
The Computational Hardness of Estimating Edit Distance∗

Alexandr Andoni†

MIT
andoni@mit.edu

Robert Krauthgamer‡

The Weizmann Institute of Sciences
robert.krauthgamer@weizmann.ac.il

July 3, 2009

Abstract

We prove the first non-trivial communication complexity lower bound for the problem of
estimating the edit distance (aka Levenshtein distance) between two strings. To the best of our
knowledge, this is the first computational setting in which the complexity of estimating the edit
distance is provably larger than that of Hamming distance.

Our lower bound exhibits a trade-off between approximation and communication, asserting,
for example, that protocols with O(1) bits of communication can only obtain approximation α ≥
Ω(log d/ log log d), where d is the length of the input strings. This case of O(1) communication
is of particular importance since it captures constant-size sketches as well as embeddings into
spaces like L1 and squared-L2, two prevailing algorithmic approaches for dealing with edit
distance. Furthermore, the bound holds not only for strings over the binary alphabet, but
also for strings that are permutations (aka the Ulam metric). Currently, all known non-trivial
communication upper bounds are derived from embeddings into L1.

Besides being applicable to a much richer class of algorithms than all previous results, our
lower bounds are near-tight in at least one case, namely of embedding permutations into L1.
The proof uses a new technique, that relies on Fourier analysis in a rather elementary way.

1 Introduction

The edit distance (aka Levenshtein distance) between two strings is the number of insertions, dele-
tions, and substitutions needed to transform one string into the other. This distance is of key
importance in several fields, such as computational biology and text processing, and consequently
computational problems involving the edit distance were studied quite extensively. The most basic
problem is that of computing the edit distance between two strings of length d over alphabet Σ. The
fastest algorithm known for the case of constant-size alphabet remains the algorithm of Masek and
Paterson [MP80] from 1980, that runs in time O(d2/ log2 d). Unfortunately, such near-quadratic
time is prohibitive when working on large datasets, which is common in areas such as computa-
tional biology. A possible approach is to trade accuracy for speed and employ faster algorithms that
compute the edit distance approximately (possibly as a preliminary filtering step). Currently, the

∗A preliminary version appeared in FOCS’07.
†Part of this work was done while the author was visiting IBM Almaden. Supported in part by NSF CAREER

Grant #0133849 “Approximate Algorithms for High-dimensional Geometric Problems”.
‡Part of this work was done while the author was at IBM Almaden. Work supported in part by a grant from the

Fusfeld Research Fund.

1

best near-linear time algorithm, due to Andoni and Onak [AO09], achieves approximation factor
of 2Õ(

√
log d), improving over earlier results of [BEK+03, BJKK04, BES06].

Another major algorithmic challenge is to design a scheme for Nearest Neighbor Search (NNS)
under the edit distance. In this problem, we wish to design a data structure that preprocesses
a dataset of n strings of length d each, so that when a query string is given, the query’s nearest
neighbor (i.e., a dataset string with the smallest edit distance to the query string) can be reported
quickly. However, no efficient solutions for this problem are known, even if one allows a small
approximation. All known algorithms with fast query time (polynomial in d and logn) either require
large space or have large approximation error — Indyk [Ind04] achieves constant approximation
using ndΩ(1)

space, and Ostrovsky and Rabani [OR07] obtain 2O(
√

log d log log d) approximation using
space that is polynomial in d and n.

It is thus natural to ask: is it really “hard” to design algorithms for the edit distance? A natural
benchmark is the Hamming distance, which is equal to the number of positions where the two
strings differ. Hamming distance can be seen as edit distance where the only operations allowed
are substitution. For Hamming distance, much better algorithms are known: (i) the distance
between two strings can clearly be computed in O(d) time, and (ii) NNS schemes by Indyk and
Motwani [IM98] and by Kushilevitz, Ostrovsky and Rabani [KOR00] achieve 1 + ε approximation
using space that is polynomial in d and in n1/ε2 . Empirically, edit distance appears to be more
difficult than Hamming distance, and the reason is quite clear — insertions and deletions cause
portions of the string to move and create an alignment problem — but there is no rigorous evidence
that supports this intuition. In particular, we are not aware of a computational model in which
the complexity of approximating edit distance is provably larger than that of Hamming distance.1

We give the first rigorous evidence for the computational hardness of approximating the edit
distance. In fact, we show a computational model in which the complexity of estimating edit
distance is significantly larger than that of Hamming distance, and this is the first setting where
such a separation is known. Our results hold for two important metrics:

1. standard edit metric, i.e. edit distance on {0, 1}d;
2. the Ulam metric, which is the edit distance on permutations of length d.

Here and throughout, a permutation is a string consisting of distinct characters coming from a large
alphabet, |Σ| ≥ d. This definition of permutations is non-standard but it is more convenient for us
technically, and our results extend to hold under the standard one (where |Σ| = d), see Fact 2.4.
Our results immediately imply lower bounds for sketching algorithms and for metric embeddings.
These two algorithmic techniques lately received a lot of attention as promising approaches to many
metric problems. We will discuss these implications in more detail after stating our main results.

1We are aware of only two results that come close. First, if the operations on the symbols of the strings are
restricted to tests of equality, then computing edit distance between two strings over a large alphabet requires Ω(d2)
comparisons [WC76]. However, this lower bound holds only for exact computation (or 1 + o(1) approximation) and
for strings over a large alphabet (but not for binary strings). In fact, the lower bound breaks down even in the
comparison model (when we can compare the relative order of two symbols): e.g., the algorithm of [BFC08] runs in

time O(d2 log2 log d
log2 d

) for computing edit distance between strings over arbitrarily large alphabet.
Second, if we restrict attention to sublinear-time, i.e., algorithms that probe only a small part of the two input

strings, then there exists a simple separation in terms of query complexity. Specifically, deciding whether the edit
distance is Ω(d) or O(d1−ε) requires reading at least Ω(d1/2−ε/2) positions of the strings [BEK+03], while the same
decision under Hamming distance is achieved easily by sampling O(1) positions. This separation has limited compu-
tational implications since it essentially shows that estimating edit distance requires reading “many” positions of the
input strings.

2

1.1 Main Results

Our main result is stated in terms of communication complexity of the distance threshold estimation
problem (DTEP) and holds for both edit metric over Σ = {0, 1}, and for the Ulam metric. In
DTEP [SS02], for a threshold R and an approximation α ≥ 1 fixed as parameters, we are given
inputs x, y and we want to decide whether ed(x, y) > R or ed(x, y) ≤ R/α.

In the communication protocols setting, Alice and Bob, who have access to a common source
of randomness, receive strings x and y respectively as their inputs, and their goal is to solve DTEP
by exchanging messages. The communication complexity of the protocol is then defined as the
minimum number of bits Alice and Bob need to exchange in order to succeed with probability at
least 2/3. When x, y come from the standard edit metric, we denote the communication complexity
by CC{0,1}d

α,R . Similarly, when x, y come from the Ulam metric, we denote the communication

complexity by CCUlamd
α,R . Our main theorem provides a lower bound on the latter, exhibiting a

trade-off between communication and approximation.

Theorem 1.1 (Main Theorem). There exists a constant c > 0, such that for every string length
d > 1, approximation α > 1, and R satisfying d0.1 ≤ R ≤ d0.49,

c · CCUlamd
α,R + log(α logα) ≥ log log d.

We extend this result from the Ulam metric to the standard edit metric by reducing the latter
to the former. The key idea, which may be of independent interest, is that substituting every
alphabet symbol independently with a random bit is likely to preserve the edit distance, up to a
constant factor, as stated in the following theorem.

Theorem 1.2. Let P,Q ∈ Σd be two permutations, and let π : Σ 7→ {0, 1} be a random function.
Then

• ed(π(P), π(Q)) ≤ ed(P,Q) for any choice of π, and

• Prπ

[
ed(π(P), π(Q)) ≥ Ω(1)·ed(P,Q)

] ≥ 1− 2−Ω(ed(P,Q)).

Using our two theorems, we obtain the following.

Corollary 1.3. There exists a constant c > 0, such that for every string length d > 1, approxima-
tion α > 1, and R satisfying d0.1 ≤ R ≤ d0.49,

c · CC{0,1}d

α,R + log(α logα) ≥ log log d.

The previously known lower bounds for CC{0,1}d

α,R and CCUlamd
α,R are all obtained by a straight-

forward reduction from the same problem on Hamming metric. These bounds assert that the
communication complexity for α = 1+ ε is Ω(1/ε), and in the case of sketching (aka simultaneous)2

protocols Ω(1/ε2) [Woo04] (see also [Woo07, Chapter 4]), and both are clearly uninformative for
(say) α ≥ 2. See also [SU04] for other related results.

The only non-trivial upper bounds currently known are: (i) CC{0,1}d

α,R ≤ O(1) for suitable α =

2O(
√

log d log log d); and (ii) CCUlamd
α,R ≤ O(1) for suitable α = O(log d); and they both follow via

embedding into `1. See Section 1.2 and Table 1 for more details.
2See the formal definition of sketching on page 6.

3

Comparison with Hamming distance. The next proposition, proved (implicitly) by Kushile-
vitz, Ostrovsky, and Rabani [KOR00], upper bounds the communication complexity of DTEP over
the Hamming metric. Let H(x, y) be the Hamming distance between x and y.

Proposition 1.4 ([KOR00]). Let d > 1, R > 1 and ε > 0. Then there exists a communication
protocol (in fact, a sketching algorithm) that given inputs x, y ∈ Σd distinguishes whether H(x, y) >
R or H(x, y) ≤ R/(1 + ε), using O(1/ε2) bits of communication.

Observe that for approximation factor α that is a constant (namely, independent of d and R),
the complexity of the Hamming metric is O(1), while that of edit metric is Ω(log log d). It thus
follows that edit distance is indeed provably harder to compute than Hamming, in the context of
communication protocols.

1.2 Implications and Related Work

Two promising approaches to designing algorithms for the edit metrics are via metric embeddings
and via sketching, and our results preclude good approximation algorithms obtained via either of
these approaches.

Embedding of edit distance into normed metrics. A current line of attack on edit distance
is by embedding it into a computationally easier metric, for which efficient algorithms are known.
An embedding is a mapping f from the strings into, say, `1 metric, such that for all strings x, y,

ed(x, y) ≤ ‖f(x)− f(y)‖1 ≤ D · ed(x, y),

and D ≥ 1 is called the embedding’s distortion (approximation factor). An embedding with low
distortion would have major consequences since it allows porting a host of existing algorithms for
`1 metric to the case of edit distance. For example, an (efficiently computable) embedding with
distortion D gives an efficient nearest neighbor data structure for approximation (say) 2D, by
applying the embedding and reverting to [IM98, KOR00].

Naturally, researchers were keen to find the least distortion for an embedding into `1 – the
problem is cited in Matoušek’s list of open problems [Mat07], as well as in Indyk’s survey [Ind01].
Table 1 summarizes the previously known upper and lower bounds, as well as the implications of our
theorems. The reader may find more background on some variants of the edit distance in [Sah08].

It is readily seen from the table that the only previous super-constant distortion lower bound is
Ω(log d) for embedding of edit distance into `1, due to Krauthgamer and Rabani [KR06], building
on a technique of Khot and Naor [KN06] who gave a bound of Ω

(
(log d)1/2−o(1)

)
. Although this

lower bound is important, one can potentially overcome such a lower bound by, say, embedding
edit distance into a richer space, such as squared-`2, a real space with squared Euclidean distance,
with a possibly smaller distortion — the major implications of an embedding into squared-`2 are
precisely the same as those of an embedding into `1. On this front, much weaker lower bounds were
known: the previous lower bound is only 3/2 [ADG+03]. To further stress how little was known, we
note that one can consider even richer metrics, such as any fixed power of `2 (essentially equivalent
to embedding a fixed root of edit distance into `2), which also has an efficient nearest neighbor
data structure. For sufficiently high (but fixed) power of `2, even the 3/2 bound of [ADG+03] gets
weaker and becomes arbitrarily close to 1.

4

Metric Reference `1 embedding squared-`2
embedding

O(1)-size
sketch

Edit on {0, 1}d
[OR07] 2O(

√
log d log log d) −→ −→

[KN06, KR06] Ω(log d) N/A N/A
[ADG+03] ←− ≥ 3/2 N/A
This paper ←− ←− Ω(log d

log log d)

Ulam (edit distance
on permutations)

[CK06] O(log d) −→ −→
[Cor03] ←− ≥ 4/3 N/A
This paper ←− ←− Ω(log d

log log d)

Block edit distance [CPSV00, MS00, Cor03] O(log d log∗ d) −→ −→
Edit distance with moves [CM07] O(log d log∗ d) −→ −→

Table 1: Known bounds on distortion/approximation of embedding variants of edit distance into
`1, squared-`2, and the approximation for achieving O(1)-size sketch. Since `1 embeds isometrically
into squared-`2 and the latter has O(1)-size sketch for 2-approximation, the upper bounds transfer
from left to right, and the lower bounds transfer from right to left (as suggested by the arrows).
N/A means no result is given (even implicitly).

