both an additive and a multiplicative error. For

convenience, we work with eε instead of the usual 1+ε.

Definition II.1. Fix ρ > 0 and some f ∈ [1, 2]. For

a quantity τ ≥ 0, we call its (ρ, f)-approximator any

quantity τ̂ such that τ/f − ρ ≤ τ̂ ≤ fτ + ρ.

Lemma II.2 (Uniform Sampling). Fix b ∈ N, ε > 0,

and error probability δ > 0. Consider some aj , j ∈
[b], such that aj ∈ [0, 1/b]. For arbitrary w ∈ [1,∞),
construct the set J ⊆ [b] by sampling each j ∈ [b] with

probability pw = min{1, w
b ·ζ

log 1/δ
ε2 } for some constant

ζ > 0. Then, with probability at least 1 − δ, the value
1

pw

∑

j∈J aj is a (1/w, eε)-approximator to
∑

j∈[b] aj ,



Algorithm 1: Sampling Algorithm

Take C0 to be the root vertex (indexed1

(i, s) = (0, 1)), with precision w(0,1) = 4β.

for each level i = 1, . . . , h, we construct Ci as2

follows do

Start with Ci being empty.3

for each node v = (i − 1, s) ∈ Ci−1 do4

Let wv be its precision, and set5

pv = wv

b · O(log3 n).
If pv ≥ 1, then set6

Jv = {(i, s + jli) | 0 ≤ j < b} to be the set

of all the b children of v, and add them to

Ci, each with precision pv .

Otherwise, when pv < 1, sample each of7

the b children of v with probability pv , to

form a set Jv ⊆ {i} × ([s : s + li−1] ∩ Bi).
For each v′ ∈ Jv , draw wv′ i.i.d. from W ,

and add node v′ to Ci with precision wv′ .

Query the characters x[s] for all (h, s) ∈ Ch —8

this is the output of the algorithm.

Algorithm 2: Estimation Algorithm

For each sampled leaf v = (h, s) ∈ Ch and z ∈ [n]1

we set τ(v, z) = H(x[s], y[z]).
for each level i = h − 1, j − 2, . . . , 0, position2

z ∈ [n], and node v ∈ Ci with precision wv do

We apply the following procedure P (v, z) to3

obtain τ(v, z).
For each v′ ∈ Jv, where v′ = (i + 1, s + jli+1)4

for some 0 ≤ j < b, let

δv′

def

= min
k:|k|≤n

τ(v′, z + jli+1 + k) + |k|.

If pv ≥ 1, then let τ(v, z) =
∑

v′∈Jv
δv′ .5

If pv < 1, set τ(v, z) to be the output of the6

algorithm R on the vector ( δv′

li+1
)v′∈Jv

with

precisions (wv′)v′∈Jv
, multiplied by li+1/pv .

The output of the algorithm is τ(r, 1) where7

r = (0, 1) is the root of the tree.

and |J | ≤ O(w · log 1/δ
ε2 ).

The second lemma is the Precision Sampling Lemma,

which the heart of our non-uniform sampling.

Lemma II.3 (Precision Sampling). Fix integers n ≤
N , approximation ε > 0, factor 1 < f < 1.1, error

probability δ > 0, and an “additive error bound” ρ >
6n/ε/N3. There exists a distribution W on the real

interval [1, N3] with Ew∈W [w] ≤ O( 1
ρ ·

log 1/δ
ε3 · log N),

as well as a “reconstruction algorithm” R, with the

following property.

Take arbitrary ai ∈ [0, 1], for i ∈ [n], and let

σ =
∑

i∈[n] ai. Suppose one draws wi i.i.d. from W ,

for each i ∈ [n], and let âi be a (1/wi, f)-approximator

of ai. Then, given âi and wi for all i ∈ [n], the

algorithm R generates a (ρ, f · eε)-approximator to σ,

with probability at least 1 − δ.