Our results rule out all such embeddings indirectly, by targeting a richer class of metrics —
metrics for which the respective DTEP problem admits a protocol with O(1) bits of communication
and O(1) approximation. (Proposition 1.4 shows this class of metrics is indeed richer.) It follows
from our communication lower bounds that every embedding of edit distance (either on 0−1 strings
or on permutations) into a metric in that richer class must incur distortionD ≥ Ω

(
log d

log log d

)
, without

requiring that the embedding is efficiently computable. For completeness, we state and prove this
distortion lower bound explicitly for metrics which are a fixed power of `2.

Corollary 1.5. For every fixed p ≥ 1, embedding the standard edit metric or the Ulam metric into
(`2)p, the p-th power of `2, requires distortion Ω

(
log d

log log d

)
. The same is true also for embedding

into `1.

Proof. Suppose p ≥ 1 is fixed and the edit metric ed (or similarly the Ulam metric) embeds into
(`2)p with distortion D ≥ 1. In other words, the metric ed1/p (i.e. 1/p-power of every distance)
embeds into `2 with distortion D1/p. The DTEP problem for `2 metrics can be solved with (say)
approximation 1 + 1

p and communication O(p2) using Proposition 1.4 (since finite `2 metric embed
isometrically into Hamming space). Together, we obtain a protocol for the DTEP problem on the
metric ed1/p, which achieves approximation D1/p(1 + 1

p) and communication O(p2). Observe that
the same protocol solves also DTEP on the edit metric ed, except that the threshold now is Rp

instead of R, and the approximation is (D1/p(1+ 1
p))p < De. The communication is the same O(p2),

and thus Corollary 1.3 (or Theorem 1.1 respectively) implies that De log(De) ≥ 2−O(p2) log d, For
fixed p this completes the proof.

For the Ulam metric, this distortion lower bound of Ω
(

log d
log log d

)
is near-optimal, since that

metric embeds into `1 with O(log d) distortion [CK06]. The previous distortion lower bound was

5

4/3 [Cor03]. Other upper and lower bounds for low-distortion embeddings appear in Table 1.

Sketching of edit distance. The sketch of a string x is a (randomized) mapping of x into a short
“fingerprint” sk(x), such that sketches of two strings, sk(x) and sk(y), are sufficient to distinguish
between the case where edit distance is ed(x, y) ≤ R/α, and the case where ed(x, y) > R, for fixed
approximation factor α > 1 and parameter R > 1. The main parameter of a sketching algorithm
is its sketch size, the length of sk(x).

The sketching model can also be described as a (randomized) simultaneous communication
protocol, as follows. Alice receives x and computes sk(x), Bob receives y and computes sk(y), and
then they send their computed values to a “referee”, who needs to decide whether x, y are close
or far based only on the sketches. By letting either Alice or Bob play the role of the referee in
this simultaneous protocol, one easily sees that the sketch size required by a sketching algorithm is
always no smaller than the number of communication bits required by a (general) protocol. The
following corollary thus follows immediately from our preceding communication lower bounds.

Corollary 1.6. For every d > 1 and d0.1 ≤ R ≤ d0.49, every O(1)-size sketching algorithm of the
standard edit metric or of the Ulam metric can achieve approximation of only Ω

(
log d

log log d

)
.

Sketching with constant sketch size can be viewed as a generalization of the “embeddings ap-
proach” presented above, by using Proposition 1.4, albeit with an arbitrarily small constant factor
loss in the approximation factor. An important observation is that this more general approach
suffices for the purpose of designing an NNS scheme with efficient query time (assuming that
computing the sketch can be done efficiently) and with polynomial storage.3 Indeed, the nearest
neighbor data structure for Hamming metric of [KOR00] could be viewed as an instantiation of
the last step. In addition, sketching can be useful for the original goal of quickly estimating the
distance (e.g., as a filtering step).

The sketching model is also important as a basic computational notion for massive data sets,
and in recent years, an intensive research effort has led to several sketching algorithms for DTEP
over different metrics. Prior to our work, there were essentially three metrics for which a sketch
size lower bounds were known: `1 [Woo04] (equivalently, for `p, p ∈ (1, 2]), `∞ [SS02, BJKS04]
(implying lower bounds for `p, p > 2), and the Earth-mover distance over {0, 1}d [AIK08].

Sketching of edit distance was studied in [BEK+03, BJKK04, OR07, CK06], but the only lower
bound known for sketching of edit distance is trivial in the sense that it follows immediately from
Hamming distance (by a straightforward reduction). This lower bound on the sketch size is Ω(1/ε2)
for approximation α = 1+ ε [Woo04], which becomes uninformative for even a 2-approximation. In
fact, Bar-Yossef et al. [BJKK04] write that “The state of affairs indicates that proving sketching
lower bounds for edit distance may be quite hard.”

1.3 Our Techniques

Our proof of Theorem 1.1 consists of three steps. Generally speaking, we design two input distribu-
tions: µ̃0 over “far” pairs (x, y) (i.e. ed(x, y) > R), and µ̃1 over “close” pairs (i.e. ed(x, y) ≤ R/α).

3In particular, one can first amplify the sketching’s probability of success to 1 − n−Ω(1), where n is the number
of points in the dataset, using sketch size O(log n). Then, the data structure pre-indexes all possible sketches in
the amplified protocol, using only 2O(log n) = nO(1) space. For each possible value of the amplified sketch, the data
structure stores the answer that the sketching referee would conclude from the sketch of the query and that of each
dataset point. Note that, in fact, s-size sketches imply nO(s)-size NN data structure.

6

The goal then becomes to show that these distributions are indistinguishable by protocols with
low communication complexity. By Yao’s minimax principle, it suffices to consider deterministic
protocols.

The first step reduces the problem to proving that the two distributions µ̃0, µ̃1 are indistin-
guishable by boolean functions over Zd

p. Roughly speaking, we show that if there is a protocol
using at most l bits of communication, then there exists a (deterministic) sketching protocol that
uses sketch size of 1 bit and achieves an advantage of at least Ω(2−l) in distinguishing between
the two distributions. Let HA,HB : Zd

p → {−1,+1} be the boolean functions that Alice and Bob,
respectively, use as their sketch functions. We can then further restrict the sketching protocol so
that the referee decides by checking whetherHA(x) = HB(y) or not. This step follows the approach
employed earlier in [AIK08], with some minor technical differences.

The second step’s main goal is to further characterize the advantage achieved by HA,HB in
terms of a carefully crafted measure of statistical distance between the two input distributions
µ̃0, µ̃1. For this approach to be effective, it is important that the functions HA,HB depend only on
a few coordinates of their inputs, and in order to guarantee this (indirectly), we include in µ̃0, µ̃1

a noise component, which effectively destroys any dependence of HA,HB on many coordinates.
Specifically, this step assumes that, each distribution µ̃t, t ∈ {0, 1}, has the following structure:
choose x ∈ Zd

p uniformly at random, and then generate y from x via a sequence of two randomized
operations. The first of the two is a noise operator with rate ρ ∈ (0, 1), i.e., each coordinate is
modified independently with probability 1−ρ into a randomly chosen value. The second operation
permutes the coordinates according to a permutation drawn from a distribution Dt. Given this Dt,
consider the following derived distribution: take a vector u ∈ Zd

p with λ non-zero positions (called

a λ-test) and apply a random permutation π ∈ Dt to it; let A(t,λ)
u be the resulting distribution of

vectors. (Note that the support of A(t,λ)
u contains only vectors with precisely λ non-zero entries.)

Our measure ∆λ, called λ-test distinguishability, is the maximum, over all such λ-tests u, of the
total variation distance between A(0,λ)

u and A(1,λ)
u . It pretty much captures the statistical advantage

in distinguishing D0 from D1 (and thus µ̃0 from µ̃1) achievable by inspecting only λ positions of,
say, y (e.g., by tracing them back to x). Altogether, our upper bound on the advantage achieved
by HA,HB takes roots in the following dichotomy. If HB essentially depends on many coordinates
of y (e.g., a linear function with many terms), then the advantage is bounded by ρλ (i.e., the noise
destroys almost all the information), and if HB essentially depends on a few, say λ, coordinates,
then the advantage is bounded by the aforementioned ∆λ. To prove this dichotomy, we rely on
Fourier analysis which expands HA,HB into linear functions at different levels λ.

In the third step, we complete the description of µ̃0, µ̃1 by detailing the construction of D0,D1,
and give an upper bound on the λ-test distinguishability ∆λ for these distributions. In a simplified
view, each distribution Dt is generated by a block rotation operation, namely, choosing a random
block of length L and applying to it εtL cyclic shifts. The difference between the two distributions
is in the magnitude of the rotation (namely, εt).

Our use of Fourier analysis is elementary, and does not involve the KKL theorem [KKL88] or
Bourgain’s noise sensitivity theorem [Bou02], which were used in the previous non-embeddability
results for edit distance [KN06, KR06]. We also note that our hard distribution is notably different
from the distributions of [KR06] or [KN06], which do admit efficient communication protocols.

To prove Theorem 1.2, we give a new characterization of the Ulam distance between two strings.
In particular, building on the work of [SU04, GJKK07], we prove that if two strings (permutations)
P,Q are at distance k = ed(P,Q), then there exist Θ(k) pairs of characters in P , all characters at

7

distinct positions, such that for each pair (a, b), their order in P is opposite to that in Q (if they
appear in Q at all). We then exploit this characterization by a careful counting of the number of
the possible low-cost alignments between P and Q, tailored to the aforementioned Θ(k) positions.

2 Preliminaries

We use the notation [d] = {1, 2 . . . d} and Zp = {0, 1 . . . p − 1}. For a vector u ∈ Zd
p, define the

weight of u, denoted wt(u), to be the number of coordinates in u that are non-zero.

Definition 2.1. For matrix A ∈ Mn,n(R) and p ∈ [1,∞], the p-norm of A is defined by ‖A‖p =
max{‖Av‖p : v ∈ Cn, ‖v‖p = 1}.

2.1 Fourier Analysis over Zd
p

We review basic Fourier Analysis over Zd
p for a prime p ≥ 2.

The collection of functions f : Zd
p → C is a vector space of dimension pd, equipped with an inner

product given by 〈f, g〉 = Ex∈Zd
p

[
f(x) · g(x)

]
. For u ∈ Zd

p, define a character χu(x) = e
2πi
p

(x·u),

where x · u is the scalar product of x, u ∈ Zd
p. The set of characters {χu | u ∈ Zd

p} forms an
orthonormal basis, called the Fourier basis. Thus every function f : Zd

p → C admits a Fourier
expansion f =

∑
u∈Zd

p
f̂uχu, where f̂u = 〈f, χu〉 is called the Fourier coefficient of f corresponding

to u. Parseval’s identity states that Ex∈Zd
p

[
f(x)g(x)

]
=

∑
u∈Zd

p
f̂uĝu.

We let Nρ stand for a noise vector over Zd
p, namely, a vector where each coordinate is set

independently at random as follows: with probability ρ it is set to zero, and with probability 1− ρ
it is set to a random value from Zp. We refer to ρ as the rate of the noise.

The noise operator Tρ (also called Bonami-Beckner operator) operates on functions f : Zd
p → R,

and is defined by (Tρf)(x) = ENρ [f(x+Nρ)]. The following standard fact relates the Fourier
coefficients of f with those of Tρf .

Fact 2.2. For every vector u ∈ Zd
p, (̂Tρf)u = f̂u · ρwt(u).

Proof. We can write (Tρf)(x) = ENρ [f(x+Nρ)] as

ENρ


 ∑

u∈Zd
p

f̂ue
2πi
p

u·(x+Nρ)


 =

∑

u∈Zd
p

f̂ue
2πi
p

u·xENρ

[
e

2πi
p

u·Nρ

]
=

∑

u∈Zd
p

f̂uρ
wt(u)χu,

where we used the fact that for every w ∈ Zp \ {0} we have Ev∈Zp

[
e

2πi
p

wv
]

= 0.

Note that, for p = 2, i.e. Fourier expansion over {0, 1}d, this is equivalent to having (̂Tρf)S =
f̂Sρ

|S| for every S ⊆ [d].

8

2.2 Edit metric and Ulam metric

Let Σ be the alphabet; we mostly consider Σ = {0, 1} or Σ = Zp = {0, 1, . . . p − 1} for p ∈ N (we
will use p = Θ(d3)).

For x ∈ Σd, we let xi denote the ith position in x whenever i ∈ [d], and extend the notation to
i 6∈ [d] by defining xi = xj where i ≡ j (mod d) and j ∈ [d].

Definition 2.3 (Edit metrics). Let d be a positive integer. The edit metric over Σ is the space
Σd endowed with distance function ed(x, y), which is defined as the minimum number of character
substitutions/insertions/deletions to transform x into y.

When |Σ| ≥ d, let the Ulam metric be the space of permutations x ∈ Σd, where x is called a
permutation if no symbol c ∈ Σ appears more than once in x. This space is endowed with the same
distance function ed(x, y).

We note that allowing alphabets Σ bigger than [d] does not make Ulam metric harder (at least
in our communication complexity setting) and thus our main theorem carries over to Ulam metric
over permutations with alphabet Σ = [d] (i.e. the standard notion of permutations). In particular,
one can perform the following reduction from the former problem to the latter problem.