The distribution W is generated as follows. For

k = O( 1
ρ ·

log 1/δ
ε3 ), let the sample be x = maxi=1...k xi,

where each xi ∈ [1, N3] is distributed i.i.d. with pdf

f(z) = ν/z2, for a normalization constant ν. The

algorithm R, on input â1, . . . ân, and w1, . . . wn, out-

puts t
ν

∑n
i=1 χ[x̂wi ≥ t] ·

(
1
k + k−1

k · x̂wi/t−1
wi−1

)

, where

t = 3/ε and χ[E] is the indicator variable of event E.

We remark that an improved version of this lemma

has subsequently appeared in [5]. Although the version

from [5] achieves better parameters and uses only

pairwise independence, it gives no further asymptotic

improvements to the results in this paper.

III. QUERY COMPLEXITY LOWER BOUND

In this section we give an outline of the proof of

Theorem I.3. The proof itself appears in the full version.

As usual, the lower bound is based on constructing

“hard distributions”, i.e., distributions (over inputs) that

cannot be distinguished using few queries, but are very

different in terms of edit distance. We sketch the con-

struction of these distributions in Section III-A. In Sec-

tion III-B, we sketch the machinery that we developed

to prove that distinguishing these distributions requires

many queries. We then sketch in Section III-C the tools

needed to prove that the distributions are indeed very

different in terms of edit distance.

A. The Hard Distributions

We shall construct two distributions D0 and D1 over

strings of a given length n. The distributions satisfy

the following properties. First, every two strings in the

support of the same distribution Di, denoted supp(Di),
are close in edit distance. Second, every string in

supp(D0) is far in edit distance from every string in

supp(D1). Third, if an algorithm correctly distinguishes

(with probability at least 2/3) whether its input string is

drawn from D0 or from D1, it must make many queries

to the input.

Given two such distributions, we let x be any string

from supp(D0). This string is fully known to the

algorithm. The other string y, to which the algorithm

only has query access, is drawn from either D0 or



D1. Since distinguishing the distributions apart requires

many queries to the string, so does approximating edit

distance between x and y.
Randomly Shifted Random Strings: The starting

point for constructing these distributions is the following

idea. Choose at random two base strings z0, z1 ∈
{0, 1}n. These strings are likely to satisfy some “typical

properties”, e.g. be far apart in edit distance (at least

n/10). Now let each Di be the distribution generated

by selecting a cyclic shift of zi by r positions to the

right, where r is a uniformly random integer between 1
and n/1000. Every two strings in the same supp(Di)
are at distance at most n/500, because a cyclic shift

by r positions can be produced by r insertions and r
deletions. At the same time, by the triangle inequality,

every string in supp(D0) and every string in supp(D1)
must be at distance at least n/10 − 2 · n/500 ≥ n/20.

How many queries are necessary to learn whether an

input string is drawn from D0 or from D1? If the number

q of queries is small, then the algorithm’s view is close

to a uniform distribution on {0, 1}q under both D0 and

D1. Thus, the algorithm is unlikely to distinguish the

two distributions with probability significantly higher

than 1/2. This is the case because each base string zi is

chosen at random and because we consider many cyclic

shifts of it. Intuitively, even if the algorithm knows z0

and z1, the random shift makes the algorithm’s view

a nearly-random pattern, because of the random design

of z0 and z1. Below we introduce rigorous tools for

such an analysis. They prove, for instance, that even an

adaptive algorithm for this case, and in particular every

algorithm that distinguishes edit distance ≤ n/500 and

≥ n/20, must make Ω(log n) queries.

It is natural to ask whether the Ω(log n) lower bound

for the number of queries in this construction can be

improved. The answer is negative: for a sufficiently

large constant C, querying any consecutive C log n
symbols of z1, one obtains a pattern that does not occur

in z0 w.h.p., and therefore, can be used to distinguish

between the distributions.

To obtain a superlogarithmic lower bound for the

DTEP problem, we show how we can amplify this

basic hard distribution construction.
Substitution Product: We now introduce the sub-

stitution product, which plays an important role in

amplifying our lower bound construction. Let D be

a distribution on strings in Σm. For each a ∈ Σ,

let Ea be a distribution on (Σ′)m′

, and denote their

entire collection by E def

= (Ea)a∈Σ. Then the substitution

product D ⊛ E is the distribution generated by drawing

a string z from D, and independently replacing every

symbol zi in z by a string Bi drawn from Ezi
.