Fact 2.4. For any string length d, and alphabet Σ, |Σ| ≥ d, there is a function f : Σd → Σ|Σ| such
that for every pair of permutations x, y ∈ Σd, we have that f(x), f(y) are permutations over Σ and

ed(x, y) ≤ ed(f(x), f(y)) ≤ 3 ed(x, y).

Proof. For given x ∈ Σd, construct f(x) ∈ Σ|Σ| by appending all the alphabet symbols that are
missing from x in an increasing order. Then, clearly ed(f(x), f(y)) ≥ ed(x, y). Furthermore, we
claim that ed(f(x), f(y)) ≤ 3 ed(x, y). Indeed, edit distance between the starting block of length d
of f(x) and of f(y) is ed(x, y). Also, if z ≤ ed(x, y) is the number of symbols that appear in x but
not in y and vice-versa, then the edit distance between the ending block of length |Σ| − d of f(x)
and f(y) is 2z. Total edit distance between f(x) and f(y) is at most 3 ed(x, y).

Note that when |Σ| = p = Θ(d3) as is the case in our main theorem, then log |Σ| = Θ(log d),
and thus the logarithmic lower bound carries over.

We will also use the following operation on strings which is illustrated in Fig. 1.

Definition 2.5 (Rotation operations). Fix a positive integer d and an alphabet Σ. For s, L ∈ [d],
define the right rotation operation

−→
R s,L : Σd → Σd as follows. When applied to a string x, it takes

the substring of x of length L starting at position s (with wrap-around), and performs on it one
cyclic shift to the right (by 1 position); the rest of x remains unchanged. A left rotation

←−
R s,L is

defined similarly. We call L the length of the rotation operation.

Note that
−→
R s,L works as a permutation (and thus is a bijection on the space of strings). Also,

for i ∈ [L],
(−→
R s,L

)i
is a rotation of the same block by i positions to the right. Note that a ro-

tation operation
−→
R s,L can be simulated by at most two deletions and two insertions (and only

one of each when the rotation block does not wrap-around at the string’s boundary). Thus,

ed
(
x,

(−→
R s,L

)i
(x)

)
= O(i) for every x and i.

9

aσ

a σ
−→

R s,L(x):

L

x:

Figure 1: The rotation operation
→
Rs,L(·). Here, σ is the substring of length L − 1 starting at

position s in x, and a is the character at position s+ L− 1 in x.

3 Proof of Main Theorem

In this section we prove Theorem 1.1. Fix the values of d and R, and let us use the alphabet Σ = Zp

for p sufficiently large so that a random string from Σd is a permutation with high probability (e.g.,
it suffices to set p to be the smallest prime greater than d3). For the rest of this section, we
denote our hard distribution by µ̃ = µ̃0+µ̃1

2 , where µ̃0 will be a distribution over far pairs of strings
(x, y) and µ̃1 will be a distribution over close pairs (x, y), i.e., ed(x, y) > R and ed(x, y) ≤ R/α,
respectively.

We will follow the steps outlined in Section 1.3 and eventually put all the pieces together in
Section 3.3. Our general approach to proving the theorem uses just a few simple properties of the
hard distribution, which we will specify along the way. To differentiate the underlying technique
from the specifics of our hard distribution, we describe the hard distribution and prove its required
properties separately in Section 4.

3.1 Reduction to Boolean Functions

Our first lemma says that if there is an efficient communication protocol, then there are boolean
functions with a non-negligible advantage in distinguishing the distribution µ̃0 from µ̃1. This lemma
is based on the ideas from [AIK08], although the presented proof is simpler than in [AIK08].

Lemma 3.1. Let µ̃0 and µ̃1 be distributions over far and close pairs, respectively. If CCUlamd
α,R ≤ l

for some l ≥ 1, then there exist boolean functions HA,HB : Zd
p → {−1,+1}, such that

Pr
µ̃0

[HA(x) 6= HB(y)]− Pr
µ̃1

[HA(x) 6= HB(y)] ≥ 1
3 · 2−l.

Proof. The idea is to reduce the general communication protocol to a simultaneous (i.e. sketching)
protocol where Alice and Bob each send a sketch of one bit only, and the referee performs an equality
test on these two bits. Then, using Yao’s minimax principle, we easily obtain two deterministic
boolean functions HA and HB that complete the proof.

To accomplish the reduction, consider an actual l-bit (randomized) protocol Π. We construct a
one-bit sketching protocol as follows: Alice and Bob make a random guess of the entire transcript
of an l-bit protocol using the public coins, uniform over the space of all 2l protocols (the guess
is independent of the actual inputs). Each of them then checks whether the guessed transcript
describes the messages they would send in the actual protocol Π, using the guessed transcript to
simulate the other party’s messages. For example, Alice starts the protocol Π (that depends on her

10

input), but instead of sending the messages to Bob, she verifies that her messages are exactly the
same as the ones appearing in the guessed protocol. Alice also uses the messages from the guessed
protocol to simulate Bob’s answers.

If at any moment Alice (or Bob) spots an inconsistency, she (or he) sends a bit chosen inde-
pendently at random. Otherwise, Alice outputs 1, and Bob outputs the outcome of the guessed
transcript. Observe that if the guessed transcript is not equal to the actual protocol they would
have run, then at least one of the two players notices an inconsistency, and one of the bits output
by Alice or Bob is random.

Thus, if x and y are such that ed(x, y) ≤ R/α (close pair), then Alice and Bob’s bits are equal
with probability at least 2

3 ·2−l +(1−2−l)1
2 = 1

2 + 1
62−l (where 2

3 is the probability that the original
protocol Π succeeds on (x, y)). Similarly, if x and y are such that ed(x, y) > R (far pair), then Alice
and Bob’s bits are equal with probability at most 1

3 · 2−l + (1 − 2−l) · 1
2 = 1

2 − 1
62−l. Using Yao’s

minimax principle, we conclude that, for given distributions µ̃0 and µ̃1 over far and close pairs
respectively, there exist some fixed boolean functions HA,HB that achieve a success probability at
least 1

2 + 1
62−l on the distribution µ̃ = µ̃0+µ̃1

2 , or, formally,

1
2

Pr
µ̃0

[HA(x) 6= HB(y)] +
1
2

Pr
µ̃1

[HA(x) = HB(y)] ≥ 1
2

+
1
6
· 2−l.

We conclude that Prµ̃0 [HA(x) 6= HB(y)]− Prµ̃1 [HA(x) 6= HB(y)] ≥ 1
3 · 2−l.

The rest of the proof of Theorem 1.1 uses these boolean functions HA,HB.

3.2 From Boolean Functions to λ-Tests

Next we provide a method to lower bound the advantage achieved by the boolean functionsHA,HB,
by relating it to a certain statistical property of the hard distribution µ̃. Our hard distribution
µ̃ = µ̃0+µ̃1

2 will have a specific generic construction that we describe next. For each t ∈ {0, 1},
the distribution µ̃t is formed via a small modification of another distribution µt, which is easier
to analyze (due to certain independencies), but might (rarely) produce invalid inputs. Specifically,
each µ̃t is the distribution µt conditioned on the fact that the pair (x, y) ∈ µt is valid in the sense
that x and y are both permutations and the pair (x, y) is respectively a far (when t = 0) or a
close (when t = 1) pair. We analyze below the distributions µ0 and µ1 (specifically, in Lemma
3.4). For completeness, we mention that, in the next section, we show that this analysis extends
to distributions µ̃0 and µ̃1 using the fact that µ̃0 and µ̃1 are statistically very close to distributions
µ0 and µ1 respectively.

The distribution µt consists of pairs (x, y) chosen as follows: x ∈ Zd
p is chosen uniformly at

random, and y is constructed from x in two steps. In the first step, let z , x + Nρ, where Nρ,
defined in the preliminaries, is noise of rate ρ ∈ (0, 1), independent of t. In the second step, y is
obtained from z by permuting the coordinates of z according to a distribution Dt. Formally, Dt is a
distribution over permutation operations, where a permutation operation is a function π : Zd

p → Zd
p

for which there exists a permutation π̂ : [d] → [d] such that π(x) ≡ (xπ̂(1), . . . xπ̂(d)). We will
require that Dt is symmetric in the sense that, for every π, the permutation operations π and π−1

are equi-probable (in it). Notice that y has the same marginal distribution as x, i.e. uniform over
Zd

p.
We now quantify the “difference” between the distributions D0,D1 from the perspective of what

we call λ-tests. For λ ∈ [d], we define a λ-test to be a vector u ∈ Zd
p with precisely λ non-zero

11

entries, i.e., wt(u) = λ. For a distribution Dt and λ ∈ [d], let the matrix A(t,λ) be the transition
matrix of a Markov chain whose states are all the λ-tests, and whose transitions are according to
Dt, i.e., at a λ-test u, the process picks π ∈ Dt and moves to state π(u) (which is also a λ-test). In
other words, a row corresponding to u in A(t,λ) is a vector, that has, for every λ-test w, a coordinate
of value Prπ∈Dt [π(u) = w]. We denote this row by A(t,λ)

u . Note that the matrix A(t,λ) is symmetric
(since Dt is symmetric) and thus it is doubly-stochastic.

Definition 3.2. The λ-test distinguishability of D0,D1, denoted ∆λ, is the maximum, over all
λ-tests u, of the total variation distance between the distributions A(0,λ)

u and A(1,λ)
u .

We can also write ∆λ using matrix norms (as per Definition 2.1), and the easy fact that ‖B‖∞ =
maxi∈[n]

∑
j∈[n] |Bij | for all B ∈ Mn,n(R). Later (in Fact 3.8) we shall use known inequalities

between different matrix norms (in particular `∞ and `2).

Fact 3.3. ∆λ = ‖A(0,λ) −A(1,λ)‖∞/2.
The following lemma bounds the advantage achieved by HA,HB in terms of the λ-test distin-

guishability ∆λ of distributions D0 and D1 for any pair of distributions D0,D1. Note that we have
not yet specified the distributions D0 and D1 themselves. We will specify the distributions D0 and
D1 in Section 4, thus completing the definition of the hard distribution µ̃.

Lemma 3.4. Consider HA,HB : Zd
p → {−1,+1} and ρ ∈ (0, 1). If each µt, for t ∈ {0, 1}, is

defined as above from a symmetric distributions Dt over permutation operations, then

Pr
µ0

[HA(x) 6= HB(y)]− Pr
µ1

[HA(x) 6= HB(y)] ≤ max
λ∈[d]

∆λρ
λ.

Proof. For t ∈ {0, 1}, define C(t) , Eµt

[HA(x)HB(y)
]

to be the correlation between the two
boolean functions. Note that, Prµt [HA(x) 6= HB(y)] = 1

4Eµt

[HA(x)−HB(y)
]2 = 1/2 − C(t)/2.

Thus,

Pr
µ0

[HA(x) 6= HB(y)]− Pr
µ1

[HA(x) 6= HB(y)] =
C(1) − C(0)

2
.

We will show that C(1) − C(0) ≤ 2maxλ∈[d] ∆λρ
λ. For this purpose, it is more convenient to

express each C(t) in terms of the Fourier coefficients of HA and HB. Recall that µt is generated by
picking a random x, and constructing y from x by adding to it the noise Nρ and then applying a
random permutation drawn from Dt, namely, y = π(x + Nρ), where π ∈ Dt. Let µt|x denote the
distribution µt conditioned on the value of x. Thus,

Eµt

[HA(x)HB(y)
]

= Ex∈Zd
p

[HA(x) · Eµt|x
[HB(y)

]]

Define f (t)(x) , Eµt|x
[HB(y)

]
. Then

f (t)(x) = ENρ

[
Eπ∈Dt

[HB(π(x+Nρ))
]]
.

Since C(t) = Ex

[HA(x)f (t)(x)
]
, we can switch to the Fourier basis by applying Parseval’s identity,

and get

C(t) =
∑

u∈Zd
p

(̂HA)u(̂f (t))u, (1)

12

where (̂HA)u and (̂f (t))u are the Fourier coefficients of HA and f (t) respectively.
The next proposition, which we shall prove shortly, expresses the level λ Fourier coefficients of

f (t) in terms of those of HB. Let
(
(̂f (t))u

)
u:wt(u)=λ

be the vector of the Fourier coefficients of f (t)

indexed by u’s of weight wt(u) = λ. Define
(
(̂HB)u

)
u:wt(u)=λ

similarly.

Proposition 3.5. For all λ ∈ [d] and HB : Zd
p → C,

(
(̂f (t))u

)
u:wt(u)=λ

= ρλA(t,λ) ·
(
(̂HB)u

)
u:wt(u)=λ

(2)

This proposition naturally leads us to break each C(t) into the terms corresponding to each
Fourier level λ. Define the λth-correlation to be

C
(t)
λ ,

∑

u∈Zd
p:wt(u)=λ

(̂HA)u(̂f (t))u. (3)

Then, C(1) −C(0) =
∑d

λ=0

(
C

(1)
λ − C(0)

λ

)
. We can now bound each C(1)

λ −C(0)
λ in terms of ∆λ and

ρ.

Let ωA
λ =

∥∥∥∥
(
(̂HA)u

)
u:wt(u)=λ

∥∥∥∥
2

be the `2-weight of the level λ Fourier coefficients of HA, and

define similarly ωB
λ . By Parseval’s identity,

∑d
λ=0

(
ωA

λ

)2 = Ex

[
HA(x) · HA(x)

]
= 1, and similarly

∑d
λ=0

(
ωB

λ

)2 = 1.

Proposition 3.6. For all λ ∈ [d],

C
(1)
λ − C(0)

λ ≤ 2∆λρ
λ · ωA

λ ω
B
λ .

We will prove the proposition shortly by a straightforward calculation. In addition, C(1)
0 = C

(0)
0

because the 0-th level Fourier coefficient of f (t) equals Ex∈Zd
p

[
f (t)(x)

]
= Ey∈Zd

p

[HB(y)
]
, which does

not depend on t ∈ {0, 1}. Given the above proposition, we thus have

C(1) − C(0) =
d∑

λ=0

(
C

(1)
λ − C(0)

λ

)
≤

d∑

λ=1

2∆λρ
λ · ωA

λ ω
B
λ

≤
d∑

λ=1

2∆λρ
λ ·

(
ωA

λ

)2 +
(
ωB

λ

)2

2
≤ 2max

λ∈[d]
∆λρ

λ,

where we used the geometric–arithmetic mean inequality. This finishes the proof of Lemma 3.4.

It remains to prove Propositions 3.5 and 3.6.

Proof of Proposition 3.5. Define a new function g(t) : Zd
p → R as

g(t)(z) , Eπ∈Dt

[HB(π(z))
]
.

13

Then f (t) = Tρg
(t), and thus (̂f (t))u = (̂g(t))u · ρwt(u) for all u ∈ Zd

p (by Fact 2.2). It remains to
prove that (

(̂g(t))u

)
u:wt(u)=λ

= A(t,λ) ·
(
(̂HB)u

)
u:wt(u)=λ

(4)

Similarly to the operator Tρ, we define the operator Ot as (OtHB)(x) , Eπ∈Dt

[HB(π(x))
]
. Since

g(t) = OtHB, we proceed to analyze how the operator Ot works on the Fourier coefficients of a
function HB.

Fact 3.7. For a permutation operation π, define Pπ to be an operator on functions ψ : Zd
p → R,

given by (Pπψ)(x) , ψ(π(x)). Then, (̂Pπψ)u = ψ̂π(u).

Now, the operator Ot defined earlier is simply a convex combination of several Pπ, where π is
drawn from Dt. Thus, with the above fact, for every u ∈ Zd

p,

(̂g(t))u = ̂(OtHB)u = Eπ∈Dt

[
(̂HB)π(u)

]
. (5)

Consequently, the vector of level λ Fourier coefficients of g(t) can be written as a product of
the matrix A(t,λ) and the vector of the (same) level λ Fourier coefficients of HB, which proves
Proposition 3.5.

We will need the following fact for the proof of Proposition 3.6. Recall that ‖A‖p denotes the
p-norm of such a matrix A, as per Definition 2.1.

Fact 3.8. Let B ∈Mn,n(R) be a symmetric matrix. Then, ‖B‖2 ≤ ‖B‖∞.

Proof. It is known that ‖B‖1 = maxj∈[n]

∑
i∈n |Bij | and ‖B‖∞ = maxi∈[n]

∑
j∈[n] |Bij |, and since

B is symmetric, these two norms are equal. By Riesz-Thorin interpolation theorem, ‖B‖2 ≤
max{‖B‖1, ‖B‖∞} = ‖B‖∞. (The Riesz-Thorin interpolation theorem states that for every 1 ≤
p < q < r ≤ ∞ and a real matrix A, we have ‖A‖q ≤ max{‖A‖p, ‖A‖r}.)
Proof of Proposition 3.6. For every λ, the matrix A(t,λ) is symmetric, and so is A(1,λ) − A(0,λ).
Thus,

C
(1)
λ − C(0)

λ =
∑

u∈Zd
p:wt(u)=λ

(̂HA)u ·
((̂
f (1)

)
u
− (̂

f (0)
)
u

)

≤
∥∥∥∥
(
(̂HA)u

)
u:wt(u)=λ

∥∥∥∥
2

·
∥∥∥∥∥
((̂
f (1)

)
u
− (̂

f (0)
)
u

)

u:wt(u)=λ

∥∥∥∥∥
2

= ωA
λ ·

∥∥∥∥∥ρ
λ
(
A(1,λ) −A(0,λ)

)(
(̂HB)u

)

u:wt(u)=λ

∥∥∥∥∥
2

≤ ρλ · ωA
λ ·

∥∥∥A(1,λ) −A(0,λ)
∥∥∥

2

∥∥∥∥
(
(̂HB)u

)
u:wt(u)=λ

∥∥∥∥
2

≤ ρλ · ωA
λ ω

B
λ ·

∥∥∥A(1,λ) −A(0,λ)
∥∥∥
∞

= 2∆λ · ρλ · ωA
λ ω

B
λ ;

where we used Eqn. (3), Cauchy-Schwarz, Proposition 3.5, Definition 2.1, Fact 3.8, and Definition
3.3, respectively.

14

3.3 Putting It All Together

We proceed to proving Theorem 1.1, using the machinery just developed in Sections 3.1 and 3.2.
Recall that we still need to exhibit a suitable hard distribution. We outlined the construction
of our hard distribution in Section 3.2 ; the construction relies on two distributions D0 and D1

which were not specified. The next lemma asserts that the desired hard distribution exists. More
precisely, it asserts that it can be constructed to satisfy the required properties, such as a small
λ-test distinguishability.

Lemma 3.9 (Hard Distribution). There exist constants θ, c1, c2, d0 > 0, such that for all d > d0,
p > d3, 1 < α ≤ O(log d

log log d), d0.1 ≤ R ≤ d0.49, there exist symmetric distributions D∗0 and D∗1 over
permutation operations on Zd

p (as defined in Section 3.2) with the following guarantees.

(a). For all λ ≥ 1, the λ-test distinguishability of D∗0 and D∗1 is ∆λ ≤ c1 · λ log α
log d · R

d .

(b). Define each distribution µt from D∗t as described in Section 3.2, setting ρ = 1− θR/α
d . Define

the distribution µ̃t to be the restriction (i.e. conditioning) of µt to the event that the sampled
pair (x, y) ∈ µt is legal, in the sense that x, y ∈ Zd

p are permutations and are respectively a
far pair (for t = 0) or a close pair (for t = 1). Then for each t ∈ {0, 1}, the total variation
distance between µ̃t and µt is at most d−c2.

We prove this lemma separately in Section 4, where we include a full description of D∗0 and D∗1.
Here, we use the lemma to complete the proof of the main theorem.

Proof of Theorem 1.1. First, consider the hard distribution given by Lemma 3.9. Next, by Lemma 3.1,
there must exist functions HA,HB such that

Pr
µ̃0

[HA(x) 6= HB(y)]− Pr
µ̃1

[HA(x) 6= HB(y)] ≥ 1
3 · 2−CC

Ulamd
α,R .

Applying Lemma 3.4 to the distributions µ0, µ1, and using the fact that µ̃0 and µ̃1, respectively
are statistically close to µ0 and µ1 (Lemma 3.9(b)), we deduce that

Pr
µ̃0

[HA(x) 6= HB(y)]− Pr
µ̃1

[HA(x) 6= HB(y)] ≤ max
λ∈[d]

∆λρ
λ + d−c2 .

Combining the two inequalities above and plugging in the upper bound on ∆λ and the value of ρ
from Lemma 3.9(a), we have

1
3 · 2−CC

Ulamd
α,R ≤ max

λ∈[d]

[
c1 · λ log α

log d · R
d ·

(
1− θR/α

d

)λ
]

+ d−c2

≤ c1
θ · α · log α

log d ·max
x≥0

x · e−x + d−c2

= O
(

α log α
log d

)
,

which concludes the proof of Theorem 1.1.

15

4 Construction of The Hard Distribution

In this section we prove Lemma 3.9. We start by giving the detailed construction of our hard dis-
tribution µ̃ = µ̃0+µ̃1

2 . Then, in Sections 4.1 and 4.2 we prove respectively λ-test indistinguishability
(part (a)) and statistical closeness (part (b)) properties of the hard distribution.

The hard distribution construction follows the outline given in Section 3.2. We first specify the
distributions D∗0,D∗1 over permutation operators, which forms the bulk of the construction. Once
these distributions are specified, we obtain the intermediary distributions µ0 and µ1 as already
described in Section 3.2. We finalize the description by constructing µ̃t from µt, for each t ∈ {0, 1},
by conditioning on the pair (x, y) ∈ µt being a legal pair, namely that x, y ∈ Zd

p are permutations
and are respectively a far pair (for t = 0) or a close pair (for t = 1).

Fix ε0 , 1/2 and select ε1 = Θ(1
α) as follows. Let β , 1−ε1

1−ε0
= 2(1− ε1), and ξ1 , dlog2(C1α)e,

for a sufficiently large constant C1 > 0 (in particular C1 = 805 will suffice). Let ε1 be the solution
to the equation (1− ε1) = ε1β

ξ1 satisfying ε1 ≤ 2
C1α . The existence of ε1 follows from the following

claim, whose proof is deferred to the end of the construction.

Claim 4.1. Let α > 1 and C1 > 1 be sufficiently large. Then there exists ε1 with 1
3C1α < ε1 ≤ 2

C1α

such that (1− ε1) = ε1(2(1− ε1))ξ1, where ξ1 = dlog2(C1α)e.
We thus have, by construction,

ε0 = (1− ε0) = (1− ε1)β−1 = ε1β
ξ1−1. (6)

For each t ∈ {0, 1}, we define the distribution µt over (x, y) such that ed(x, y) is almost surely
Θ(εtR). Choose x ∈ Σd = Zd

p uniformly at random. Then set z , x+Nρ where Nρ ∈ Zd
p is a noise

of rate ρ , 1− ε1R/d (i.e., each position is randomized with probability 1− ρ = ε1R/d). We shall
obtain y from z, by applying a number of random rotation operations, each picked independently
from a specific distribution. We use the following notation:

• m , 0.01 · logβ d = Θ(log d) is the number of possible lengths of a rotation operation;

• Lmin , d0.01 determines the minimum length of a rotation operation (modulo a factor of β);

• w , C2 · R
m·Lmin

is the number of rotation operations that we apply, for a sufficiently large
constant C2 > 0 to be determined later (in Section 4.2).

Generate a sequence (r1, r2, . . . , rw) of w rotations by picking each ri i.i.d. according to the
following distribution Drot

t :

1. Pick li ∈ [m] randomly so that Pr[li = l] = β−l

ζ for each l ∈ [m], where ζ =
∑m

l=1 β
−l is the

normalization constant.

2. Pick a starting position si ∈ [d] uniformly at random, and rotate the block that starts at posi-
tion si and has length (with wrap-around) Li = βliLmin by εtLi positions, either to the right or
to the left, at random. We choose ri at random from the set

{
(R̃s,Li)

εtLi | s ∈ [d], R̃ ∈ {−→R,←−R}
}

.

We note that (R̃s,Li)
εtLi is not well defined when εtLi or Li are not integers. Overloading

the notation, we define (
−→
R s,Li)

εtLi for non-integer εtLi, Li as follows. Let B1 be the block

16

that starts at position si and has length b(1 − εt)Lic, and let B2 be the block immediately
following B1 of length bεtLic, i.e.

B1 = [s : s+ b(1− εt)Lic − 1], B2 = [s+ b(1− εt)Lic : s+ b(1− εt)Lic+ bεtLic − 1].

Then, (
−→
R s,Li)

εtLi swaps blocks B1 and B2. We define (
←−
R s,Li)

εtLi similarly.

To obtain y, we apply to z = x+Nρ the sequence of rotations r1, . . . , rw, i.e.,

y , rw(rw−1(. . . r1(z) . . .)) = (rw ◦ . . . ◦ r2 ◦ r1)(x+Nρ).

In the language of Section 3.2, the distribution D∗t of permutation operations is simply the distri-
bution of π = rw ◦ rw−1 ◦ . . . ◦ r1, where r1, . . . rw are drawn independently from Drot

t .
Intuitively, each rotation operation ri, or more precisely its distribution Drot

t , is designed to
achieve the following goal. Consider a position j ∈ [d] and assume for simplicity j ∈ [0.1d, 0.9d].
Let the random variable Zt,j ∈ Z be the displacement (change in position) of position j under a
(random) rotation operation ri ∈ Drot

t , i.e. Zt,j ∈ Z is the unique value such that ri(ej) = ej+Zt,j ,
where ek denotes the k-th standard basis vector. By construction, Zt,j is symmetric around 0,
i.e. Pr[Zt,j = k] = Pr[Zt,j = −k], and its distribution does not depend on j, i.e. Zt,j and Zt,j′

have the same distribution (but they are correlated). Moreover, its support, i.e. values k > 0
with probability Pr[Zt,j = k] > 0, forms a geometric sequence (because the block length L has
a geometric distribution). Let us now condition on the event that position j is included in the
rotation block, i.e. Zt,j 6= 0. Then the distribution of Zt,j is almost uniform over the support —
this follows from the distribution of L and of s, and by Eqn. (6). Furthermore, the distributions
of Z0,j and Z1,j (when we condition on them being nonzero) are almost identical, because their
supports differ only at the boundaries, i.e. at the smallest and largest displacements, again due to
Eqn. 6, and they are both almost uniform. We repeat the rotation operation many times in order
to obtain a high concentration in the distance between y and z.