Strings generated by the substitution product consist

of m blocks. Each block is independently drawn from

one of the Ea’s, and a string drawn from D decides

which Ea each block is drawn from.

Recursive Construction: We build on the previous

construction with two random strings shifted at random,

and extend it by introducing recursion. For simplicity,

we show how this idea works for two levels of recursion.

We select two random strings z0 and z1 in {0, 1}
√

n. We

use a sufficiently small positive constant c to construct

two distributions E0 and E1. E0 and E1 are generated

by taking a cyclic shift of z0 and z1, respectively, by

r symbols to the right, where r is a random integer

between 1 and c
√

n. Let E def

= (Ei)i∈{0,1}.

Our two hard distributions on {0, 1}n are D0
def

=

E0 ⊛ E , and D1
def

= E1 ⊛ E . As before, one can show

that distinguishing a string drawn from E0 and a string

drawn from E1 is likely to require Ω(log n) queries.

In other words, the algorithm has to know Ω(log n)
symbols from a string selected from one of E0 and E1.

Given the recursive structure of D0 and D1, the hope

is that distinguishing them requires at least Ω(log2 n)
queries, because, at least intuitively, the algorithm must

“know” for at least Ω(log n) blocks which Ei they come

from, each of the blocks requiring Ω(log n) queries.

Indeed, below we describe techniques that we use to

formally prove such a lower bound. It is straightforward

to show that every two strings drawn from the same

Di are at most 4cn apart. It is slightly harder to prove

that strings drawn from D0 and D1 are far apart.

The important ramification is that for some constants

c1 and c2, distinguishing edit distance < c1n and

> c2n requires Ω(log2 n) queries, where one can make

c1 much smaller than c2. For comparison, under the

Ulam metric, O(log n) queries suffice for such a task

(deciding whether distance between a known string and

an input string is < c1n or > c2n, when 2c1 < c2 [1]).

To prove even stronger lower bounds, we apply the

substitution product several times, not just once. Push-

ing our approach to the limit, we prove that distinguish-

ing edit distance O(n/polylog n) from Ω(n) requires

nΩ(1/log log n) queries. In this case, Θ(log n/log log n)
levels of recursion are used. One slight technical com-

plication arises in this case. Namely, we need to work

with a larger alphabet (rather than binary). Our result

holds true for the binary alphabet nonetheless, since we

show that one can effectively reduce the larger alphabet

to the binary alphabet at the end of the day.

B. Bounding the Number of Queries

To describe the technical tools, we introduce some

further definitions. Let D0, . . . , Dk be k distributions



on the same finite set Ω with p1, . . . , pk : Ω → [0, 1] as

the corresponding probability mass functions. We say

that the distributions are α-similar, where α ≥ 0, if for

every ω ∈ Ω,

(1 − α) · max
i=1,...,k

pi(ω) ≤ min
i=1,...,k

pi(ω).

For a distribution D on Σn and Q ⊆ [n], we write

D|Q to denote the distribution created by projecting

every element of Σn to its coordinates in Q. Let this

time D1, . . . , Dk be probability distributions on Σn.

We say that they are uniformly α-similar if for every

subset Q of [n], the distributions D1|Q, . . . , Dk|Q are

α|Q|-similar. Intuitively, think of Q as a sequence of

queries that the algorithm makes. If the distributions are

uniformly α-similar for a very small α, and |Q| ≪ 1/α,

then from the limited point of view of the algorithm

(even an adaptive one), the difference between the

distributions is very small.

In order to use the notion of uniform similarity for our

construction, we prove the following three properties.

Uniform Similarity Implies a Lower Bound on the

Number of Queries: We formalize the ramifications of

uniform α-similarity for a pair of distributions. We show

that if an algorithm (even an adaptive one) distinguishes

the two distributions with probability at least 2/3, then

it has to make at least 1/(6α) queries. This implies that

it suffices to bound the uniform similarity in order to

prove a lower bound on the number of queries.

The proof is based on the fact that for every setting

of the algorithm’s random bits, the algorithm can be

described as a decision tree of depth q, if it always

makes at most q queries. Then, for every leaf, the

probability of reaching it does not differ by more than

a factor in [1 − αq, 1] between the two distributions.