To finalize the construction, it remains to define µ̃t for t ∈ {0, 1}. We note that we cannot set
µ̃t to be exactly µt because the latter may sometimes generate pairs (x, y) that are not far or close
respectively, or are not even permutations altogether. (x and y are not always permutations since
each of the two strings is uniformly at random and may have a multiple occurrence of the same
symbol.) We thus define µ̃0 to be the distribution µ0 restricted to (i.e. conditioned on) pairs of
permutations (x, y) with ed(x, y) > R, and similarly µ̃1 is the distribution µ1 restricted to pairs of
permutations with ed(x, y) ≤ R/α.

It only remains to prove Claim 4.1, namely that the desired ε1 exists.

Proof of Claim 4.1. Define function f(x) : [0, 1]→ R as f(x) = x ·(1−x)ξ1−12ξ1−1. Note that ε1 is
the solution to the equation f(x) = 0. For x = 1/(3C1α), f(x) ≤ 1

3C1α(1− 1
3C1α)ξ1−1 ·2log2(C1α)+1−

1 < 0. Similarly, for x = 2
C1α , f(x) ≥ 2

C1α(1− 2(ξ1−1)
C1α) · 2log2(C1α)− 1 ≥ 2(1− 2(log2(C1α)−1)

C1α)− 1 > 0
provided C1 is a sufficiently large constant. By the continuity of f(x), there exists some x ∈
[1
3C1α ,

2
C1α] satisfying f(x) = 0.

In the rest of this section we prove the two properties required from our hard distribution,
stated in Lemma 3.9: that D∗0 and D∗1 have small λ-test distinguishability (Lemma 3.9 (a)), and
that each µ̃t is very close to µt, for both t ∈ {0, 1} (Lemma 3.9 (b)).

Here and throughout the big O(·) notation may hide dependence on constants used in the
construction of the hard distribution, namely C1 and C2. Furthermore, although the parameters

17

β and ζ are not constants (they depend on α), we can bound 1.5 < β < 2, which guarantees that
1

1−β−1 ≤ O(1) and 1
ζ ≤ β ≤ O(1).

4.1 λ-test Indistinguishability

We prove Lemma 3.9 (a) via the following lemma.

Lemma 4.2. Let ∆λ be the λ-test distinguishability of D∗0 and D∗1. Then for all λ ≥ 1, we have
∆λ ≤ O

(
λ log α

log d · R
d

)
.

Proof. Fix a λ-test u ∈ Zd
p and let δλ(u) = maxT⊆Zd

p

∣∣Pr[r(0)(u) ∈ T]− Pr[r(1)(u) ∈ T]
∣∣ be the total

variation distance between the distributions r(0)(u) and r(1)(u), where r(t) ∈ Drot
t for t ∈ {0, 1}.

The heart of this lemma is the following bound, which we shall prove below:

δλ(u) ≤ O
(
λ logα · Lmin

d

)
. (7)

We shall also prove shortly the claim that ∆λ ≤ w · maxu δλ(u). The lemma then follows
immediately from Eqn. (7) and this claim, by plugging the former into the latter and recalling
w = C2 · R

m·Lmin
is the number of rotation operations. Since λ log α

log d · R
d > 1 for λ ≥ d0.95, it actually

suffices to prove (7) only for λ < d0.95.
We now prove the above claim, that ∆λ ≤ w·maxu δλ(u), by induction. Let vt

i = r
(t)
i (r(t)i−1(. . . r

(t)
1 (u) . . .))

for t ∈ {0, 1} and i ∈ [w]. We prove that, for any T ⊆ Zd
p, we have |Pr[v0

i ∈ T] − Pr[v1
i ∈ T]| ≤

i ·maxv δλ(v). The base case i = 1 holds by the definition of δλ, and so we turn to the inductive
step:

Pr[v0
i ∈ T] =

∑
v

Pr[v0
i−1 = v] Pr[r(0)

i (v) ∈ T]

≤
∑

v

Pr[v0
i−1 = v]

(
Pr[r(1)

i (v) ∈ T] + δλ(v)
)

≤ max
v
δλ(v) +

∑
r

Pr[r(1)
i = r] Pr[r(v0

i−1) ∈ T]

≤ max
v
δλ(v) +

∑
r

Pr[r(1)
i = r]

(
Pr[r(v1

i−1) ∈ T] + (i− 1) ·max
v
δλ(v)

)

= i ·max
v
δλ(v) + Pr[v1

i ∈ T].

Proving the same inequality with the roles of t = 0 and t = 1 reversed, we obtain that ∆λ =
maxT⊆Zd

p
|Pr[v0

w ∈ T]− Pr[v1
w ∈ T]| ≤ w ·maxu δλ(u).

In the rest of the proof of Lemma 4.2, we prove the bound (7). The proof consists of two parts.
The first part proves the bound for λ = 1, and contains the main intuition why our distribution is
hard. The second part builds on the first one to show the bound for general λ.

Part 1: λ = 1. We prove that δ1(u) ≤ O(logα · Lmin
d) next. In this part, we shall assume that L

and εtL are integers, deferring the full treatment of this technicality to the second part.
Since λ = 1, we have only one non-zero entry in u, say at position j. For t ∈ {0, 1}, let jt be the

random variable denoting the position of the symbol uj in the vector r(t)(u) obtained by applying

18

the random rotation r(t) ∈ Drot
t on u. Also, let Zt be the displacement of jt with respect to j on

the cycle Zp, and namely Zt = (jt− j + d/2)(mod d)− d/2 (where the addition/subtraction of d/2
is for the purpose of accounting for string boundaries). It is not hard to see that the distribution
of Zt does not depend on the value of j.

The total variation distance between the distributions of r(0)(u) and of r(1)(u) equals to the total
variation distance between Z0 and Z1. We compute the latter via its complement, i.e. the probabil-
ity mass that is “common” to the two distributions, which is, formally,

∑
z∈[−d,d] mint∈{0,1} Prr(t) [Zt =

z].
First, we can compute the probability that Zt = 0, i.e., the symbol uj remains at position j, as

follows:
Pr[Zt = 0] =

d− E [L]
d

= 1−m · Lmin

ζd
,

irrespective of the value of t ∈ {0, 1}.
Next, consider the case when Zt 6= 0 and note that Prr(0) [Z0 6= 0] = Prr(1) [Z1 6= 0] = m · Lmin

ζd .
We show that, conditioned on Zt 6= 0, the variable Zt is uniform over most of its support, denoted
St. Moreover S0 and S1 have almost the same size and almost completely overlap. Formally, we
prove the following claim.

Claim 4.3. There exists a set S ⊂ Z \ {0} satisfying:

• There is ν > 0 such that for each t ∈ {0, 1} and z ∈ S we have Prr(t) [Zt = z] = ν; and

• For each t ∈ {0, 1} we have Prr(t) [Zt ∈ S] ≥ m−ξ1
m · Prr(t) [Zt 6= 0].

We first show how Claim 4.3 lets us prove that δ1(u) ≤ O(logα · Lmin
d). Indeed, one can observe

that δ1(u) is bounded by the probability that Prr(0) [Z0 6∈ S ∪ {0}] = Prr(1) [Z1 6∈ S ∪ {0}], which we
can bound as

δ1(u) ≤ 1− Pr
r(t)

[Zt = 0]− Pr
r(t)

[Zt ∈ S] ≤ ξ1
m
· Pr

r(t)
[Zt 6= 0] = O(logα) · Lmin

ζd
.

Proof of Claim 4.3. We show the claim for S =
{±(1− ε1)βlLmin | l = 1, . . . ,m− ξ1

}
and ν =

1
2 · Lmin

ζd .
Let us consider the case that Zt 6= 0. Then, the magnitude of the displacement, |Zt|, must be

either εtL or (1 − εt)L where L = βlLmin for some l ∈ [m]. In particular, Zt 6= 0 iff the position
j falls inside the rotation block of the operation r(t), and either: (i) j falls into the bigger part of
size (1 − εt)L (that does not wrap-around), hence |Zt| = εtL; or (ii) j falls into the smaller part
of size εtL (that does wrap-around), hence |Zt| = L − εtL = (1 − εt)L. Moreover, conditioned on
the magnitude of Zt, the sign of Zt is equi-probable to be either positive or negative (depending on
whether the rotation block rotates to the right or left).

When t = 0, we can compute the probability that |Z0| = 1
2L = 1

2β
lLmin for some l ∈ [m]

as follows. We have Z0 = L/2 when we choose block length L = βlLmin, which happens with
probability β−l/ζ, and additionally either (i) position j is inside the “bigger” part of the block, of
size (1− ε0)L = L/2, and the block moves to right, or (ii) position j is inside the “smaller” part of
the block, of size ε0L = L/2, and the block moves to left. Formally,

Pr
r(0)

[Z0 = L/2] = Pr
r(0)

[Z0 = −L/2] = β−l

ζ · (1−ε0)βlLmin

d · 1
2 + β−l

ζ · ε0βlLmin
d · 1

2 = Lmin
ζd · 1

2 = ν.

19

Note that z = 1
2β

lLmin may be written as z = (1 − ε1)βl−1Lmin (using Eqn. (6)) and thus z ∈ S
whenever l ∈ {2, . . .m− ξ1 + 1}.

Now let t = 1. When |Z1| = ε1β
l+ξ1Lmin = (1 − ε1) · βlLmin ∈ S for l ∈ {1, . . . ,m − ξ1} (the

equality here is by Eqn. (6)), we again have that

Pr
r(1)

[Z1 = ε1β
l+ξ1] = β−l−ξ1

ζ · (1−ε1)βl+ξ1Lmin

d · 1
2 + β−l

ζ · ε1βlLmin
d · 1

2 = Lmin
ζd · 1

2 = ν.

Finally, note that Prr(t) [Zt ∈ S] =
∑

z∈S Prr(t) [Zt = z] = 2(m − ξ1) · ν = m−ξ1
m · Prr(t) [Zt 6= 0].

This concludes the proof of Claim 4.3.

Part 2: λ ≥ 2. When we have λ ≥ 2 non-zero entries in u, the intuition is to group these non-
zero entries into one or more “atomic intervals” and then reduce to the case λ = 1 with the role
of “symbol uj” being replaced by an atomic interval. For example, when there are λ = 2 non-zero
entries in u, most of the block lengths L fall into two categories:

• L is much larger than the distance between the positions of the two non-zero entries — in this
case, the two non-zero symbols from u move jointly (atomically) most of the time, and thus
the interval connecting the two symbols behaves roughly as the “symbol uj” in the λ = 1
scenario;

• L is much smaller than the distance between the two positions — in this case, each of the
two non-zero entries can be treated independently as in λ = 1 case, and we lose only a factor
of λ (by “union bound”).

Furthermore, we can bound the number of values of L that do not satisfy one of the above properties.
A relatively straight-forward bound is O(λ2) (all pair-wise distances between the non-zero entries),
times O(ξ1) (the same extra factor as in the λ = 1 case). This analysis would give a bound of
δλ(u) ≤ O(λ3 logα · Lmin

d). In the sequel we obtain a stronger bound, with only a linear dependence
on λ, using a more careful analysis. (For the impact of a weaker bound see the calculation in
Section 3.3.)

More generally, we partition the non-zero entries of u such that each part consists of “nearby”
entries, while the parts are “far” amongst themselves. We then view each part as a contiguous
A-interval (stands for atomic interval). Once we manage such an approximation, we have several
A-intervals (at most λ), and we expect each one to move atomically: all non-zero entries from the
same A-interval will move the same direction by the same displacement most of the time. The main
challenge lies in the fact that the notion of nearby entries depends on the length L of the rotation
block, and we say two non-zero entries are nearby if their positions differ by at most L. Thus,
for each possible block length L, we have a possibly different partition of entries into A-intervals
(partitions are progressively coarser with bigger L). The main technical work is to analyze the
structure of these A-intervals over all lengths L.

We proceed with a complete proof below. For a block length L = βlLmin, we define the graph
GL as follows. GL is an undirected graph on λ vertices, where each vertex corresponds to a non-
zero entry in u. For convenience, we use the term “entry” when we refer to the position of a
non-zero entry of u, and equivalently a vertex of GL (in contrast, we will use the term node for
another graph structure defined later). We connect two entries i, j ∈ [d] if |i − j|∗ ≤ L, where
|i − j|∗ = min{|i − j|, d − |i − j|} computes distance on the d-cycle. For a graph GL, we focus on

20

its connected components, which may be viewed as intervals in Zd. Specifically, to each connected
component C ⊂ V we assign the interval I(C), an interval defined as the minimal interval (with
wrap-around) on Zd that contains all entries in C. Overloading the notation, we write an interval
I(C) = [i, j] to mean that I(C) = {i, i + 1, . . . , j} if i ≤ j and I(C) = {i, i + 1, . . . , d, 1, 2, . . . j} if
j < i. The length of interval I = [i, j] is len(I) = |I| = (j − i + 1)(mod d). Note that, for every
connected component C, every two consecutive entries in I(C) are at distance at most L; thus, the
length of any interval I(C) can be at most L · λ < d0.99; also if I(C) = [i, j] then both i and j are
non-zero entries of u.

An A-interval is then an interval I(C) that corresponds to some connected component C.
Each block length L induces potentially different graph GL, that in turn induces different set of
A-intervals. The following observation relates A-intervals induced by different GL’s.

Observation 4.4. If two entries are in the same A-interval (equivalently, connected component)
in GL for some L, then there are also in the same A-interval in GL′ for any L′ ≥ L.

We use this observation to define a forest on all the A-intervals, as follows. The forest consists
of m levels, where nodes at level l ∈ [m] correspond to the A-intervals for L = βlLmin (i.e. the
connected components in GL). For a forest node v at level l we write I(v) for the corresponding A-
interval. The edges in the forest are defined as follows: for two forest nodes v1, v2 on two consecutive
levels, l and l+1 respectively, we connect v1 to v2 iff I(v1) ⊆ I(v2). This construction is well-defined
due to Observation 4.4. Nodes at level 1 will be called leaves. Notice that every forest node at
level l > 1 indeed has at least one edge to a node at level l − 1, i.e. non-leaf nodes have at least
one child. Let nl ∈ [λ] be the number of nodes at level l.

We now wish to bound the error incurred by considering an A-interval to be an atomic object.
Specifically, a too long A-interval is likely to move not atomically, in the sense that the interval
is “cut” by the rotation block. We bound the error of our “approximation” using the probability
that a random position s ∈ [d] (one of the two block boundaries) falls inside these A-intervals at a
random level l. The latter probability is proportional to expected sum of lengths of the A-intervals
of GL, when we choose the block length L randomly according to the distribution Drot

t .

Claim 4.5. Let s ∈ [d] be chosen uniformly at random and let l ∈ [m] be chosen randomly with
probability β−l/ζ. Then,

Pr
s,l

[
s is inside one of the A-intervals at level l

]
≤ O

(
λ
Lmin

d

)
.

Proof. Consider any two consecutive non-zero entries of u and let J be the interval between them
(with wrap-around), including one of the endpoints, say the left one. We compute next the prob-
ability that s is contained in this interval J , and interval J is contained in an A-interval I(v) for
a forest node v at level l. Note that summing this probability over all λ intervals J gives the final
quantity we want.

By definition, an interval J is inside an A-interval at level l iff |J | ≤ βlLmin. Thus, for a fixed
J , the probability that both s ∈ J and J is contained in an A-interval at level l is at most

|J |
d
·

∑

l∈[m]: |J |≤βlLmin

β−l

ζ
≤ |J |

d
· Lmin

ζ · |J | ·
1

1− β−1
≤ O

(
Lmin

d

)
.

We have exactly λ such intervals J , and thus the total contribution is O(λLmin
d).

21

We now continue with computing the total variation distance δλ(u) between r(0)(u) and r(1)(u)
where r(0) ∈ Drot

0 and r(1) ∈ Drot
1 . As in part one (λ = 1), we will bound the total variation distance

between them by estimating the probability mass “common” to the two distributions.
First we compute the probability that all non-zero entries of u stay put (as in part one).

Claim 4.6. For each t ∈ {0, 1}, we have that

Pr
r(t)

[r(t)(u) = u] ≥ 1−O
(
λ
Lmin

d

)
−

m∑

l=1

nl · Lmin

ζd
.

Proof. The complement event is that at least one non-zero entry of u is displaced. Whenever it
occurs, at least one of the following holds:

• Left or right endpoint of the rotation block belongs to an A-interval induced by GL; or else

• The rotation block contains inside it an entire A-interval induced by GL.

The probability of the first event is bounded by, using Claim 4.5:

2 Pr
s,L

[s is inside one of the A-intervals at level l] ≤ O
(
λ
Lmin

d

)
.

The probability of the second event can be bounded by the probability that the rotation block
includes the leftmost endpoint of some A-interval at level l:

m∑

l=1

β−l

ζ

∑

v at level l
Pr
s

[
left endpoint of I(v) is inside [s, s+ L− 1]

]
≤

≤
m∑

l=1

β−l

ζ
· nl · L

d
=

m∑

l=1

nl
Lmin

ζd

The claim follows from the last two inequalities by applying a union and then considering the
complement event.

We now prove a claim that should be seen as the analogue of Claim 4.3 from part one, which
characterizes the common weight of the distributions of r(0)(u) and r(0)(u) when some entries (more
precisely, A-intervals) move. In contrast to part one, here we have to also consider the case when
an A-interval does not behave atomically, i.e., when the rotation block intersects the A-interval of
some node v at a level l ∈ [m]. This will contribute some additional error term that depends on
the length of the interval I(v), and which we will bound using Claim 4.5.

Let us define the random variable Zt(I), for an interval I = I(v) corresponding to a forest node
v, and t ∈ {0, 1}. Zt(I) denotes the (position) displacement of the entries from the interval I under
rotation r(t) ∈ Drot

1 when the interval I moves atomically and no entry outside I moves. We set
Zt(I) = ⊥ if the interval I does not move atomically and/or some other entry outside I moves as
well under r(t).

Claim 4.7. There exists a set S ⊂ Z \ {0} satisfying:

22

• For each interval I = I(v) corresponding to a forest node v at level l∗ ∈ {ξ1 + 1, . . .m}, and
for each t ∈ {0, 1} and z ∈ S,

Pr
r(t)

[Zt(I) = z] ≥ 1
2
· Lmin

ζd
− β−(l∗−ξ1) · 2 len(I)

ζd
;

• Call two intervals I(v) and I(v′) distinct if they have at least one distinct endpoint; then

∑

z∈S

∑

distinct I=I(v)

min
t∈{0,1}

{
Pr
r(t)

[Zt(I) = z]
}
≥

m∑

l=ξ1+1

nl
Lmin

ζd
−O

(
λ
Lmin

d

)
.

Proof. We show the claim for S =
{± ⌊

(1− ε1)βlLmin

⌋ | l = 1, . . . ,m− ξ1
}
.

Fix an interval I = I(v) for a node at level l∗ ≥ ξ1 + 1. Consider the displacement z =⌊
ε1β

l∗Lmin

⌋
=

⌊
(1− ε1)βl∗−ξ1Lmin

⌋ ∈ S (the equality is again by Eqn. (6)). We now bound
Pr[Z1(I) = z], namely the probability that all the entries in I(v) are moved (atomically) z positions
to the right (and all the other entries stay put), under the distribution Drot

1 . We have Pr[Z1(I) = z]
when either: i) l = l∗, interval I is completely inside the “bigger” part of the block, of size⌊
(1− ε1)βlLmin

⌋
, and the block moves to right, or ii) l = l∗− ξ1, interval I is completely inside the

“smaller” part of the block, of size
⌊
ε1β

l−ξ1Lmin

⌋
, and the block moves to left. Note that in both

cases all entries outside I stay put as they are at (position) distance at least βl∗Lmin + 1 from I
and thus cannot be inside the rotation block. Formally,

Pr
r(1)

[Z1(I) = z] = Pr
r(1)=(R̃s,L)ε1L, L=βlLmin

[
Z1(I) = z, l = l∗, R̃ =

−→
R

]

+ Pr
r(1)=(R̃s,L)ε1L, L=βlLmin

[
Z1(I) = z, l = l∗ − ξ1, R̃ =

←−
R

]

≥ β−l∗

ζ
· 1
2
· (1− ε1)β

l∗Lmin − 1− len(I)
d

+
β−(l∗−ξ1)

ζ
· 1
2
· ε1β

l∗−ξ1Lmin − 1− len(I)
d

≥ 1
2
Lmin

ζd
− β−(l∗−ξ1)

ζ
· 2 len(I)

d
(8)

Similarly, we can give the exact same lower bound for each of the following four events: Z1(I) =
±z and Z0(I) = ±z.

We can now bound the probability mass that is common to the two distributions r(0)(u) and
r(1)(u) for the events that there is a distinct interval I such that Zt(I) = z for some z ∈ S:

∑

z∈S

∑

distinct I=I(v)

min
t∈{0,1}

{
Pr
r(t)

[Zt(I) = z]
}

≥
m∑

l=ξ1+1

∑

v at level l
Pr

[
Zt(I(v)) ∈

{
±

⌊
ε1β

lLmin

⌋}]
(9)

because, for each node v at level l∗ ≥ ξ1 + 1, we can consider the interval I = I(v) and the
displacement of z = z(v) =

⌊
ε1β

l∗Lmin

⌋ ∈ S. Then all the events Zt(I(v)) = ±z(v) are mutually

23

exclusive (over the choice of such v), and hence we obtain the sum from Eqn. (9). Furthermore,
using Eqn. (8), we obtain:

∑

z∈S

∑

distinct I=I(v)

min
t∈{0,1}

{
Pr
r(t)

[Zt(I) = z]
}

≥
m∑

l∗=ξ1+1

2
∑

v at level l∗

(
1
2
· Lmin

ζd
− β−(l∗−ξ1)

ζ
· 2 len(I(v))

d

)

≥
m∑

l∗=ξ1+1

nl∗
Lmin

ζd
− 4

m∑

l∗=1

∑

v at level l∗

β−l∗

ζ
· len(I(v))

d
, (10)

where we remind that nl is the number of nodes at level l∗. The last inequality follows from the
fact that, for each interval I = I(v) of a node v at level l∗ ≥ ξ1 + 1, we can charge len(I(v)) to
lengths of the intervals of the descendants of v at level l∗ − ξ1.

Finally, observe that the last term in Eqn. (10), namely
∑

l∗
∑

v
β−l∗

ζ · len(I(v))
d , is equal precisely

to the probability that a random position s falls into an A-interval at level l∗, where l∗ is chosen
at random according to the distribution l∗ = l with probability β−l/ζ. Thus we can use Claim 4.5
to bound it from above,

m∑

l∗=1

∑

v at level l∗

β−l∗

ζ
· len(I(v))

d
≤ O(λ) · Lmin

ζd
,

which together with Eqn. (10) completes the proof of Claim 4.7.

To summarize, the total probability mass that we accounted to be common for t = 0 and t = 1
is the sum of (our lower bounds on) the probability that all entries stay put, plus the probability
that exactly one distinct interval I = I(v) is displaced by precisely z ∈ S positions. Combining
Claims 4.6 and 4.7, and using the trivial bound of nl ≤ λ for all l ∈ [m], we obtain:

1− δλ(u) ≥ 1−O
(
λ · Lmin

d

)
−

m∑

l=1

nl · Lmin

ζd
+

m∑

l=ξ1+1

nl
Lmin

ζd
−O

(
λ
Lmin

d

)
≥ 1−O(λξ1) · Lmin

ζd
.

Finally, using the fact that ξ1 = O(logα), we conclude Eqn. (7), which completes the proof of
Lemma 4.2.

4.2 Statistical Closeness of the Distributions µ̃t and µt

We prove Lemma 3.9 (b) via the following lemma.

Lemma 4.8. For every t ∈ {0, 1}, the total variation distance between µ̃t and µt is at most d−Ω(1).

Proof. First we recall that µ̃t is equal to the distribution µ conditioned on the fact that the generated
pair (x, y) ∈ µ is legal, i.e., both x and y are permutations and (x, y) are far or close for t = 0 or
t = 1 respectively. Since both x and y are random from Zd

p, and p > d3, then x and y are both
permutations with probability at least 1−O(1/d).

Thus, the total variation distance between µ̃0 and µ0 is at most Prµ0 [ed(x, y) ≤ R] + O(1/d).
Similarly, total variation distance between µ̃1 and µ1 is at most Prµ1 [ed(x, y) > R/α] + O(1/d).

24

Thus, it suffices to prove that Prµ0 [ed(x, y) ≤ R] ≤ d−Ω(1) and Prµ1 [ed(x, y) > R/α] ≤ d−Ω(1).
Remember that x is chosen at random, then z = x+Nρ, and y is obtained from z via a sequence
of rotation operations.

We choose the constant C2 = 20ζ/ε0 = 40ζ, and condition on the event that x, y, and z are all
permutations, which happens with probability ≥ 1− O(1/d). We can describe the distribution µt

also as follows. Start with a permutation z, and let x be the permutation obtained by modifying
every coordinate in z to a new symbol independently with probability 1 − ρ. We may assume,
without loss of generality (by renaming symbols), that z is the identity permutation of length d,
i.e. for all i ∈ [d] we have z(i) = i, and furthermore with probability ρ we have x(i) = z(i) and
x(i) = i + d otherwise. Next, let y be the permutation obtained from z by applying w random
rotation operations chosen from Drot

t .
It will then suffice to prove the following two claims.

Claim 4.9. For both t ∈ {0, 1},
Pr
µt

[
ed(x, z) ≤ 2ε1R

]
≥ 1− e−dΩ(1)

.

Claim 4.10. For both t ∈ {0, 1},

Pr
µt

[
0.1 ≤ ed(z, y)

R · C2εt/ζ
≤ 10

]
≥ 1− d−Ω(1).