This is enough to bound the probability the algorithm

outputs the correct answer for both the distributions.

Random Cyclic Shifts of Random Strings Imply

Uniform Similarity: We construct distributions that are

uniformly similar using cyclic shifts of random base

strings. We show that if one takes n random base strings

in Σn and creates n distributions by shifting each of

the strings by a number of random indices in [1, s],
then with probability at least 2/3 (over the choice of

the base strings) the created distributions are uniformly

O(1/ log|Σ|
s

log n )-similar.

It is easy to prove this property for any set Q of

size 1. In this case, every shift gives an independent

random bit, and the bound directly follows from the

Chernoff bound. A slight obstacle is posed by the fact

that for |Q| ≥ 2, sequences of |Q| symbols produced

by different shifts are not necessarily independent, since

they can share some of the symbols. To address this

issue, we show that there is a partition of shifts into at

most |Q|2 large sets such that no two shifts of Q in

the same set overlap. Then we can apply the Chernoff

bound independently to each of the sets to prove the

bound.

In particular, using this and the previous property, one

can show the basic statement claimed earlier: namely,

that shifts of two random strings in {0, 1}n by an offset

in [1, cn] produce distributions that require Ω(log n)
queries to be distinguished. It follows from this prop-

erty that the distributions are likely to be uniformly

O(1/ log n)-similar.

Substitution Product Amplifies Uniform Similarity:

Perhaps the most surprising property of uniform sim-

ilarity is that it nicely composes with the substitution

product. Let D1, . . . , Dk be uniformly α-similar distri-

butions on Σn. Let E = (Ea)a∈Σ, where Ea, a ∈ Σ, are

uniformly β-similar distributions on (Σ′)n′

. We show

that D1 ⊛ E , . . . , Dk ⊛ E are uniformly αβ-similar.

The intuition behind the proof of this property is

the following. Querying q locations in a string that

comes from Di ⊛E , we can detect a difference between

distributions in at most βq blocks in expectation. Seeing

the difference is necessary to discover which Ej each

of the blocks comes from. Then only these blocks can

reveal the identity of Di ⊛ E , and the difference in the

distribution, conditioned on q′ blocks being revealed, is

bounded by αq′.
This property can be used to prove the earlier claim

that the two-level construction produces distributions

that require Ω(log2 n) queries to be distinguished.

C. Preserving Edit Distance

We also need tools for analyzing the edit distance

between strings generated by our distributions. Our

analysis mostly uses the distance ed, which is a variation

of the edit distance that allows only for insertions and

deletions. It is clearly a 2-approximation to the edit

distance, which is enough for the analysis. The main

advantage of ed is that it has a direct connection to the

longest increasing subsequence (LCS), which is easier

to analyze.

We start by giving a tight bound for the length of

LCS of randomly chosen strings, over big alphabet.

The main challenge here is to show that strings

constructed via the substitution product behave as ex-

pected. Indeed, we show how to control the edit dis-

tance between two strings in Σn when we substitute

every symbol with a longer string using a function

B : Σ → (Σ′)n′

. The relative edit distance (that is, edit

distance divided by the length of the strings) shrinks



by an additive term that polynomially depends on the

maximum relative length of the longest common string

between B(a) and B(b) for different a and b.

We note that the relative distance shrinks relatively

fast as a result of substitutions. This implies that we

have to use an alphabet of size polynomial in the

number of recursion levels. The alphabet never has to

be larger than polylogarithmic, because the number of

recursion levels is always o(log n). (This issue was the

only reason to use large alphabets.)

Finally, we show how to reduce the alphabet size to a

binary one. We show that a lower bound for the binary

alphabet follows immediately from the one for a large

alphabet, with only a constant factor loss in the edit

distance. To achieve this it suffices to map every element

of the large alphabet Σ to a random binary string of

length Θ(log |Σ|).
The main idea behind proofs of the above is that

strings constructed using a substitution product are

composed of rather rigid blocks, in the sense that every

alignment between two such strings, say x⊛E and y⊛E ,

must respect (to a large extent) the block structure, in

which case one can extract from it an alignment between

the two initial strings x and y.
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