We can now obtain the lemma statement from the above two claims, using a union bound, and
applying the triangle inequality | ed(x, y)−ed(z, y)| ≤ ed(x, z) (see also Figure 2). Indeed, we obtain
(i) that for the distribution µ0, with high probability, ed(x, y) ≥ (0.1C2ε0/ζ−2ε1)R = (2−2ε1)R >
R; and (ii) that for the distribution µ1, with high probability, ed(x, y) ≤ (10C2ε1/ζ + 2ε1)R =
402ε1R ≤ 804

C1α ·R < R/α.

x

y

z ≥ 2R

≤ 2ǫ1R

x

z

≤ 2ǫ1R

y

≤ 400ǫ1R

Figure 2: The relative positions of x, y, z under the distributions µ0 and µ1 respectively.

It remains to prove Claims 4.9 and 4.10.

Proof of Claim 4.9. One can verify that ed(x, z) is upper bounded by the number of substitutions
performed when constructing x from z. This number of substitutions may be bounded using a
straightforward Chernoff bound:

Theorem 4.11 (Chernoff Bound, cf. [MR95]). Let Xi, i = 1 . . . d, be i.i.d. random Poisson trials
with E [Xi] = q for some q ∈ (0, 1). Then Pr[|∑Xi − qd| > 1

2qd] ≤ 2e−qd/10.

In our case probability of substitution is q = (1 − ρ)(1 − 1/p), where the second factor is the
probability that the substituted symbol is different from the original symbol. Since ρ = 1− ε1R/d,
we get

Pr
µt

[
ed(x, z) ≤ 2ε1R

]
≥ 1− e−Ω(ε1R) ≥ 1− e−dΩ(1)

.

25

Proof of Claim 4.10. We first show an upper bound on ed(z, y) by analyzing the sum of magnitudes
of all the rotation operations. Recall that there are w rotation operations; a single rotation operation
works on a block of (random) length L = βlLmin, and incurs edit distance at most (in fact, exactly)
2bεtLc. For l ∈ [m], let the random variable Zl denote the number of rotation operations in
which the block length equals βlLmin. Observe that Zl has Binomial distribution B(w, β−l

ζ) and

its expectation is E[Zl] = w · β−l

ζ ≥ C2R
mLmin

· d−0.01

ζ ≥ dΩ(1). By a straightforward Chernoff bound
(Theorem 4.11),

Pr
[
Zl ≥ 2E[Zl]

]
≤ e−Ω(E[Zl]) ≤ e−dΩ(1)

.

Taking a union bound over these events for l = 1, . . . ,m, we conclude that with high probability

ed(z, y) ≤
m∑

l=1

(2w
β−l

ζ
· 2εtβlLmin) =

4C2εtR

ζ
.

We proceed to show a lower bound on ed(z, y), by counting inversions, i.e. pairs of symbols
(a1, b1), . . . , (ak, bk) such that each aj appears before bj in z, but aj appears after bj in y. It is easy
to verify that if the inversions are disjoint, in the sense that the symbols a1, b1, . . . , ak, bk are all
distinct, then ed(z, y) ≥ k (because in every alignment of z with y, for each j = 1, . . . , k, at least
one of aj , bj must incur an edit operation). For each of the w rotation operations we take bεtLc
pairs — simply take the bεtLc symbols that were at the beginning of the block and match them to
the bεtLc symbols that were at the end of the block. It follows, using Chernoff bounds as above,
that with probability at least 1− e−dΩ(1)

this process picks at least 1
2 · C2εtR

ζ pairs of symbols, but
this count might include repetitions. Furthermore, a pair “inverted” in one rotation operation may
be inverted back by another rotation. To mitigate this concern, fix a pair (a, b) taken at some j-th
rotation operation. The probability that symbol a was inside a rotated block in at least one other
rotation is at most (using the independence between rotations and a union bound)

(w − 1)
m∑

l=1

(
β−l

ζ
· β

lLmin

d

)
<
wmLmin

ζd
=
C2R

ζd
.

A similar argument applies to symbol b, and clearly if both a and b were not inside a rotated block
of any of the other w − 1 rotations, then either (a, b) or (b, a) is an inversion between z and y. It
remains to apply a union bound over the C2εtR

2ζ pairs of symbols the above process produces, and
indeed the probability that at least one of them fails is at most

2 · C2εtR

2ζ
· C2R

ζd
≤ O

(
R2

d

)
≤ d−Ω(1).

We conclude that with probability at least 1 − d−Ω(1), the above process produces C2εtR
2ζ disjoint

inversions, and thus ed(y, z) ≥ C2εtR
2ζ . This completes the proof of Claim 4.10.

We thus finalized the proof of Lemma 4.8.

26

5 Reducing Ulam to Edit Distance on 0-1 strings

In this section, we prove Theorem 1.2. We make no attempt to optimize the constants.
The basic intuition behind this proof is quite simple. The first part (the upper bound on

ed(π(P), π(Q))) is immediate, and the main challenge is to prove the lower bound on ed(π(P), π(Q)).
To prove the lower bound, we proceed by ruling out all “potential certificates” that ed(π(P), π(Q))
is small. Specifically, a “potential certificate” is a potential fixed alignment between π(P) and π(Q)
of low cost, i.e. a fixed monotone mapping that matches monotonically all but at most 1

100 ed(P,Q)
of the positions in π(P) and π(Q). We then analyze the probability that such an alignment is “suc-
cessful”, in the sense that every pair of positions that is matched under the potential alignment has
equal symbols. Indeed, we show this probability is exponentially small because many of the pairs
matched are independent coin tosses. We then apply a union bound over all potential alignment of
small cost. Although a direct union bound is not sufficient (there are too many potential alignments
to consider), we reduce the number of potential low-cost alignments by partitioning the set of all
such alignments into a smaller number of groups of “equivalent alignments”.

We proceed to set up some basic terminology and notation and to provide two lemmas that will
be used in the proof of the theorem.

For two permutations P,Q, we say that an index (position) i ∈ [d] in P is missing (from Q) if
the symbol P (i) does not appear inside Q.4 We say that a pair of indices {i, j} ⊆ [d] is an inversion
(in P with respect to Q) if the two characters P (i), P (j) appear in Q but in the opposite relative
order than in P , formally given by (i− j)(Q−1(P (i))−Q−1(P (j))) < 0. We also say that index j
is inverted with respect to i.

An alignment of two strings x, y ∈ Σd is a mapping A : [d] 7→ [d] ∪ {⊥} that is monotonically
increasing on A−1([d]) = {i ∈ [d] | A(i) ∈ [d]}. Intuitively, A models a candidate longest common
subsequence between x and y, and thus it maps indices in x to their respective indices in y and
takes the value ⊥ when there is no respective index in y (i.e., the respective position of x is not
in the candidate subsequence). A disagreement in the alignment A is an index i ∈ [d] for which
A(i) 6= ⊥ and x(i) 6= y(A(i)). The alignment is called successful if it has no disagreements. The
cost of an alignment is the number of positions in x (equivalently, in y) that are not mapped to
a respective index in the other string, namely |A−1(⊥)| = d − |A−1([d])| = d − |A([d])|, where
A([d]) = {A(i) | i ∈ [d]}. It is easy to verify that for all x, y,

1
2 ed(x, y) ≤ min

A
cost(A) ≤ ed(x, y), (11)

where the minimum is taken over all successful alignments A.
In the following lemma, we present a property of strings P and Q that will let us prove that,

for a fixed potential alignment between π(P) and π(Q), the probability of the alignment being
successful is very small.

Lemma 5.1. Let P,Q be two permutations of length d that contain the same symbols, i.e. P ([d]) =
Q([d]). Then there exists a collection of m ≥ ed(P,Q)/4 inversions {i1, j1}, . . . , {im, jm} such that
i1, j1, . . . , im, jm are all distinct.

Proof. Fix P,Q. Define an (undirected) graph G with vertex set [d] and an edge {i, j} whenever
{i, j} is an inversion. Let E∗ ⊆ E(G) be a matching in G (i.e. no two edges in E∗ share an endpoint)

4Remember that we have defined a permutation P as a string with a large alphabet where every symbol appears
at most once.

27

that is maximal with respect to containment. Observe that E∗ is a collection of inversions whose
indices are all distinct (as desired), and it only remains to bound m = |E∗| from below. Following
[SU04], we achieve the latter using the well-known relation between maximal matching and vertex-
cover.5

Let V ∗ be the set of vertices incident to any edge in E∗, thus |V ∗| = 2|E∗|. Clearly, V ∗ is a
vertex-cover of G, namely every edge (inversion) must have at least one endpoint in V ∗. It follows
that V \ V ∗ contains no edges (inversions), and thus immediately yields a successful alignment A
between P and Q. Formally, the subsequence of P obtained by removing the positions V ∗ is also a
subsequence of Q, and A is the monotone map matching them. Thus, A(i) = ⊥ if and only if i ∈ V ∗
and cost(A) = 2|E∗|. Finally, using (11) we get that m = |E∗| = 1

2 cost(A) ≥ 1
4 ed(P,Q).

We now give a lemma that essentially lets us partition all potential alignments into a small
number of groups of equivalent alignments.

Lemma 5.2. Let P,Q be two permutations of length d. Fix 0 < γ < 1/2 and a subset S ⊆ [d]. For
an alignment A of P and Q (not necessarily successful), let A|S : S → [d] ∪ {⊥} be a function that
is equal to the function A on the domain S. Define

F = {A|S | A is an alignment of P and Q with cost(A) ≤ γ|S|}.
Then |F | ≤ (3e/γ)2γ|S|.

Proof. Let us denote s = |S|. An alignment of P with Q of cost at most γs can be described as
deleting exactly γs symbols from P and exactly γs symbols from Q. (We assume here for simplicity
that γs is an integer; otherwise, we round it up and change constants accordingly.) Clearly, we can
bound |F | by the number of such alignments between P and Q, namely |F | ≤ (

d
γs

)(
d
γs

)
, but we aim

to get a bound that depends on s = |S| and not on d, by more carefully counting restrictions A|S .
An alignment A of P with Q of cost at most γs can be described as first deleting exactly γs

characters from P and then inserting into the resulting string exactly γs characters. Observe that
A|S is completely determined from the following information: (a) which positions in S are deleted;
(b) how many characters are deleted between every two successive indices in S; and (c) how many
characters are inserted between every two successive indices in S. (When we say two successive
indices in S, it should be interpreted to include also 0 and d+ 1 as indices in S, and in particular
(b) describes also how many characters before the first index in S are deleted from P .) Indeed, for
each i ∈ S, data (a) determines whether A(i) = ⊥. If A(i) 6= ⊥, then A(i) = i − di + ai where di

is the total number of deletions among indices 1, . . . , i− 1, which can be determined from data (a)
and (b), and ai is the total number of insertions before position i, which can be determined from
data (c).

It remains to upper bound the number of possible outcomes to data (a)–(c). Clearly, the
outcomes for (a) and (b) together can be upper bounded by the number of outcomes of throwing
γs indistinguishable balls into 2s+ 2 bins (a bin per element in S which may get at most one ball,
a bin per each interval between elements in S and one extra bin to account for case when the cost
is strictly less than γs). This upper bound is equal to

(
2s+2+γs

γs

)
possible outcomes. The outcomes

of data (c) can be similarly upper bounded by
(
s+1+γs

γs

)
. Together, we obtain that

|F | ≤
(

2s+ 2 + γs

γs

)(
s+ 1 + γs

γs

)
≤

(e(2 + 2γ)
γ

)γs(e(1 + 2γ)
γ

)γs
≤

(3e
γ

)2γs
,

5Another proof may be obtained using the O(1)-approximation in [GJKK07, Theorem 3.3].

28

which proves the lemma.

Having established the two lemmas, we proceed to prove the theorem, which states that with
high probability, Ω(ed(P,Q)) ≤ ed(π(P), π(Q)) ≤ ed(P,Q).

Proof of Theorem 1.2. Fix two permutations P and Q of length d. The inequality ed(π(P), π(Q)) ≤
ed(P,Q) follows immediately from the observation that every sequence of edit operations to trans-
form P into Q can be applied also to transform π(P) and π(Q). It thus remains to prove the other
direction. Assume for now that P and Q use the same symbols, i.e. P ([d]) = Q([d]). We will later
explain how the general case follows using a similar argument.

Apply Lemma 5.1 to P,Q, and extractm ≥ ed(P,Q)/4 inversions {i1, j1}, . . . , {im, jm} such that
i1, j1, . . . , im, jm are all distinct. Define S = {i1, j1, . . . , im, jm}, hence |S| = 2m. Fix γ = 1/100
and let F be defined as in Lemma 5.2 (with respect to our P,Q, S and γ). By that lemma,
|F | ≤ (3e/γ)2γ|S| = (3e/γ)4γm. Note that F does not depend on π.

For every f ∈ F , let Ef be the event that all i ∈ S with f(i) 6= ⊥ satisfy π(P (i)) = π(Q(f(i))).
That is

Ef =
∧

i∈S\f−1(⊥)

{π(P (i)) = π(Q(f(i))}.

We claim that
Pr

[
ed(π(P), π(Q)) < 1

2γ · ed(P,Q)
]
≤ Pr

[⋃

f∈F

Ef
]
. (12)

To prove the claim we show that ed(π(P), π(Q)) < 1
2γ · ed(P,Q) implies that at least one of the

events Ef happens. Indeed, suppose there is a successful alignment A between π(P) and π(Q) that
has cost 1

2γ · ed(P,Q) ≤ 2γm = γ|S|. Since A is successful, for all i ∈ S \ A−1(⊥), we must have
π(P (i)) = π(Q(A(i)). Furthermore, we can think of A as an alignment between P and Q, and then
by definition, its restriction A|S must be in F .

We now bound Pr[Ef] for any fixed f ∈ F , i.e. f = A|S for some alignment A of cost at
most γ|S| = 2γm. Since S is the union of m inversions {it, jt} with distinct indices, for at least
(1 − 2γ)m of these inversions, we have that f(it), f(jt) 6= ⊥. For every such inversion {it, jt}, it
cannot be that both P (it) = Q(f(it)) and P (jt) = Q(f(jt)) (as that would contradict the fact
that the alignment A is increasing). Let at 6= bt denote these two differing symbols (i.e. either
at = P (it), bt = Q(f(it)) or at = P (jt), bt = Q(f(jt))), the event Ef can only occur if π(at) = π(bt).
We thus obtain (1−2γ)m requirements of the form π(at) = π(bt). These requirements have distinct
symbols at in their left-hand sides (since they come from distinct positions in P), and similarly,
the right-hand sides contain distinct symbols bt. Altogether, every symbol in Σ may appear in at
most two requirements, and thus we can extract (say greedily) a subcollection containing at least
one half of these requirements, namely, at least (1− 2γ)m/2 ≥ m/4 requirements, such that every
symbol appears in at most one requirement. Since π is a random function, the probability that all
these requirements are satisfied is at most 2−m/4, and we conclude that Pr[Ef] ≤ 2−m/4.

To complete the proof of the theorem, we plug the last bound into (12) and use a union bound
and Lemma 5.2, which altogether gives

Pr
[
ed(π(P), π(Q)) < 1

2γ · ed(P,Q)
]
≤ (3e/γ)4γm · 2−m/4 ≤ 2−m/8.

Finally, we extend the proof to the case where P and Q differ on some symbols, i.e., there is
at least a symbol in P that is not in Q (and vice-versa). Define Σ′ = P ([d]) ∩ Q([d]) to be the

29

set of symbols that appear in both P and Q. Let P ′ be the string obtained by deleting from P
the symbols not in Σ′, and let Q′ be obtained similarly from Q. Clearly, P ′ and Q′ are permuta-
tions, they have the same length d′ = |Σ′|, and they use exactly the same symbols. Furthermore,
ed(P,Q) = ed(P ′, Q′) + Θ(d− d′). Applying Lemma 5.1 to P ′, Q′, we get m ≥ ed(P ′, Q′)/4 inver-
sions {i′1, j′1}, . . . , {i′m, j′m} such that i′1, j

′
1, . . . , i

′
m, j

′
m are all distinct. Translating these positions

to P yields m inversions {i1, j1}, . . . , {im, jm} between P and Q, such that i1, j1, . . . , im, jm are all
distinct. We then let S contain the indices in these inversions and also the d − d′ indices in P
containing the symbols not in Σ′. It is not difficult to see that we will still get |S| ≥ Ω(ed(P,Q)).
Inversions will give rise to requirements of the form π(a) = π(b) as before, and each index i where
P (i) /∈ Σ′ gives rise to a requirement π(P (i)) = π(Q(f(i))). Altogether, after removing indices
i such that f(i) = ⊥, we still get at least |S|/8 requirements whose variables π(a), π(b) are all
distinct.

6 Concluding Remarks

Poincaré inequality. Our communication complexity lower bounds imply that embedding the
edit and Ulam metrics into `1, and into powers thereof, requires distortion Ω(log d

log log d). But our
proof also yields a Poincaré-type inequality, as follows. Indeed, using (i) a variant of Lemma 3.4,
where Pr[HA(x) 6= HB(x)] is replaced with E[HA(x)−HB(x)]2 and HA,HB are real (rather than
boolean) functions with Ex

[HA(x)
]2 = Ex

[HB(x)
]2 = 1, together with (ii) Lemma 4.2 for suitable

parameters R = d1/4 and α = Θ(log d
log log d), we get that for all f : Zd

p → R (and thus all f : Zd
p → `2)

E(x,y)∈µ0
[f(x)− f(y)]2 − E(x,y)∈µ1

[f(x)− f(y)]2 ≤ 1
10Ex,y∈Zd

p
[f(x)− f(y)]2. (13)

In fact, the aforementioned nonembeddability into `1 (actually into the bigger space squared-
`2) can be proved directly from the Poincaré inequality (13), as follows. Consider a D-distortion
embedding into squared-`2, namely, let φ : Zd

p → `2 be such that for all permutations x, y ∈ Zd
p,

ed(x, y)/D ≤ ‖φ(x)− φ(y)‖22 ≤ ed(x, y)

Schoenberg [Sch38] proved (see e.g., [DL97, Theorem 9.1.1]) that for every λ > 0, applying the
transform x 7→ 1 − e−λx on the distances of a squared-`2 metric always results with a squared-`2
metric. Thus, there exists a mapping ψ : Zd

p → `2 satisfying

‖ψ(x)− ψ(y)‖22 = 1− e−‖φ(x)−φ(y)‖22·α/R.

We thus get, using Lemma 4.8, that

Eµ0 ‖ψ(x)− ψ(y)‖22 − Eµ1 ‖ψ(x)− ψ(y)‖22 − 1
10 · Ex,y∈Zd

p
‖ψ(x)− ψ(y)‖22 ≥ 1

e − 1
eα/D − 1

10 − d−Ω(1).

Combining this inequality with Eqn. (13) implies that D ≥ Ω(α) = Ω(log d
log log d).

Overcoming non-embeddability into `1. One moral of our non-embeddability lower bound
is that some of the usual approaches for designing algorithms for Ulam and edit metrics cannot
give approximation better than Ω̃(log d). In particular, to design for these metrics a nearest neigh-
bor algorithm that achieves a sublogarithmic (in d) approximation factor, we must depart from
embedding into `1 or into other spaces that admit O(1)-size sketches.

30

This challenge was accomplished for the Ulam metric in a recent paper [AIK09], which designs a
nearest neighbor algorithm achieving O(log log d) approximation using polynomial (in n+ d) space
and sublinear (in n) query time. These guarantees bypass the `1 non-embeddability barrier proved
in the current paper, by relying on a constant-distortion embedding of the Ulam metric into an
alternative, richer host space (namely, iterated product of simple spaces such as `1) which, despite
the richer structure, turns out to have reasonably good algorithms.

Acknowledgments

We thank Parikshit Gopalan, Piotr Indyk, T.S. Jayram, Ravi Kumar, Ilan Newman, and Yuri
Rabinovich for numerous early discussions on non-embeddability of the Ulam and edit metrics,
which undoubtedly were a precursor of the current work. We also thank James Lee and Assaf
Naor for enlightening discussions about the Poincaré inequality. Finally, we thank the reviewers
for careful reading and suggestions that helped improve the clarity and exposition of the article.

References

[ADG+03] Alexandr Andoni, Michel Deza, Anupam Gupta, Piotr Indyk, and Sofya Raskhodnikova. Lower
bounds for embedding edit distance into normed spaces. In Proceedings of the ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 523–526, 2003.

[AIK08] Alexandr Andoni, Piotr Indyk, and Robert Krauthgamer. Earth mover distance over high-
dimensional spaces. In Proceedings of the ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 343–352, 2008.

[AIK09] Alexandr Andoni, Piotr Indyk, and Robert Krauthgamer. Overcoming the `1 non-embeddability
barrier: Algorithms for product metrics. In Proceedings of the ACM-SIAM Symposium on Dis-
crete Algorithms (SODA), pages 865–874, 2009.

[AO09] Alexandr Andoni and Krzysztof Onak. Approximating edit distance in near-linear time. In
Proceedings of the Symposium on Theory of Computing (STOC), pages 199–204, 2009.

[BEK+03] Tuğkan Batu, Funda Ergün, Joe Kilian, Avner Magen, Sofya Raskhodnikova, Ronitt Rubinfeld,
and Rahul Sami. A sublinear algorithm for weakly approximating edit distance. In Proceedings
of the Symposium on Theory of Computing (STOC), pages 316–324, 2003.

[BES06] Tuğkan Batu, Funda Ergün, and Cenk Sahinalp. Oblivious string embeddings and edit distance
approximations. In Proceedings of the ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 792–801, 2006.

[BFC08] Philip Bille and Martin Farach-Colton. Fast and compact regular expression matching. Theoret-
ical Computer Science, 409(28):486–496, 2008.

[BJKK04] Ziv Bar-Yossef, T. S. Jayram, Robert Krauthgamer, and Ravi Kumar. Approximating edit dis-
tance efficiently. In Proceedings of the Symposium on Foundations of Computer Science (FOCS),
pages 550–559, 2004.

[BJKS04] Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, and D. Sivakumar. An information statistics approach
to data stream and communication complexity. J. Comput. Syst. Sci., 68(4):702–732, 2004.

[Bou02] J. Bourgain. On the distributions of the Fourier spectrum of Boolean functions. Israel J. Math.,
131:269–276, 2002.

[CK06] Moses Charikar and Robert Krauthgamer. Embedding the ulam metric into `1. Theory of
Computing, 2(11):207–224, 2006.

31

[CM07] Graham Cormode and S. Muthukrishnan. The string edit distance matching problem with moves.
ACM Trans. Algorithms, 3(1), 2007. Special issue on SODA’02.

[Cor03] Graham Cormode. Sequence Distance Embeddings. Ph.D. Thesis. University of Warwick, 2003.

[CPSV00] Graham Cormode, Mike Paterson, Suleyman Cenk Sahinalp, and Uzi Vishkin. Communication
complexity of document exchange. In Proceedings of the ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 197–206, 2000.

[DL97] M. M. Deza and M. Laurent. Geometry of cuts and metrics. Springer-Verlag, Berlin, 1997.

[GJKK07] Parikshit Gopalan, T. S. Jayram, Robert Krauthgamer, and Ravi Kumar. Estimating the sort-
edness of a data stream. In Proceedings of the ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 318–327, 2007.

[IM98] P. Indyk and R. Motwani. Approximate nearest neighbor: towards removing the curse of di-
mensionality. Proceedings of the Symposium on Theory of Computing (STOC), pages 604–613,
1998.

[Ind01] P. Indyk. Tutorial: Algorithmic applications of low-distortion geometric embeddings. Proceedings
of the Symposium on Foundations of Computer Science (FOCS), pages 10–33, 2001.

[Ind04] Piotr Indyk. Approximate nearest neighbor under edit distance via product metrics. In Proceed-
ings of the ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 646–650, 2004.

[KKL88] J. Kahn, G. Kalai, and N. Linial. The influence of variables on boolean functions. In Proceedings
of the Symposium on Foundations of Computer Science (FOCS), pages 68–80, 1988.

[KN06] Subhash Khot and Assaf Naor. Nonembeddability theorems via fourier analysis. Math. Ann.,
334(4):821–852, 2006. Preliminary version appeared in FOCS’05.

[KOR00] E. Kushilevitz, R. Ostrovsky, and Y. Rabani. Efficient search for approximate nearest neighbor in
high dimensional spaces. SIAM J. Comput., 30(2):457–474, 2000. Preliminary version appeared
in STOC’98.

[KR06] Robert Krauthgamer and Yuval Rabani. Improved lower bounds for embeddings into l1. In
Proceedings of the ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1010–1017,
2006.

[Mat07] J. Matoušek. Collection of open problems on low-distortion embeddings of finite metric spaces.
March 2007. Available online. Last access in August, 2007.

[MP80] William J. Masek and Mike Paterson. A faster algorithm computing string edit distances. J.
Comput. Syst. Sci., 20(1):18–31, 1980.

[MR95] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press, 1995.

[MS00] S. Muthukrishnan and C. Sahinalp. Approximate nearest neighbors and sequence comparison
with block operations. Proceedings of the Symposium on Theory of Computing (STOC), pages
416–424, 2000.

[OR07] Rafail Ostrovsky and Yuval Rabani. Low distortion embedding for edit distance. J. ACM, 54(5),
2007. Preliminary version appeared in STOC’05.

[Sah08] Süleyman Cenk Sahinalp. Edit distance under block operations. In Ming-Yang Kao, editor,
Encyclopedia of Algorithms. Springer, 2008.

[Sch38] I. J. Schoenberg. Metric spaces and positive definite functions. Transactions of the American
Mathematical Society, 44(3):522–536, November 1938.

32

[SS02] Michael Saks and Xiaodong Sun. Space lower bounds for distance approximation in the data
stream model. In Proceedings of the Symposium on Theory of Computing (STOC), pages 360–369,
2002.

[SU04] Cenk Sahinalp and Andrey Utis. Hardness of string similarity search and other indexing problems.
In Proceedings of International Colloquium on Automata, Languages and Programming (ICALP),
pages 1080 – 1098, 2004.

[WC76] C. K. Wong and Ashok K. Chandra. Bounds for the string editing problem. J. ACM, 23(1):13–16,
1976.

[Woo04] D. Woodruff. Optimal space lower bounds for all frequency moments. Proceedings of the ACM-
SIAM Symposium on Discrete Algorithms (SODA), pages 167–175, 2004.

[Woo07] D. P. Woodruff. Efficient and Private Distance Approximation in the Communication and
Streaming Models. PhD thesis, MIT, 2007.

33

